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We use panel data from a randomized controlled trial (RCT) administered among 1200 smallholders in Uganda to
evaluate input use and food security impacts of an improved maize storage technology. After two seasons,
households who received the technology were 10 percentage points more likely to plant hybrid maize varieties
that are more susceptible to insect pests in storage than traditional lower-yielding varieties. Treated smallholders
also stored maize for a longer period, reported a substantial drop in storage losses, and were less likely to use
storage chemicals than untreated cohorts. Our results indicate that policies to promote soft kernel high-yielding
hybrid maize varieties in sub-Saharan Africa should consider an improvement in post-harvest storage as a com-
plementary intervention to increase adoption of these varieties.
1. Introduction

Many poverty alleviation and development programs implemented in
sub-Saharan Africa (SSA) focus on increasing agricultural production and
smallholder productivity, frequently by encouraging smallholders to in-
crease their use of improved seed varieties and chemical fertilizer
(Evenson and Gollin, 2003; Pingali, 2012). Often, however, these pro-
grams ignore what happens to output in the post-harvest season (World
Bank, 2011). This is problematic, because while maize is the most
important staple food in Eastern and Southern Africa, the softer kernel
high-yielding hybrid varieties commonly promoted there offer less nat-
ural protection to insect attacks during storage compared with the
lower-yielding traditional varieties that store relatively well (Golob,
2002; Smale et al., 1995). As a result, smallholders face a dilemma.
Should they plant high-yielding varieties that carry storage risks or
traditional varieties with lower yields, but less vulnerability to insect
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oomotile@purdue.edu (O.J. Om
lyg@purdue.edu (G.E. Shively).

July 2018; Accepted 10 July 201

vier B.V. This is an open access a
attacks during storage (Ricker-Gilbert and Jones, 2015)?
In this study, we use a randomized controlled trial (RCT) to measure

whether a smallholder's ability to store maize using an improved storage
technology affects the household's storage decision and, ultimately, its
subsequent decisions about using modern inputs. In our RCT, we pro-
vided to a randomly selected group of households one Purdue Improved
Crop Storage (PICS) hermetic (airtight) storage bag—an improved grain
storage technology—that eliminates insect pests in storage when prop-
erly sealed. We compare choices and decisions among this treated group
against a control group, consisting of farmers that received no inter-
vention and continued to use traditional storage techniques. Because not
all households who were randomly offered the technology chose to use it,
we estimate intention-to-treat (ITT) effects for its policy relevance.
Moreover, the impacts on treated households who took-up the offer and
actually used the storage technology are likely to be larger. That is, unlike
the local average treatment effects (LATE) on compliant households, the
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estimated ITT effects average impacts across both treated households
who used the technology and those who did not.1

The present article has two main objectives. First, we estimate
whether receipt of an improved storage technology leads to input-related
behavioral changes in maize cultivation. The behavioral changes of in-
terest include the uptake of improved maize varieties in terms of adop-
tion and intensity (share of area planted to improved varieties), and,
possibly, the use of inorganic fertilizer for increasing maize yields.
Because improved maize varieties are more susceptible to pest attacks
during storage due to their softer kernels and open husks relative to the
traditional, lower-yielding varieties, farmers face an increased post-
harvest storage risk when choosing to plant these improved varieties.
Using panel data from Ethiopia, Dercon and Christiaensen (2011)
showed that ex-post production risk (rainfall variability) reduces a
household's adoption of improved inputs (inorganic fertilizer) ex-ante. If
the same holds true in our context, when households have the ability to
store improved maize varieties in an effective, chemical-free hermetic
storage technology, their storage risks or storability concerns may be
mitigated. Thus, access to hermetic storage technology may influence the
cultivation of improved maize varieties.2 Further evidence that stor-
ability concerns may negatively influence the adoption of improved
maize varieties comes from Malawi (Katengeza et al., 2012; Lunduka
et al., 2012), Zimbabwe (Derera et al., 2006), and Uganda (Obaa et al.,
2005) where farmers expressed preference for traditional varieties due to
storability concerns.

Our second objective is to explore some of the possible channels
through which receipt of an improved storage technology may influence
the adoption of improved maize varieties. For example, these include (i)
the quantity of maize stored at harvest, (ii) the duration of time that
maize is stored, and (iii) use of chemical insecticides, often referred to as
storage chemicals, on stored maize. We also examine the impact of the
technology on the percentage of self-reported post-harvest losses (PHL)
indicated by households.3 Previous studies show that hermetic storage
technologies are effective at limiting maize damage in storage (De Groote
et al., 2013; Njoroge et al., 2014; Tefera et al., 2011). Therefore, one
might reasonably expect access to an improved storage method to in-
fluence storage decisions.

To our knowledge, few published findings explore the causal link
between storage technology and inputs use among smallholder farmers
in SSA. Furthermore, there has been little or no rigorous impact analysis
thus far for hermetic storage bags in SSA, as discussed in a recent review
of the topic (Sheahan and Barrett, 2017). With few exceptions, issues
relating to post-harvest losses have not been considered in studies that
evaluate the adoption of improved inputs such as seed and inorganic
fertilizer among smallholder farm households. Thus, the relationships
between post-harvest management practices, storability concerns, and
adoption of improved seed varieties in SSA remain poorly understood.
Understanding these relationships is important for future maize pro-
ductivity and food security in the region (Bezu et al., 2014; Mason and
Smale, 2013).
1 For comparison, the local average treatment effect (LATE) estimates for
main outcomes are shown later in this paper.
2 Dercon and Christiaensen (2011) examined risk in production technologies

and welfare consequences on households when shocks resulted in a poor har-
vest. The risk in our context occurs during storage but the decision-making
process is the same for either (pre-harvest or post-harvest) production risk.
3 One might ask why we did not examine impacts of our intervention on

maize yields or output as one of the key impacts of our intervention. The reason
is that yield or output is not a decision variable but rather an outcome variable,
which is based on endogenous household decisions like seed, fertilizer and
management decisions, along with exogenous factors like rainfall. Rainfall was
low across Uganda in the season following our intervention, which also made it
difficult for us to pick up a statistically significant impact of the hermetic bags
on yields (see Appendix Table C.3 for the model of yields regressed on the
hermetic bag treatment).
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The present article makes two main contributions to the literature.
First, we fill a policy research gap for SSA by estimating a causal rela-
tionship between improved storage technology and improved input
adoption. Ricker-Gilbert and Jones (2015) examined this linkage using
observational panel data from Malawi, and found the use of chemical
insecticides to be significantly associatedwith the probability of adopting
improved seed varieties. However, the authors stop short of concluding
causal impact in their study, and advocate for the use of an RCT to answer
the question more fully in the future. Our impact evaluation with
experimental design complements and builds upon Ricker-Gilbert and
Jones' (2015) study.

The majority of studies that have estimated the impacts of improved
storage technologies in developing countries are observational. For
instance, Gitonga et al. (2013) used propensity score matching (PSM) to
evaluate the economic and food security impacts of hermetic metal silo
on duration of maize storage, loss abatement, and spending on storage
chemicals for maize-growing farmers in Kenya. In Central America,
Bokusheva et al. (2012) used regression analysis and a Tobit model to
estimate impacts of hermetic metal silo on adopter's well-being, sales of
production, and the number of months a farmer purchased foods,
respectively.

To our knowledge, our study is one of a very few to have evaluated
improved storage technologies as part of an RCT. Ndegwa et al. (2016)
used RCT to investigate the effectiveness of hermetic storage bags at
reducing storage losses and its economic viability in an on-farm trial in
one district of Kenya. Basu and Wong (2015) conducted an evaluation of
a randomized seasonal food storage and food credit programs or treat-
ments in West Timor Indonesia. They investigated whether access to
improved storage technology helps households to transfer assets (staple
food endowment) from harvest to lean season, smoothing inter-seasonal
household consumption. They find that the storage treatment increased
non-food consumption but had no effect on staple food consumption. In a
more recent study, Aggarwal et al. (2017) experimentally evaluate a
group-based grain storage scheme through savings clubs in Kenya. They
find that individuals who joined the group-based savings clubs were
more likely to store maize to be consumed or sold at least one month after
harvest. Our study builds on this sparse literature by testing if there is a
behavioral link on the part of smallholders between improved storage
technology, storage decisions and input adoption decisions the next
season.

