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23 ABSTRACT
24 Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining 
25 nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N2O) emissions from 
26 farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to 
27 suppress soil-nitrifier activity, through production and release of nitrification inhibitors. 
28 The power of phytochemicals with BNI-function needs to be harnessed to control soil-
29 nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative 
30 biological technologies designed for genetic mitigation are needed, so that BNI-enabled 
31 crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce 
32 greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less 
33 harmful to environment. This will reinforce the adaptation or mitigation impact of other 
34 climate-smart agriculture technologies.
35
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1 1. Introduction

2 Agriculture has become the largest source of man-made greenhouse gases (GHGs) on 

3 the planet [1]. It generates 14,000 Tg CO2.eq.yr-1, about 24% of total GHG emissions 

4 [1]. To put this in perspective, CO2 emissions from automobiles contribute to 14% of 

5 global GHG emissions [1-2]. A major portion of agricultural GHG emissions is 

6 associated with the production and use of nitrogen (N-fertilizers, based on life-cycle 

7 analysis), which is energy and carbon intensive [2]. It is ironic that nearly 70% of N-

8 fertilizers applied to agricultural soils is lost and returned to atmosphere as oxides of N 

9 and N2 (through microbial nitrification and denitrification processes), before the crops 

10 can absorb and assimilate it into plant protein with no net benefits to humans [3]. Nearly 

11 80% of global emissions of nitrous oxide (N2O), a GHG 300 times more potent than 

12 CO2, comes from the production and utilization of N-fertilizers in agriculture [4]. 

13 Providing farmers with new nitrogen-use efficiency options requires a major research 

14 and development effort, in combination with effective extension approaches.

15

16 1.1. The Paris Climate Agreement

17 With global food demand projected to double by 2050, agricultural emissions will grow 

18 further, unless agriculture becomes climate-smart [1]. Annual N-fertilizer use is 

19 expected to reach 300 Tg by 2050; global N2O emissions will double compared with 

20 present levels and reach 7.5 Tg N2O-N in such a 'business as usual' scenario [4,5,6]. The 

21 Paris Agreement (PA) signed in 2015, set the goal to reduce GHG emissions by 80% 

22 from 2005 levels by 2050 to limit global temperature rise to <2°C [7-8]. Reducing GHG 

23 emissions from agriculture is thus critical to meeting PA emission targets [7].

24
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1 1.2. Global cropping intensification to maximize yield resulted in weakened 

2 soil-health

3 Development of fertilizer-responsive crops (e.g. semi-dwarf wheat, -rice, and maize) 

4 has transformed global cereal production, but inadvertently unleashed a cascading effect 

5 of N-pollution in the environment [8,9]. Farmers in many intensive production systems 

6 are being forced to apply more N-fertilizer to sustain higher yields. Selection and 

7 breeding under high N-input environments and crop intensification have resulted in the 

8 development of nitrate (NO3
-)-responsive cultivars and high-nitrifying soil 

9 environments, leading to a decline in NUE (<30% at present) in crop production [3,10-

10 11]. Nitrate leaching and N2O emissions are an indication of weakening soil health (due 

11 to declining soil-carbon levels and shifts in soil microbial ecology conducive for 

12 accelerated nitrifier-activity) [10-11]. We need a course correction now to increase food 

13 production, whilst improving soil health and minimizing GHG emissions.

14

15 1.3. The need for genetic mitigation to tackle N2O emissions

16 Genetically enhanced mitigation technologies that are easily deployable and scalable, to 

17 reduce nitrification and N2O emissions, would make agricultural systems more N-

18 efficient and reduce emissions. Biological nitrification inhibition (BNI) is the ability of 

19 certain plant roots to suppress soil-nitrifier activity, through production and release of 

20 biological nitrification inhibitors (BNIs) [3]. BNI is a natural plant behavior, found in 

21 certain climax ecosystems where plants and microbes compete fiercely for limited 

22 mineralized soil-N [12-13].We should learn from nature and introduce these biological 

23 mechanisms to manage N-cycling in agricultural systems. Plant roots produce BNIs to 

24 suppress nitrifier activity (which converts immobile soil-ammonium (NH4
+) to mobile 
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1 soil-nitrate (NO3
-)) and retain soil-N in NH4

+ form to facilitate plant absorption and 

2 transfer into immobile microbial/organic-N (Fig. 1) [3,10]. Soil-NO3
-, once formed, is 

3 highly prone to leaching, and is also a substrate for soil denitrifying microbes that 

4 convert it into N2O, NO (nitric oxide) and ultimately N2 gas [3] (Fig. 1) - a net loss for 

5 plant production. N2O is primarily produced during both nitrification and denitrification 

6 processes [3] and BNI function suppresses N2O emissions by reducing nitrification and 

7 limiting NO3
- availability to denitrifiers (Fig. 1) [3,10]. The challenge is to redesign 

8 agricultural systems with crops and pastures that produce sufficient BNIs from root 

9 systems to suppress wasteful nitrification processes, increase N-flow to the plant and 

10 retention in soils, thus significantly improving nitrogen-use efficiency [3,14]. The 

11 power of BNI-enabled phytochemical secretions/additions from crop/pasture root 

12 systems should be unleashed to limit GHG emissions while sustaining future growth in 

13 food production. 

14

15 2. BNI technology to benefit agriculture and the environment

16 BNI technology exploits the understanding of BNI chemistry, and its impact on the soil 

17 microbiome, to develop genetic components that include BNI-enabled genetic stocks 

18 and genetic tools. These would facilitate introduction of BNI traits into major food and 

19 forage crops in the near future [3,10,14-18]. Production and release of BNIs from plant 

20 roots require the presence of NH4
+ in the rhizosphere and soil-microsites where NH4

+ is 

21 present, which are also the hot-spots for nitrifier populations [3,10,14,19]. As the BNIs 

22 release from roots is localized (i.e. BNI release is confined to parts of the root system 

23 exposed to NH4
+)[14], the delivery of BNIs is thus essentially targeted to where there is 

24 a high probability of nitrifier-activity. In addition, sustained release of BNIs from root 
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1 systems is functionally linked with the uptake and assimilation of NH4
+, which acts as a 

2 switch mechanism for BNI function. This results in a more effective delivery of BNIs to 

3 soil-nitrifier sites in the field [20-21]. In addition, the diverse chemical structures of 

4 BNI molecules and their multi-mode of inhibitory action on Nitrosomonas, could 

5 provide a lasting-control over nitrifier activity in agricultural soils compared to 

6 synthetic nitrification inhibitors [3,22]. The inhibitory effect from synthetic nitrification 

7 inhibitors does not last more than a few weeks at the most (often less than a week) and 

8 their delivery in the field is fraught with many challenges. They are expensive to apply 

9 and are often ineffective in the field, which may explain the lack of their wide-spread 

10 adoption by farmers [23]. BNI technology is suitable for integrated crop-livestock and 

11 cropping systems.

12

13 2.1 Crop-Livestock systems

14 Brachiaria grasses are the most widely planted forage crops in the tropics with as many 

15 as 100 million hectares planted as pastures in Brazil alone [24]. Among forage crops 

16 tested, Brachiaria humidicola has the highest BNI-capacity and produces 

17 brachialactone (a powerful nitrification inhibitor) in its deep-root systems [14]. Each 

18 year, from root turnover alone, well-managed Brachiaria pastures could add 14 kg 

19 brachialactone ha-1 and enrich the soil-C by up to 5 t ha-1 [25]. In addition, nearly 2.6 to 

20 7.5 million units of BNI-activity ha-1 d-1 (depending on the genetic stock) is released 

21 from roots, equivalent to annual additions of 6.2-18kg of nitrapyrin ha-1 (a synthetic 

22 nitrification inhibitor) [10,14]. Field studies with Brachiaria grasses showed that while 

23 they suppressed nitrification and N2O emissions [14], the reduced nitrifier activity has 

24 improved 15N-retention in soils, 15N-recovery and NUE of maize in an integrated maize-
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1 Brachiaria (crop-livestock) system for several years [26-27].