Our second contribution is to use a large sample (nearly 1200
smallholders) surveyed over two years (2014 and 2016). The experi-
mental panel dataset has a broad geographic scope that gives it a
semblance of being nationally representative of maize producing
households in Uganda. The broader geographic scope relative to previous
studies that evaluate improved storage technologies confers a measure of
external validity on our study to support the internal validity offered by
our experimental design. As such, our results should be generalizable to
similar populations elsewhere in SSA.

Results from our study indicate that households treated with the
improved storage technology are 10 percentage points more likely to
plant hybrid maize seed varieties the following year (significant with p-
value<0.05), consistent with observational findings reported by Rick-
er-Gilbert and Jones (2015) in Malawi. Our findings have implications
for improved maize variety adoption, maize productivity, and poten-
tially, food security among smallholder households; because they suggest
that, an improved storage technology can be a complementary inter-
vention for promoting the adoption of improved maize varieties.

On the possible channels of impact, we find that the treated house-
holds who received the technology do not increase the quantity of maize
stored at harvest, likely because maize is their staple crop so they adopt a
safety-first mentality and used the improved hermetic bag in place of a
traditional bag. However, treated households store maize with the intent
of consuming it for three weeks longer (significant with p-value <0.01),
and they store maize with the intention of selling it for one week longer
(significant with p-value <0.10). In addition, treated households are less



Table 1
Proportion of smallholder households using each storage technology at baseline.

Storage Technology Season 1, 2014
(%)

Season 2, 2013
(%)

Sample Average
(%)

Woven polypropylene bag 71.2 70.5 70.9
Heaped in House 10.7 10.7 10.7
Traditional granaries 6.5 7.3 6.9
Private off-farm store 1.8 1.9 1.8
Improved granaries 1.2 0.8 1.0
Open-air hanging 0.8 0.9 0.9
Hermetic (drum/silo/
jerry can)

0.8 0.6 0.7

Metal silo/drum 0.2 0.2 0.2
Hermetic bags 0.1 0.2 0.1
Community storage
facility

0.1 0.1 0.1

Others 6.7 6.7 6.7

Observations 1146 1076 1111

Source: Authors' compilation from 2014 baseline survey
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likely to use chemical insecticides on stored maize (significant with p-
value <0.05). These findings are consistent with Gitonga et al. (2013).
Lastly, we find that the treated households report storage losses 2.2 to 2.5
percentage points lower than control households (significant with
p-value<0.05). These indicates that between 65 and 71 percent of the
average reported losses in stored maize can be eliminated with an
improved storage technology.

2. Maize production and post-harvest storage losses in Uganda

2.1. Maize production

Maize is one of the major staple foods in Uganda and the most
important cereal crop. It is produced mostly for household subsistence,
but it is evolving as a cash crop, and the Government of Uganda believes
that smallholder farmers can increase their maize productivity by
adopting improved technologies such as hybrids and open pollinated
varieties (Ugandan Bureau of Statistics (UBoS), 2007). According to
UBoS, annual maize production is estimated at 1.5 million metric tons,
and 90 percent of this is used for human consumption with the remaining
10 percent for animal feeds.

Average maize yields are estimated at 1.5 metric tons per hectare
among smallholders (Matsumoto and Yamano, 2011; Okoboi, 2010).
Despite the development and release of improved varieties, yields remain
low partly due to low uptake of these varieties, fake seeds on the market
(Bold et al., 2015) and low input use. Evidence suggests that any increase
in maize production is due to area expansion, rather than an increase in
productivity (Kasenge et al., 2001; Okoboi, 2010; Sserunkuuma, 2005).
In general, the use of improved agricultural technologies remains low in
Uganda relative to other countries in SSA, and it is commonly believed
that increased uptake of these inputs will increase productivity. For
instance, Matsumoto and Yamano (2011) sampled 895 households from
94 rural local council one administrative units across Uganda and found
that only 3 percent used inorganic fertilizer, with an average application
rate of 2.4 kg/ha. Sheahan and Barrett (2014) found that only 36% of
maize farmers in Uganda bought improved seeds for cultivation; and at
3.2 percent, Uganda had the lowest proportion of inorganic fertilizer
users among six SSA countries examined in their study.
2.2. Post-harvest storage losses in maize

Uganda is located along the equator, so high temperature and relative
humidity create a suitable environment for insect pests to attack maize in
storage (Tefera, 2012). Nevertheless, precise quantitative assessment of
storage losses in Uganda is difficult due to high year-on-year variability
in pest infestation (Costa, 2015); and magnitudes of loss vary depending
on the measures used to assess the losses (Affognon et al., 2015), length
of storage, or type of maize stored (FAO, 2003).

Using self-reported measures from a nationally representative dataset
from the World Bank's Living Standard Measurement Study—Integrated
Surveys on Agriculture (LSMS-ISA), Kaminski and Christiaensen (2014)
estimated on-farm storage losses for maize to be 3.9 percent on average
in Uganda.4 Although these self-reported losses appear low on average,
they are concentrated and the magnitude can reach up to 100 percent
(total loss) for some households (Kaminski and Christiaensen, 2014).5 In
addition, anecdotal evidence suggests that Ugandan farmers are taking
4 There are two types of losses: quantitative dry-weight loss and qualitative
loss such as mold, discoloration, holes in maize from insect damage, etc. Like
Kaminski & Christiaensen, we restrict our loss component to self-reported
quantitative dry-weight loss.
5 Assuming the self-reported losses are true, the lower rates do not necessarily

imply lack of post-harvest storage problems. Selling maize at low prices during
the harvest period and buying at high prices in the lean period keeps households
poor (e.g., see Stephens and Barrett, 2011).
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adaptive measures to keep their storage losses low. Such measures
include selling entire maize gardens or fields to traders prior to harvest,
selling harvested maize immediately or shortly after harvest, and using
storage chemicals and other crop protection methods such as spraying or
smoking.6 These practices could explain why smallholders report low
storage losses in general.
2.3. Maize storage technologies

Ugandans use multiple maize storage technologies and practices.
Table 1 shows the percentage of households using each storage tech-
nology or technique prior to our intervention. The predominant tech-
nology is the single-layer woven polypropylene bag popularly called
“kavera” locally; these bags were used by 71 percent of our sample.
Heaping maize in the house, where households leave maize cobs on bare
floor was used by 11 percent of households. Other technologies include
granaries at 8 percent, and private off-farm facilities at 2 percent. All the
above technologies are broadly categorized as traditional storage tech-
nologies. The total use of hermetic (airtight) improved storage technol-
ogy was less than 1 percent in our sample at baseline. Kaminski and
Christiaensen (2014), using LSMS-ISA data, also reported that the use of
improved storage technology was generally low at 0.6 percent in Uganda.
Farmers in SSA generally lack access to improved storage technologies to
store bumper harvests, and Uganda is no exception (Costa, 2015).

Conversely, farmers regularly use chemical insecticides on maize
stored in traditional technologies to prevent on-farm storage pest attacks,
but these chemicals are toxic if not used properly, and largely unregu-
lated (Williamson et al., 2008). At baseline, 11 percent of households in
our sample had applied chemical insecticides on stored maize. In this
context, chemical-free hermetic technologies can be a safe and effective
alternative. For instance, the PICS technology given to farmers in our
intervention is an airtight triple-layered technology consisting of two
high-density polyethylene inner liners and one outer layer of woven
polypropylene bag. It works by impeding oxygen diffusion from outside
the bag to its interior. Thus, when storage insect pests lack oxygen for
metabolism, they become inactive, desiccate and die (Murdock et al.,
2012).

On-going efforts seek to promote the use of hermetic storage bags
under the PICS—phase III (PICS3) project in Uganda. As such, the data
collected in our intervention provides us with a platform to evaluate the
impacts of the technology using field experiments (the intervention is
discussed in detail in the next section). Uganda makes for an interesting
case study because, as shown in Table 1, the use of hermetic storage
6 We explore some of these measures in this paper and present more results in
Appendix Tables C.1 and C.2.



Fig. 1. Experimental design.

8 For our power calculations, we used a minimum detectable effect (MDE) of
0.2 standard deviations—generally considered small MDE in practice (Beegle
et al., 2017; Duflo et al., 2007)). Making a generous assumption about
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technologies among smallholders is practically non-existent and we can
conduct a rigorous impact evaluation of the technology, which has been
largely missing in SSA (Sheahan and Barrett, 2017).