2  

3 2.2. Cropping Systems

4 Sorghum, a climate-smart cereal, releases sorgoleone from its roots, which mediates 

5 BNI-activity [15,28]. Genetic improvement for enhanced levels of sorgoleone release is 

6 one route to develop BNI-enabled cereal production [3,10]. Wheat, the most important 

7 food crop (grown on 240 million ha globally), uses about 20% of all fertilizer applied 

8 globally [16-17]. However, modern wheat cultivars do not have strong BNI-activity in 

9 their root systems [16-17]. Development of BNI-enabled wheat varieties using wild 

10 relatives or progenitors as sources of effective BNI-traits can be achieved using 

11 chromosome engineering [16-17].Wheat yield potential can be doubled from present 

12 levels to reach 20 t ha-1, but requires substantial improvements in NUE to make this 

13 economically attractive. The potential for improving BNI-capacity in wheat, sorghum 

14 and Brachiaria pastures has been illustrated [3,16-18].

15

16 2.3. Deploying BNI technology

17 Mitigation strategies/technologies to reduce agricultural GHG emissions must be cost-

18 effective and politically feasible to implement if they are to be adopted widely to reduce 

19 costs and deliver benefits to society. For example, mitigation technologies such as 

20 alternate wetting and drying in paddy fields can be challenging to implement for social 

21 and political reasons [29]. Similarly, the patchy distribution of urine-N (a major N 

22 source) in grazed grasslands makes it difficult to control N-losses using synthetic 

23 nitrification inhibitors [6]. With 220 million cattle in Brazil alone [30], N-inputs from 

24 urine are estimated at 12.8 Tg N y-1(based on the assumption that the average cow 
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1 excretes 160 g N in its urine per day) and nearly 90% of this N is lost due to rapid 

2 nitrification and denitrification [3,6]. BNI-enabled pastures can effectively suppress 

3 these nitrification associated N-losses [6,14]. When bovine urine was applied to high-

4 BNI B. humidicola (CIAT 679) pastures in the field, N2O emissions were 60% less 

5 compared to low-BNI Brachiaria (Brachiaria hybrid 'Mulato') pastures [31]. In Brazil, 

6 the potential impact on N-losses and N2O emissions from bovine urine N-inputs that 

7 may result from replacing low-BNI and/or degraded Brachiaria pastures with high-BNI 

8 Brachiaria pastures could be high. BNI-technology, could become an important piece in 

9 the puzzle to render agriculture more nutrient and resource-efficient, while protecting 

10 the environment. Breeding BNI-enabled food crops and forages and integrating these 

11 BNI-enabled components into crop-livestock systems could be the key genetic 

12 mitigation option to reduce N2O emissions. This genetic mitigation technology can be 

13 deployed without additional cost to the farmers, and is easy to adopt and scalable, as it 

14 does not require specialized or additional farm equipment or changes in water 

15 management.

16

17 2.4 The case for policy change

18 The PA came into force in November 2016; COP22 (Conference of Parties; organized 

19 in Marrakech, Morocco) initiated deliberations to assess technological options (i.e. 

20 those available or that can be developed in the near future) and develop the required 

21 policy framework to advance implementation of the PA agenda. Breeding crop varieties 

22 with BNI-traits and development of BNI-enabled production systems may take up to 30 

23 years (that includes delivery, time for adoption and for deployment) and requires a 

24 major change in the direction of agricultural research. It could be funded from part of 
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1 the earmarked funds (i.e. about 150 billion US$ per annum) to implement the PA 

2 agenda. A policy decision at this stage is thus necessary to identify suitable potential 

3 technologies that can transform the agricultural sector by improving NUE and facilitate 

4 tightening of N-cycling in agricultural systems to reduce GHG emissions; BNI-

5 technology could be considered as one of the key biological options. 