3. Data, sampling and experimental design

3.1. Data

The data for this study come from two rounds of household-level
experimental panel survey. The baseline survey was conducted from
October to December 2014, followed by the PICS3 intervention in July
2015 (discussed in section 3.3), and the follow-up survey occurred in
2016 during the same months as in the baseline survey. The baseline
survey covered two cropping cycles: the second agricultural season of
2013 (September 2013–January 2014) and the first agricultural season of
2014 (March–August 2014). The post-intervention survey also covered
two cropping cycles: the second agricultural season of 2015 (September
2015–January 2016) and the first agricultural season of 2016 (March-
–August 2016).

We used a structured, pre-tested questionnaire that includes modules
on household demographic characteristics and production-related details
such as total area of cultivated land, area cultivated per crop, input use
levels, and crop yields. The survey tool also asks about grain storage
technologies and practices used, and quantities of maize stored at har-
vest; marketing activities in both harvest and lean periods; assets and
household well-being indicators like crop and off-farm income; gender
differentiated questions on decisionmaking at household levels; food and
nutrition security questions; and social networks.

3.2. Sampling

To select the study area and representative households in our sample,
we used a multi-level stratified sampling approach. First, we identified
the major maize producing districts across Uganda using previous data
from the publicly available LSMS-ISA dataset. Then based on production
volume, we purposely selected two districts in each of the four region-
s—Central without Kampala, Eastern, Western, and Northern—across
Uganda to give the sampling a semblance of nationally representative
maize-growing smallholders in Uganda. Kampala region, which is largely
urban, was excluded. Second, within each selected district, we further
purposely selected three major maize producing sub-counties with
assistance from the district agricultural/production officers (DAOs).

Afterwards, we included three levels of randomization in our sam-
pling process. First, we randomly selected two parishes in each sub-
county and followed the parish selection with another random selec-
tion of one local council one (LC1) per parish.7 Lastly, we randomly
selected twenty-five households that we interviewed from each LC1. The
LC1 chairpersons or leaders provided lists of village residents to facilitate
the random selection of the households at the LC1 level. We assigned a
number to each name on the list and randomly chose twenty-five using a
computer random number generator. In total, we sampled 1200 house-
holds (25 per LC1 in 48 LC1s). Following data cleanup, 1190 valid
household responses remained.

3.3. Experimental design/Intervention

After the baseline survey in 2014, we conducted two randomized
interventions in 2015. The first occurred at the village level, and pro-
vided information about the use and effectiveness of the hermetic bags.
We randomly divided the 48 LC1s into two equal groups of 24. Within
7 LC1 is the lowest administrative unit in Uganda, and it sometimes comprises
more than one village but we use LC1 and village interchangeably in this paper.
The administrative units are at the central, district, sub-county, parish and LC1
levels, respectively.
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each sub-county, we randomly selected one LC1 into a demonstration
group, and another into a non-demonstration group (see Fig. 1). Between
July and August of 2015, a non-governmental organization (NGO) called
Cooperative League of the USA (CLUSA) in Uganda implemented
demonstration activities within the demonstration villages, to create
awareness about the improved storage technology. These villages
received demonstrations in which participants who attended were
introduced to the technology and instructed on how to use it correctly.
All households in the demonstration villages were invited to attend these
activities regardless of whether they were sampled (as part of the study)
or not. We refer to the demonstration and non-demonstration LC1s as
DEMO and non-DEMO LC1s, respectively.

The second treatment occurred at the household level, and we
implemented it to measure the impacts of actually receiving one hermetic
bag that can store up to 100 kg of shelled maize on the outcomes of in-
terest in this study. It occurred shortly after CLUSA had implemented the
village demonstration activities in 2015. Within the DEMO LC1s, we gave
one hermetic bag per household to 10 households. These were randomly
selected from the 25 households that were initially sampled from the
baseline survey. Therefore, eligibility for the second treatment was
conditional on living within a village that received a demonstration
about the technology. For the second treatment, the choice of a sub-
sample of 10 households (out of twenty-five) per treatment village was
based on power calculations to arrive at a minimum detectable effect
(MDE) of 0.2 SD in outcomes between the treated and control groups at
the household level.8 Overall, 240 exogenously treated households
received a hermetic bag in our sample. We refer to them as treated
households.

In summary, our study has three groups of households: treated
households within DEMO LC1s (group 1); exposed households who were
untreated within the DEMO LC1s (group 2); and lastly, untreated group
of households in non-DEMO LC1s (group 3) (see Fig. 1 for more details).
It is possible that not all randomly treated households attended the
demonstration activities in DEMO LC1s, but trained technicians who
implemented the second treatment trained the households at the point of
giving out the bags.
3.4. Testing for potential attrition bias

Two years after conducting our baseline survey and after two com-
plete harvest cycles following our treatment intervention, we returned
for the post-intervention survey. From the 1190 households in our
intra-cluster correlation coefficient (ICC) of zero (see Appendix Table A.3 for the
actual ICC at baseline), at 80% power and 95% confidence level, a cluster size of
25 and 48 clusters should be sufficient to power our study given that 40%
(P¼ 0.4) of the eligible households in DEMO villages were treated. In addition,
we conducted a baseline survey that increased the number of observations used
for analysis.



10 We explored an additional specification to account for possible spillover
effects on the main outcome variables. We compared non-treated households in
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baseline sample, we were able to re-interview 1146 indicating a 96% rate
of resampling. In addition, 233 of the 240 treated households were
successfully re-interviewed. The attrition rate is less than 3%. Relative to
other studies in the region, our attrition rates are comparable or lower
(e.g., Matsumoto and Yamano, 2011). In general, the main cause of
attrition was households migrating out of the area.

However, to test for the presence of attrition bias in our sample,
following Hidrobo et al. (2014) and suggestion by Duflo et al. (2007), we
regressed our outcome variables and other covariates on a binary indi-
cator equal to one for attritted households, and zero otherwise. We found
no systematic difference between attritted and returning households for
all outcome variables (See Table A.1 in Appendix A). For other cova-
riates, with the exception of age, we also did not find any evidence that
attritted households are systematically different from returning house-
holds. Generally, attritted households are six years younger, on average,
indicating mobility among younger households. Very low attrition rates
among the treated households and in the entire sample, coupled with
failure to find significant difference in our simple mean tests, suggests
attrition bias is likely not an issue in our study.9

4. Causal pathways

In this study, we make a few but likely realistic assumptions about
how storage technology affects future household decisions. First, we
assume that households believe improved maize varieties have higher
yields than traditional varieties. Second, storability of the improved
maize varieties is a concern for households when compared to traditional
varieties. Third, treated households believe that improved storage tech-
nologies, such as hermetic bags, can effectively store maize with limited
concerns. These assumptions are supported by anecdotal evidence and
published literature (Derera et al., 2006; Katengeza et al., 2012; Nte-
ge-Nanyeenya et al., 1997).

Consider a rational household's decision on whether to plant
improved higher-yielding maize varieties with storability concerns, to
increase production vs. the low-yielding traditional maize varieties that
are less susceptible to storage pest attacks. Storing improved maize va-
rieties for later use (sale or consumption) in the absence of an effective
storage technology may result in significant losses. Therefore, if a
household expects higher storage losses from cultivating improved va-
rieties, such household will plant less of the varieties. With an improved
storage technology, however, smallholders can effectively store maize for
consumption through the lean period, reducing food expenditure.
Alternatively, they can effectively store to take advantage of inter-
temporal price arbitrage by selling in the lean period.

Therefore, we posit that if households have access to an improved
storage technology to overcome storability concerns associated with the
high-yielding maize varieties in the post-harvest season, they should
store better quality maize for a longer period for either consumption or
sale and cultivate more of the improved seed varieties. Because the use of
a hermetic storage technology should increase confidence in households'
ability to store maize effectively, households may be encouraged to
cultivate the improved varieties that would otherwise store poorly in
traditional storage technologies.

5. Empirical framework

We focus on estimating the direct impacts of randomly assigned
improved storage technology on household input use and storage be-
haviors. To estimate these impacts, we compare potential outcomes for
treated households with the potential outcomes in the absence of the
9 Besides, as a robustness check, we bound our estimates following Lee (2009)
and present results for main outcomes in Appendix Table A.2. Our point esti-
mates statistically lie within the estimated Lee bounds, further reducing con-
cerns about attrition bias affecting the estimates.
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treatment. Typically, only one outcome can be observed for any indi-
vidual at a time and it is not possible to identify the counterfactual
outcome. However, with randomization, we can obtain the average po-
tential outcome for the control group, which is a valid counterfactual
devoid of selection bias (Angrist and Pischke, 2009; Duflo et al., 2007;
Wooldridge, 2010).

Furthermore, because we have the benefit of observing each house-
hold in our sample before and after treatment, we employ three different
estimators to estimate our Intention-to-Treat (ITT) effects (τ). These esti-
mators are i) simple means difference (SMD) using only our post-
intervention data, ii) difference-in-difference (DiD) using baseline and
post-intervention data, and iii) household fixed effects (FE) using base-
line and post-intervention data. From the expected causal pathways
described above, we expect the ITT estimates of our treatment effect on
the use of higher-yielding maize varieties to be positive.10 We estimate
all binary dependent variables via linear probability model (LPM).
5.1. Intention-to-treat (ITT)

For the first specification (SMD), we estimate the ITT effect for
household i in LC1 j and region r as follows:

yijr ¼ λþ τSMDTi þ βXijr þ σr þ εijr (1)

Let yijr be the observed outcome variables (improved seed use; share
of maize land cultivated to improved variety; fertilizer use; quantity
stored; length of storage for consumption and sale; and storage chemical
use); and Ti is a household-level indicator that equals one if the house-
hold was randomly offered a hermetic bag (treatment) and zero other-
wise. In addition, Xijr is a vector of household characteristics such as age,
education status of the household head, household size, sex of household
head and family size, which are included for precision. Lastly, σr is the
region fixed-effects to account for variations across the regions, and εijr is
the idiosyncratic error term. The coefficient on the treatment assignment
term, τSMD, captures the average effect of being randomly offered the
improved storage technology in a DEMO village, and it is the ITT
parameter of interest. The coefficient β is a vector of parameters associ-
ated with household characteristics.

The second estimator is a pooled (DiD) estimator for the households
in time t. It is estimated as follows:

yijrt ¼ λþ φTi þ κSt þ τDiDSt*Ti þ βXijr þ σr þ εijrt (2)

In addition to the variables described in equation (1), St represents a
time fixed-effect that is equal to one if the observations is from the 2016
post-treatment survey and zero otherwise, and St*Ti is the interaction
between the two variables. Our parameter of interest is τDiD, which is the
ITT using the pooled difference-in-differences. Any correlation between
the time-constant unobserved household-level heterogeneity embedded
in εijrt and the ITT is removed through DiD estimation (Cameron and
Trivedi, 2005; Wooldridge, 2010).

Finally, we use the household FE estimator as follows:

yijt ¼ λþ τFETi þ βXijt þ θt þ μi þ εijt (3)

In this case, τFE gives us the ITT estimate using the fixed-effects
(within) estimator; θt is the time categorical variable for agricultural
seasons, and μi is the time-constant household unobserved heterogeneity.
DEMO villages with non-treated households in non-DEMO villages. We found no
spillover effects (see Appendix Tables C.4a–C.4c). This is a logical finding
because there is no reason to believe, and no direct theory of change to support
the idea that households whose neighbors have a 100 kg capacity hermetic bag
will cultivate a maize variety that is highly susceptible to pest attacks in storage.
Only households with the technology can make that decision.
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The FE models μi as a parameter to be estimated. Empirically the dif-
ference between DiD and FE is that the former removes correlation be-
tween the ITT and μi (embedded in εijrt), while the latter removes
correlation between all covariates and μi (Wooldridge, 2010). Given that
our randomization should take care of both observed and unobserved
household-level heterogeneity, the ITT for DiD and FE should be very
similar.

In comparing SMD to DiD and FE estimators, though randomization
should allow simple mean difference estimation to provide unbiased
results of ITT of receiving the technology, the DiD and FE estimators are
preferred because they exploit the panel nature of our data. Both esti-
mators remove bias in the second period comparisons between treatment
and control groups that could be because of a permanent difference be-
tween the two groups. It also removes bias from comparison over time in
the treatment group. Lastly, both DiD and FE estimates should add
increased robustness to our results, as they are able to remove any time-
constant unobserved heterogeneity that is correlated with ITT from our
model.

5.2. Sampling weights

We used a multi-level stratified sampling approach as earlier
described. We sampled 25 households per village irrespective of the
village population. With this sampling approach, different households
have different probabilities of being sampled and assuming equal prob-
ability could lead to biased estimates of the population effects (Cameron
and Trivedi, 2005). In our regressions, we use sampling weights that are
inversely proportional to the probability of being sampled. The sample
weights are calculated as the inverse of 25 (sample size per LC1)/total
household population for each LC1. That is, the inverse probability of
being selected in any given LC1 for each observation.

Furthermore, in our stratification, since our ultimate sampling units
(households) are clustered within a higher or intermediate sampling unit
(LC1), we cannot rule out serial correlation within the LC1 clusters.
Although the intra-cluster correlation coefficients (ICC) for outcome
variables are relatively low, we use heteroscedasticity-robust standard
errors, clustered at the LC1 level, for all inference.11

5.3. Take-up, local average treatment effect (LATE)

Before presenting treatment effects on treated households, we
examine actual usage of the technology among households in our sample.
First, among treated households who were randomly offered the bags,
about 70 percent used the technology to store grains. The main reason for
not using the technology was poor harvest due to drought in the seasons
following our intervention. Second, for exposed (eligible but not treated)
households in the DEMO villages, only 12 percent had used the tech-
nology indicating households either bought the bag or received it as gift
from a treated neighbor.12 Lastly, among households in the non-DEMO
villages (pure control group), just about 4.5 percent had taken up the
technology post-intervention. These households could have accessed the
technology from other sources outside of study as other vendors market
the product.

As indicated above, because not all households randomly offered the
technology used it, we used the random treatment assignment as an in-
strument for actual usage of the technology to estimate LATE on actual
usage. We discuss and compare this result with the ITT in the results and
11 See Table A.3 in Appendix A for the ICC for the outcome variables.
12 We gave only one bag per household to treated households, which should
minimize sharing or gifting of bags from treated to control households, and
reduce unwanted crossovers/spillovers. However, if the majority of users in the
exposed group—untreated households who received no bags in the DEMO vil-
lages (group 2 in Fig. 1)—got the bags from a treated neighbors or friends, the
implication is that our estimated effects would be attenuated.
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discussion section.

5.4. Multiple hypothesis testing

Whenever there are a large number of measured outcomes, significant
coefficients may emerge by chance, even when there are no treatment
effects on the outcomes. This multiple inference concern is well known to
literature (e.g., Anderson, 2008; Romano andWolf, 2005; Williams et al.,
1999). Fortunately, there are methods to correct standard errors for
multiple hypotheses testing without a substantial loss of power as in the
Bonferroni correction (Anderson, 2008; Benjamini et al., 2006).
Following Ksoll et al. (2016) who used sharpened q-values as imple-
mented in Anderson (2008), we conducted multiple hypotheses correc-
tion testing and present adjusted sharpened q-values for our results in
Appendix Table A.4.13 Our findings are robust across specifications in
terms of statistical significance when we adjusted standard errors for
multiple hypotheses testing.

6. Results and discussion

Before assessing the impact of the intervention, we investigate the
success of the randomization process. Thereafter, we present the main
results on input use, examine whether the intervention actually changed
storage behaviors and reported losses as speculated in our causal path-
ways, and perform robustness checks on the main results.

6.1. Baseline randomization balance checks

Table 2 presents the pre-treatment balance of our baseline randomi-
zation. Column (1) shows the mean variables for the control group,
column (2) shows the standard deviation, and column (3) shows the
regression coefficient of the treatment assignment variable. That is, col-
umn (3) shows the ex-ante difference in means between the treated and
control variables. In column (4), we present the p-values for statistical
inference. Column (5) shows the sample size for each variable.

On average, the use of improved maize varieties, share of maize area
cultivated to improved varieties, and inorganic fertilizer use are well
balanced between the treatment and control groups, ex-ante. Thirty-four
percent sampled households planted improved maize varieties in the
control group and there is no significant difference compared to the
treatment group. Likewise, the share of area planted to improved seeds is
34 percent in the control group but not different from the treatment
group. About 10 percent of the sample used inorganic fertilizer and there
is also no significant difference between both groups.