6

7 3. Outlook

8 Current agricultural practices need transformative changes. Other sectors, e.g. industry, 

9 energy production and transport are making major progress in increasing efficiency 

10 (thereby reducing GHG emissions), due to technological advances. New biological 

11 technologies must be developed for the agriculture sector to improve soil-N residence 

12 time and reduce N-losses to improve N-efficiency, which requires a tight control over 

13 soil-nitrifier activity. In addition, a closer coupling of crop and animal husbandry is 

14 needed to facilitate the recycling of organic-N through agricultural soils and reduce 

15 annual increases in N-fertilizer use. Nearly 175 Tg of fixed-N (biologically fixed-N 

16 from legumes + industrially fixed-N as N-fertilizer) enters into agricultural systems 

17 annually, but <1% of this Nr (reactive-N) is retained in human bodies. The remainder is 

18 returned to the atmosphere through nitrification and denitrification processes (as NOx 

19 and N2 gas, strongly impacting human health, ecosystem functions, and contributing to 

20 climate change), which in turn drives year-on-year increases in N-fertilizer application 

21 to sustain food production [3,10]. The economic value of this wasted Nr alone from 

22 agricultural systems is estimated at US$ 81 billion per year [9]. For example, the 

23 European Union, which consumes only 11 Tg Nr (N-fertilizer) annually, faces major 

24 challenges from N pollution on human health and ecosystems in economic-terms that 
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1 reaches US$ 102-320 billion y-1 [32]. When considering agricultural production in low 

2 and middle-income countries with high population growth rates, global damage to 

3 ecosystems and human health from Nr pollution could therefore be enormous. We 

4 should not treat agriculture as merely a commodity-producing industry with profit as the 

5 sole motto, but manage agriculture as part of a larger ecosystem that provides life-

6 support and services to human society. We need to ask ourselves why is 99% of the Nr 

7 that enters into farming systems each year allowed to return to the atmosphere [33], 

8 without being productively rerouted through agricultural soils and cycled back into 

9 sustainable agri-food systems. 

10

11 A fundamental shift is needed in the way Nr is managed in agricultural systems to 

12 curtail the increasingly insatiable 'soil-hunger' for N fertilizers. This requires the 

13 introduction of novel BNI-traits into main-stream breeding, coupled with changes in 

14 crop management and integrated crop-livestock systems to limit soil-nitrifier activity. 

15 Suppressing soil-nitrifier activity can have a cascading effect on soil-N retention, soil 

16 organic matter buildup and shifts in microbial ecology that, over time, can help improve 

17 soil health [3,10]. The second Green Revolution must integrate plant traits that improve 

18 soil health, in addition to traits that enhance yield potential and stability. While the 

19 scientific goals of using BNI for a better NUE are inextricably linked to the 

20 amelioration of the worst predictions of GHG production and potential changes in 

21 climate, few farmers will change their practices for the altruistic goals of reducing their 

22 C-footprint and N2O generation. However, the bottom line of protecting biologically 

23 fixed or synthetic-N supplies through BNI-technologies means that less N-fertilizer is 

24 required for the same yield, and the gross excesses of some practices can be reined in by 
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1 demonstrating that increased application is an unnecessary cost. Money talks in the end.

2
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1 Figure Captions

2

3 Fig. 1. Biological nitrification inhibition where plant root systems produce nitrification 

4 inhibitors to suppress nitrifier activity in soils to reduce NO3
- formation, facilitate 

5 NH4
+ immobilization, plant uptake of NH4

+ and reduction of N2O emissions.

6

7  
8
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3 Genetic mitigation strategies to tackle agricultural GHG emissions: 
4 The case for biological nitrification inhibition technology
5

6 Highlights

7 Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining NUE and 

8 enhanced N2O emissions from farming. Transformative biological technologies designed for 

9 genetic mitigation are needed where BNI-enabled crop-livestock and cropping systems can rein 

10 in nitrifier activity, reduce GHG emissions and make farming N-efficient.
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