Overall, on the remaining dependent variables, the treatment group
stored 32 kg more maize but with no statistically significant difference.
Likewise, there are no statistical differences in the length of storage for
consumption and sales between both groups of households, ex-ante. For
self-reported storage losses, there is also no difference between both
groups of households, ex-ante. There is, however, a marginally signifi-
cant difference between the treatment and control groups for storage
chemical use (p-value¼ 0.078). Members of the treatment group are 3
percentage points less likely to use storage chemicals on their maize than
the control group on average. The implication is that our post-
intervention estimate of treatment effects for the treatment group may
be upward biased if we use only the post-intervention (cross-sectional)
data to estimate treatment effect. However, we take care of this bias by
pooling both baseline and post-intervention data to form a panel and
using the DiD and FE estimators.

On the covariates, the household characteristics such as age and ed-
ucation status of household head, household size, and proxies for access
to information such as possession of radio set or mobile phone are all
balanced between the two groups. Likewise, the production details and
13 We thank one anonymous reviewer for bringing this to our attention.



Table 2
Baseline characteristics and balance between treatment and control groups.

Variables Control Treated

Mean SD Coeff. p-value N

(1) (2) (3) (4) (5)

Panel A: Dependent Variables
¼1 if HH planted improved maize seed 0.34 0.475 �0.030 0.404 2235
Share of improved maize area (%) 33.98 47.203 �3.422 0.344 2234
¼1 if HH used inorganic fertilizer 0.09 0.287 0.019 0.402 2231
Quantity stored (kg) 606 1024 32.203 0.736 2364
Length of storage for consumption (weeks) 14.4 9.63 �0.729 0.522 2364
Length of storage for sales (weeks) 4.4 6.08 �0.187 0.592 2364
¼1 if HH used storage chemical on maize 0.12 0.322 �0.031* 0.078 2362
Self-reported post-harvest losses (%) 3.15 5.99 0.481 0.365 2131
Panel B: Household Characteristics
Age of household head (years) 44.49 14.822 1.188 0.210 2380
Household size 6.35 2.972 0.195 0.446 2380
¼1 if female-headed household 0.16 0.367 0.014 0.550 2380
¼1 if Polygamous 0.17 0.374 0.007 0.825 2380
¼1 if HH head has any form of education 0.89 0.319 0.002 0.932 2380
¼1 if HH has radio 0.78 0.416 �0.009 0.766 2370
¼1 if HH has mobile phone 0.69 0.463 0.002 0.967 2370
Panel C: Production and PH practices
Total maize area (ha.) 0.53 0.499 �0.013 0.757 2235
Total quantity harvested-maize (kg) 928 1246 �31 0.784 2235
¼1 if Traditional storage technology use 0.83 0.382 0.006 0.845 2364
¼1 if other improved storage tech. use 0.12 0.110 �0.004 0.558 2364
¼1 if hermetic storage technology use 0.009 0.097 �0.007** 0.013 2364
Panel D: Region Effects
¼1 if region is Eastern 0.25 0.43 �0.002 0.974 2380
¼1 if region is Northern 0.25 0.43 �0.001 0.995 2380
¼1 if region is Western 0.25 0.43 0.001 0.995 2380
¼1 if region is Central w/o Kampala 0.25 0.43 0.003 0.973 2380

Notes: Columns 1 and 2 report means and standard deviations for control group at baseline. Columns 3 through 5 report results from an OLS regression comparing
households in the treatment and control groups in the baseline controlling for region effects and clustering standard errors at the village level. Columns 3 and 4 report the
OLS coefficient and p-value corresponding to the binary treatment indicator and column 5 reports the sample size for each regression. ***p < 0.01, **p< 0.05, *p < 0.1.
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post-harvest storage technologies used are balanced with the exception of
hermetic storage technology use. The difference in hermetic storage
technology balance is because less than 1 percent of our sample had used
the technology at baseline. The difference is statistically significant, but
in terms of magnitude, it is not different from zero. Lastly, both groups of
households are evenly distributed across the regions in our study area.
Overall, our balance check suggests that the randomization process was
effective.

We examine the ITT impacts below. Columns (1–2) present the simple
mean difference estimates, columns (3–4) present DiD estimates and
columns (5–6) present the FE parameter estimates. The first column for
each estimator is without covariates; the second column adds covariates.
6.2. Improved maize variety adoption

Table 3 presents the ITT effects of a smallholder household being
randomly offered an improved storage technology (one hermetic bag that
holds 100 kg of shelled maize) on its decisions to plant improved maize
varieties the next season. These estimates test whether treated house-
holds, who are able to preserve their maize efficiently in the post-harvest
period, are subsequently more likely to cultivate higher-yielding varieties
of maize that are known to be susceptible to insect pest attacks in storage.

In columns (1) and (2), we show the simple mean difference estimates
without and with covariates, respectively. Both show a similar positive
and significant effect. On average, randomly treated households are
9.5–9.7 percentage points more likely to plant improved maize varieties.
The similarity in estimates with and without covariates lends some
confidence to their stability and consistency.

The DiD estimate presented in column (3) shows that a random offer
of improved storage technology increases the likelihood of planting
improved maize seed variety by 9.9 percentage points. With the addition
of covariates in column (4), the DiD estimate shows that treated
182
households are 10 percentage points more likely to cultivate improved
varieties. The FE estimates in columns (5–6) also show a similar positive
effect of close to a 10 percentage point increase. These estimates are
consistent across all columns, with and without covariates, and are sta-
tistically significant at p-value<0.05.

Upon further examination of the treatment groups ex-ante and ex-
post, we found that on average, more households in the control group
stopped cultivating (“disadopted”) hybrid maize varieties post-
intervention. This finding suggests that households who lacked effec-
tive storage technology to store the easily susceptible hybrid varieties
over a long period stopped cultivating it. Conversely, the level of hybrid
seeds remained at the same level for the treatment group who had access
to better storage technology.
6.3. Share of area planted to improved seed varieties

Table 4 presents the ITT effects of a randomly offered 100 kg hermetic
storage bag on the share of area cultivated to improved maize varieties.
Similar to the decision to plant improved maize varieties in Table 3,
columns (1) and (2) show there is significant effect for the treatment
group using the SMD estimator. On average, treated households cultivate
a higher share of improved seed varieties by about 9.5 percentage points
(significant at p-value <0.05), with or without additional covariates,
respectively. From our preferred andmore precise DiD and FE estimators,
columns (3) through (6) show a higher and more significant magnitude;
between 9.7 and 10.4 percentage points marginal increase in share of
area planted to improved varieties by treated households, on average. We
conclude that improved storage technology increases share of area
planted to high-yielding varieties.

Overall, our findings appear to support the rationality of smallholder
behavior on the adoption or dis-adoption of high-yielding varieties, in
that if smallholders can effectively store maize grain from improved



Table 4
Treatment effects on share of area planted to improved varieties.

Dependent variable: Share of improved maize area (%) (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) 9.486**
(4.011)

9.373**
(4.068)

10.250**
(4.727)

10.411**
(4.739)

10.291**
(4.345)

9.727**
(4.490)

Household size 1.156***
(0.405)

0.672***
(0.228)

�1.045**
(0.519)

Age of household head �0.033
(0.073)

�0.138
(0.084)

�0.069
(0.117)

¼1 if HH head is educated 2.775
(5.644)

8.852**
(3.349)

2.732
(3.563)

Female headed household �6.764**
(2.997)

�9.140***
(2.979)

11.376*
(6.423)

¼1 if Eastern Region 3.402
(7.521)

2.100
(7.547)

5.409
(6.008)

4.224
(5.725)

¼1 if Western Region �13.552**
(6.297)

�14.691**
(6.200)

�9.491
(5.877)

�11.354**
(5.527)

¼1 if Northern Region �6.595
(5.849)

�7.771
(5.885)

�3.500
(5.197)

�6.016
(5.051)

Season dummies? Yes Yes No No Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 26.672***

(5.757)
20.237**
(8.560)

33.488***
(4.560)

33.176***
(7.026)

34.199***
(1.223)

39.885***
(8.604)

Observations 2247 2247 4481 4481 4481 4481
R2 0.035 0.051 0.026 0.048 0.030 0.035
Number of households 1245 1245

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 3
Treatment effects on households planting improved maize varieties.

Dependent variable:¼1 if HH planted improved maize (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) 0.097**
(0.042)

0.095**
(0.043)

0.099**
(0.048)

0.101**
(0.049)

0.099**
(0.045)

0.093**
(0.046)

Household size 0.012***
(0.004)

0.007***
(0.002)

�0.010*
(0.005)

Age of household head �0.000
(0.001)

�0.001*
(0.001)

�0.001
(0.001)

¼1 if HH head is educated 0.036
(0.057)

0.095***
(0.034)

0.027
(0.036)

Female headed household �0.067**
(0.031)

�0.092***
(0.030)

0.120*
(0.066)

¼1 if Eastern Region 0.032
(0.077)

0.019
(0.078)

0.053
(0.061)

0.041
(0.058)

¼1 if Western Region �0.142**
(0.064)

�0.154**
(0.063)

�0.097
(0.059)

�0.115**
(0.056)

¼1 if Northern Region (0/1) �0.077
(0.059)

�0.090
(0.060)

�0.043
(0.053)

�0.068
(0.051)

Season indicators No Yes No No Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 0.277***

(0.059)
0.212**
(0.087)

0.341***
(0.047)

0.338***
(0.071)

0.349***
(0.013)

0.399***
(0.087)

Observations 2247 2247 4482 4482 4482 4482
R2 0.035 0.052 0.025 0.049 0.030 0.035
Number of households 1245 1245

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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maize varieties, they will be more likely to plant these varieties and
allocate a larger share of land to these varieties in the future. These re-
sults are similar in magnitude to previous findings in Ricker-Gilbert and
Jones (2015) from Malawi, despite the fact that we use an experimental
design with data from a different country in SSA. Indeed, it seems that
storability concerns may be inhibiting the cultivation and diffusion of the
higher-yielding maize varieties being promoted in SSA, as evidenced in
our study.
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6.4. Fertilizer use

Table 5 presents the ITT effects of a randomly offered 100 kg hermetic
storage bags on the use of inorganic fertilizer. Considering that we found,
on average, a higher likelihood of cultivating higher-yielding varieties
among treated households, we would expect these varieties to be culti-
vated using inorganic fertilizer as this would be optimal for increasing
yields. Although results from the three estimators are positive, they are
small in magnitude and not statistically significant. Our results suggest



Table 5
Treatment effects on households using inorganic fertilizer.

Dependent variable:¼1 if HH used inorganic fertilizer (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) 0.013
(0.024)

0.013
(0.024)

0.009
(0.035)

0.011
(0.035)

0.025
(0.037)

0.026
(0.036)

Household size 0.004
(0.004)

0.006
(0.004)

0.001
(0.003)

Age of household head �0.002***
(0.001)

�0.002***
(0.001)

0.000
(0.000)

¼1 if HH head is educated �0.026
(0.050)

0.006
(0.028)

�0.036
(0.031)

Female headed household �0.057**
(0.022)

�0.046***
(0.015)

0.019
(0.032)

¼1 if Eastern Region �0.101**
(0.050)

�0.111**
(0.046)

�0.068
(0.042)

�0.080*
(0.042)

¼1 if Western Region �0.231***
(0.032)

�0.252***
(0.034)

�0.194***
(0.032)

�0.212***
(0.034)

¼1 if Northern Region �0.216***
(0.033)

�0.238***
(0.035)

�0.190***
(0.032)

�0.210***
(0.035)

Season dummies? Yes Yes No No Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 0.258***

(0.032)
0.393***
(0.076)

0.206***
(0.032)

0.268***
(0.060)

0.117***
(0.008)

0.132***
(0.043)

Observations 2247 2247 4478 4478 4478 4478
R2 0.081 0.103 0.072 0.090 0.009 0.010
Number of households 1245 1245

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 6
Local average treatment effects on three main outcomes.

Main outcome variables: (1) (2) (3) (4) (5) (6)

Improved Seed Improved Seed Acreage Share Acreage Share Fertilizer Use Fertilizer Use

LATE effects 0.136**
(0.059)

0.134**
(0.059)

13.337**
(5.580)

13.169**
(5.646)

0.018
(0.034)

0.018
(0.033)

Household size 0.011***
(0.004)

1.131***
(0.388)

0.004
(0.004)

Age of household head �0.000
(0.001)

�0.028
(0.071)

�0.002***
(0.001)

¼1 if HH head is educated 0.038
(0.056)

2.993
(5.596)

�0.026
(0.050)

Female headed household �0.065**
(0.031)

�6.573**
(3.074)

�0.058***
(0.020)

¼1 if Eastern Region 0.033
(0.077)

0.020
(0.077)

3.473
(7.483)

2.216
(7.478)

�0.101**
(0.050)

�0.111**
(0.046)

¼1 if Western Region �0.141**
(0.064)

�0.152**
(0.063)

�13.475**
(6.275)

�14.564**
(6.163)

�0.231***
(0.032)

�0.252***
(0.033)

¼1 if Northern Region �0.075
(0.060)

�0.087
(0.060)

�6.370
(5.870)

�7.506
(5.884)

�0.216***
(0.033)

�0.237***
(0.035)

Constant 0.277***
(0.059)

0.208**
(0.087)

26.598***
(5.722)

19.869**
(8.471)

0.258***
(0.032)

0.393***
(0.075)

Observations 2247 2247 2247 2247 2247 2247
R-squared 0.028 0.044 0.028 0.043 0.082 0.103

Notes: For each main outcome, the first columns show parsimonious estimates, whereas the second columns show estimates with additional covariates. Robust standard
errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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that there is no direct link between improved storage technologies and
inorganic fertilizer use. This makes sense as the improved storage bags
offered to participants in our study makes it safer to plant and store
hybrid maize, but has no direct benefit to fertilizer use, even if hybrid
seeds and inorganic fertilizer have a positive and complementary agro-
nomic relationship to yields. In fact, fertilizer use in Uganda is generally
low and it is not uncommon to find households cultivating modern seed
varieties without using fertilizer (Matsumoto and Yamano, 2011; Shea-
han and Barrett, 2014).
14 We estimated LATE via Two-stage least squares (2SLS). Thus, the LATE es-
timates are compared to SMD estimates for each main outcome, respectively.
6.5. LATE effects on main outcomes (take-up)

Table 6 presents the LATE estimates across the three main outcomes
184
tested when receipt of the hermetic bag is used as an IV for using the bag
to store maize.14 In columns (1) and (2), we present LATE estimates on
the decision to cultivate improved seeds without and with covariates,
respectively. With both estimates at 13.6 percentage point increase in the
likelihood of cultivating higher-yielding maize varieties, the LATE effects
are higher than the ITT effects estimate at 9.7 percentage point (see
Table 3). On share of area cultivated to the improved seed varieties in
columns (3) and (4), we find a similar result to the binary decision to
plant improved seed varieties. The LATE estimates, at 13.4 percentage
point increase in share of area cultivated to improved varieties, are



Table 7
Treatment effects on quantity of maize stored at harvest (kg).

Dependent variable: Quantity stored at harvest (kg) (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) 124.965
(101.639)

40.184
(31.908)

10.050
(139.101)

�70.084
(69.896)

1.521
(57.362)

�19.583
(46.450)

Total quantity harvested (kg) 0.701***
(0.090)

0.705***
(0.073)

0.409***
(0.074)

Household size �25.696**
(12.329)

�8.493
(7.262)

�1.643
(12.223)

Age of household head �0.026
(0.686)

0.952
(0.959)

�0.567
(0.943)

¼1 if HH head is educated 156.672*
(78.338)

106.467**
(51.670)

64.000
(42.739)

Female headed household �17.766
(40.130)

3.196
(33.879)

�25.471
(44.442)

¼1 if Eastern Region �343.960**
(161.936)

79.264**
(36.188)

�347.929***
(124.690)

44.489
(57.043)

¼1 if Western Region 40.637
(187.661)

48.337
(47.004)

44.121
(171.781)

88.066*
(46.256)

¼1 if Northern Region �168.404
(169.215)

83.084**
(33.855)

�170.719
(131.474)

92.333**
(37.070)

Season dummies? Yes Yes No No Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 594.520***

(157.655)
�48.592
(103.918)

739.846***
(120.669)

�155.555
(135.019)

600.890***
(21.085)

226.424**
(105.582)

Observations 2088 2080 4452 4310 4407 4265
R2 0.031 0.681 0.028 0.690 0.031 0.336
Number of households 1241 1240

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

15 Given that there was no increase in quantity stored (Table 7) or yield effects
(Appendix Table C.3) among treated households, one of the main effects of the
intervention is improving food security through longer storage to improve
consumption.
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higher than the ITT at 9.5 percentage points (see Table 4). Lastly, on
inorganic fertilizer use, although the LATE estimates in columns (5) and
(6) are higher in magnitude than ITT estimates (Table 5), they are also
not statistically significant.

6.6. Results for intermediate outcomes

To investigate some possible causal channels through which access to
an improved storage technology may influence the cultivation of higher-
yielding maize varieties as highlighted above, we examine a number of
storage practices and self-reported storage losses below.

6.7. Quantity of maize stored

Table 7 presents the ITT effect of a randomly offered 100 kg hermetic
storage bags on the quantity of maize stored at harvest. Without any
covariate in the estimated ITT, column (1) shows the treatment group
stored 125 kg more maize at harvest. However, this effect is not statis-
tically significant. Moreover, when we controlled for total maize quantity
harvested (households could only store or use storage technologies if
they harvested maize) along with other household characteristics in
column (2), the additional quantity stored reduced from 125 to 40 kg,
and it is not statistically significant either.

The ITT estimates from our preferred DiD and FE estimators in col-
umns (3–6) show there is no statistically significant impact of the treat-
ment on maize quantity stored at harvest. While this result may seem
surprising given the nature of our intervention, we believe that there are
several behavioral reasons to explain it. First, because treated households
received only one 100 kg capacity hermetic bag, and the average
household stored 606 kg of maize at baseline, the intervention did rela-
tively little to increase total storage capacity of the household. In fact,
Table B.3 in the appendix suggests that receipt of one hermetic bag has
no statistically significant impact on storage capacity. Second, since
maize is the staple crop for most households and the bag did not signif-
icantly increase total storage capacity, treated households likely adopted
a safety-first approach where they stored the amount of maize necessary
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for their consumption in the improved hermetic storage bag, instead of in
a less effective traditional bag.

Third, subsequent results show that, on average, treated households
significantly increased their length of storage for consumption by 21
percent, and reported about 75 percent reduction in storage losses. These
findings further support the safety-first utility approach that households
were primarily concerned with consumption.15 Fourth, storage is highly
correlated with production. Given that households reported a significant
(30 percent) drop in production from baseline to follow-up survey, due to
drought in the seasons following our intervention, quantity stored also
decreased across treatment groups in general. Regardless, we may ulti-
mately be underpowered to pick up statistical significance of the treat-
ment intervention on quantity stored. Indeed, the standard deviation on
this variable far exceeds the mean. Moreover, few studies are powered
enough to pick up this type of effect as pointed out in a recent article in
Kenya by Aggarwal et al. (2017).

Lastly, smallholders decide to store grains under multiple binding
constraints. These include efficient storage technology and liquidity
constraints. By providing access to an improved storage technology, we
solved a part of the constraint but not all. Thus, even among treated
households, liquidity constraint at harvest could have played a role in the
lack of increase in quantity stored whereby treated households only
stored for consumption, but sell the remaining grains to meet immediate
liquidity needs (Stephens and Barrett, 2011).
6.8. Length of storage for consumption and sales

Table 8 presents the ITT effects on the length of storage if a household
stores maize at harvest with the intention of using it for its own con-
sumption. With the SMD estimator in column (1), on average, households



Table 8
Treatment effects on length of storage for consumption purpose (weeks).

Dependent variable: Length of storage for consumption (weeks) (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) 1.548**
(0.752)

1.558**
(0.755)

3.003***
(0.759)

3.006***
(0.770)

2.977***
(0.775)

2.963***
(0.779)

Household size 0.172*
(0.086)

0.115**
(0.055)

0.038
(0.086)

Age of household head �0.030**
(0.014)

�0.033***
(0.009)

�0.023
(0.021)

¼1 if HH head is educated 0.026
(0.864)

0.882
(0.537)

�0.394
(1.168)

Female headed household �0.192
(0.684)

0.183
(0.457)

1.641
(1.237)

¼1 if Eastern Region 2.545***
(0.943)

2.298**
(0.956)

2.398***
(0.882)

2.228**
(0.911)

¼1 if Western Region 2.488**
(0.984)

2.209**
(0.910)

1.542
(0.932)

1.310
(0.909)

¼1 if Northern Region 1.962*
(0.987)

1.664*
(0.960)

�0.862
(0.797)

�1.172
(0.807)

Season dummies? Yes Yes No No Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 13.495***

(0.635)
13.959***
(1.140)

13.781***
(0.665)

13.917***
(0.962)

15.100***
(0.261)

15.934***
(1.457)

Observations 2088 2088 4451 4451 4451 4451
R2 0.022 0.030 0.027 0.039 0.023 0.024
Number of households 1244 1244

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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who were randomly treated with an improved storage technology store
for about 1.6 weeks longer than the control group of households (sig-
nificant at p-value<0.05). This effect remains consistent when we added
covariates in column (2).

In columns (3) and (4), without and with covariates respectively, the
ITT estimates from the DiD estimator is, on average, three additional
weeks of storage for consumption among treated households. Likewise,
the FE estimates are virtually the same as the DiD estimates. Thus, we
find evidence that a random offer of 100 kg capacity hermetic bag ex-
tends a household's length of storage for consumption. Because the
average length of storage for consumption purposes was 14 weeks at
baseline, this effect implies a 21 percent increase in storage period for
consumption, which could have a significant impact on a household's
ability to feed itself. Our findings are consistent with previous literature
such as (Gitonga et al., 2013) where hermetic metal silo adopters were
able to store their maize for 1.8–2.4 months longer in Kenya.16

In addition, given that the reported average length of the lean period
or duration of food scarcity among sampled households is about eight
weeks, the ITT effect of a single 100 kg improved storage technology,
which is three additional weeks of storage for consumption, could reduce
households' lean period by as much as 38%—a potentially meaningful
impact.

Table 9 presents the ITT effects of receiving an improved storage
technology on length of time households store maize with the aim of
selling later in the post-harvest period. ITT estimate suggests that
receiving one hermetic storage bag causes households to store 0.6–0.7
weeks longer for sale on average. Although the SMD estimates in columns
(1) and (2) are not statistically significant, they are similar to estimates
from the other estimators in columns (3) through (6), where the esti-
mates are marginally significant at p-value<0.10. Given that storage for
sales is about 4 weeks, a marginal increase of 0.7 week is about 17–18
percent of the average storage period for sale.

Although the ITT effect on the duration of storage for sale is nuanced,
16 The metal silos evaluated in Gitonga et al. stored about 1 ton, which is 10
times the size of one hermetic bag evaluated in this study. This may explain the
greater duration of storage in that study.
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the impact on the duration of maize storage for consumption is more
pronounced. Therefore, we find evidence to support the longer storage
period causal pathway through which improved storage technology
causes households to plant more improved maize varieties, particularly
for consumption purposes.

6.9. Storage chemical use

One of the major benefits of using hermetic storage technology is that
it alleviates the need to apply chemical insecticides on stored maize.
Chemical insecticides can control storage insects, but could also be
harmful to human health if used improperly (Golob, 2002; Williamson
et al., 2008). In Table 10, we present ITT effects of being treated with a
100 kg capacity hermetic storage bag on this indicator. The SMD esti-
mator in column (1) shows that treated households are, on average, less
likely to apply storage chemicals by roughly 6.2 percentage points. When
we include household covariates in column (2), the likelihood of treated
households using less chemical insecticides did not change, indicating
that the estimates are consistent. Both are statistically significant with a
p-value <0.001. However, because of the ex-ante (statistically weak)
imbalance of 3 percentage points between the treatment and control
groups in the baseline (see Table 2), we are cautious about the estimates
from the simple mean difference. Fortunately, the DiD and FE estimates
shown in columns (3–4) and (5–6) respectively should remove the
ex-ante bias between the two groups.

Both estimators suggest that the ex-ante bias between groups has
been removed. The results show that the treated households are still less
likely to use storage chemicals by about 4 percentage points on average.
The estimates with and without covariates are similar in both estimators
indicating consistency, and are significant at p-value<0.05. Thus, we are
confident that households consider hermetic bags as an alternative to
chemical insecticides, at least partly. This impact suggests positive health
benefits from using a chemical-free improved storage technology because
of the potential hazards associated with using chemical insecticides on
food that will be consumed. Anecdotal evidence suggest that households
may be applying unregulated chemical insecticides on maize, and even
when they are regulated, households may consume their maize before
the chemical's latency period has elapsed.



Table 9
Treatment effects on length of storage for sale purpose (weeks).

Dependent variable: Length of storage for sales (weeks) (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) 0.413
(0.316)

0.345
(0.310)

0.620*
(0.373)

0.582
(0.381)

0.692*
(0.354)

0.645*
(0.366)

Household size �0.049
(0.044)

0.010
(0.042)

�0.129
(0.079)

Age of household head �0.010
(0.010)

�0.022**
(0.009)

0.011
(0.012)

¼1 if HH head is educated 0.771**
(0.324)

1.029***
(0.271)

�0.019
(0.610)

Female headed household �1.056***
(0.328)

�0.085
(0.295)

0.639
(0.480)

¼1 if Eastern Region �0.674**
(0.310)

�0.643**
(0.315)

�0.307
(0.354)

�0.337
(0.343)

¼1 if Western Region 0.952**
(0.396)

0.821**
(0.393)

1.652***
(0.466)

1.503***
(0.436)

¼1 if Northern Region 2.231***
(0.398)

2.082***
(0.394)

2.154***
(0.362)

1.940***
(0.344)

Season dummies? Yes Yes No No Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 2.737***

(0.246)
3.095***
(0.675)

3.608***
(0.318)

3.768***
(0.624)

4.682***
(0.194)

4.928***
(0.975)

Observations 2088 2088 4450 4450 4450 4450
R2 0.040 0.053 0.045 0.060 0.030 0.033
Number of households 1244 1244

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 10
Treatment effects on if households use storage chemicals.

Dependent variable:¼1 if HH use storage chemical on maize (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) �0.062***
(0.016)

�0.064***
(0.017)

�0.041***
(0.013)

�0.041***
(0.013)

�0.036**
(0.015)

�0.037**
(0.016)

Household size 0.003
(0.002)

�0.001
(0.002)

�0.002
(0.005)

Age of household head 0.000
(0.001)

�0.001
(0.001)

0.000
(0.001)

¼1 if HH head is educated 0.037
(0.025)

0.034*
(0.017)

�0.012
(0.046)

Female headed household �0.025**
(0.012)

�0.011
(0.016)

0.042
(0.051)

¼1 if Eastern Region 0.042***
(0.011)

0.040***
(0.011)

0.044***
(0.014)

0.045***
(0.014)

¼1 if Western Region 0.095***
(0.030)

0.093***
(0.030)

0.057**
(0.028)

0.053*
(0.028)

¼1 if Northern Region 0.036**
(0.018)

0.032*
(0.018)

0.041***
(0.013)

0.034**
(0.014)

Season dummies? Yes Yes Yes Yes Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 0.044***

(0.011)
�0.004
(0.050)

0.072***
(0.014)

0.087**
(0.040)

0.093***
(0.001)

0.093
(0.067)

Observations 2371 2371 4733 4733 4733 4733
R2 0.026 0.032 0.012 0.017 0.002 0.003
Number of households 1245 1245

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

17 We estimated the ITT effects on on-farm storage post-harvest loss variable at
the technology level rather than at the household level because the improved
storage capacity is capped at 100 kg (1 bag) at the household level, which is
about 6% and 24% of the average storage capacity and average quantity stored
in the follow-up survey, respectively. Examining the treatment effects at the
household level could create a ‘smearing effect’ where the impact of the her-
metic bag on storage losses could be absorbed by the main (traditional) storage
technology used. Indeed, we found a smearing effect when we estimated ITT at
the household level. See Table A.5 in Appendix A for results at the household
level.
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6.10. Storage losses

Table 11 shows how access to an improved storage technology affects
self-reported on-farm storage losses at the technology level.17 Since
treated households were offered a 100 kg hermetic storage bag, house-
holds likely stored a larger proportion of their harvested maize in other
non-hermetic technologies. Thus, it is important to examine storage
losses in the hermetic bags compared to storage losses in other technol-
ogies within the households. In column (1), the SMD shows that on
average, self-reported storage loss is 2.2 percentage points less among



Table 11
Treatment effects on on-farm storage losses.

Dependent variable: Self-reported on-farm storage losses (%) (1) (2) (3) (4) (5) (6)

SMD SMD DiD DiD FE FE

Treatment effect (τ) �2.200***
(0.570)

�2.190***
(0.581)

�2.325**
(0.982)

�2.223**
(0.992)

�2.297*
(1.267)

�2.432*
(1.223)

Household size 0.060
(0.044)

0.096
(0.063)

0.005
(0.119)

Age of household head �0.015*
(0.008)

�0.017*
(0.010)

�0.003
(0.016)

¼1 if HH head is educated 0.078
(0.537)

�0.014
(0.344)

2.301*
(1.222)

Female headed household 0.141
(0.518)

�0.446
(0.364)

2.352***
(0.793)

¼1 if Eastern Region 0.707
(0.584)

0.612
(0.580)

0.322
(0.626)

0.146
(0.644)

¼1 if Western Region �0.015
(0.510)

�0.134
(0.504)

�0.345
(0.655)

�0.529
(0.656)

¼1 if Northern Region �0.207
(0.552)

�0.340
(0.527)

�0.708
(0.600)

�0.913
(0.612)

Season dummies? Yes Yes Yes Yes Yes Yes
HH fixed effects? No No No No Yes Yes
Constant 3.005***

(0.437)
3.307***
(0.915)

3.931***
(0.715)

4.304***
(0.940)

3.471***
(0.205)

1.208
(0.916)

Observations 2086 2086 4217 4217 4217 4217
R2 0.011 0.014 0.008 0.012 0.009 0.014
Number of households 1242 1242

Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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treated households— about 61% of the average post-harvest storage loss
reported in our sample. The result is the same when we added covariates
in column (2), indicating consistency of the estimates. Both are also
statistically significant at p-value<0.001.

In columns (3) and (4), the DiD estimated effects are not different
from the SMD reported in columns (1) and (2) but the precision
decreased as both estimates are now significant at p-value<0.05. In
columns (5), the FE estimate without covariates shows that on-farm
storage loss is reduced by 2.3 percentage points for maize stored in the
technology within treated households relative to other storage technol-
ogies. Likewise, in column (6) with the addition of covariates, the
magnitude is about the same as in column (5). Both estimates are sta-
tistically significant at p-value<0.1. Thus, these estimates suggest that
about 70% of the average reported losses are eliminated within hermetic
storage bags for treated households. These results are supported by
previous findings in (Bokusheva et al., 2012; Gitonga et al., 2013) who
find that the major effect of hermetic metal silos for users is the near
complete elimination of losses due to storage insect pest attacks.

7. Robustness checks

We conducted a number of robustness checks to ensure validity of our
results. First, we re-estimated our treatment effects for the main outcome
variables with Lee bounds to account for potential attrition bias. The
point estimates from our results statistically fall within the estimated Lee
bounds, indicating that the estimated effects are not affected by attrition
bias (see Appendix Table A.2 for Lee bounds estimates).

Second, we conducted multiple-hypothesis correction testing for all
outcome variables. Appendix Table A.4 presents the sharpened q-values
as implemented by Anderson (2008) and the unadjusted p-values from
the Huber-White robust standard errors, clustered at the LC1 levels. Our
conclusion from the multiple-hypothesis correction is that our findings
are robust to the corrections. For example, the q-values for the decision to
cultivate higher-yielding varieties as well as share of area planted to
these varieties remain significant at 5 percent test levels.

Third, one potential challenge to the validity of our results is if there is
a contamination of our experimental design. Members of the control
group could have purchased the bags, while members of the treatment
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group could have purchased additional bags beyond the one they were
given as part of the experiment. The former type of contamination could
lead to attenuation bias, while the latter would lead to an over estimation
of impacts. In fact, about 11 percent of the treated households reported
buying one or more additional bag with their own money, whereas only
6.4 percent of the control group bought one or more bags with their own
money. The supply chain for the improved hermetic bags remained
limited between our intervention in 2015 and follow-up survey in 2016,
so purchasing of the bags outside of our intervention was low. Regard-
less, we test the main results (cultivation of improved maize seed and
share of area planted) for consistency in terms of magnitude and statis-
tical significance across specifications, by dropping contaminated
households (who bought bag(s) outside our intervention) in the treat-
ment and control group.

Results of these other robustness checks are presented in Appendix B.
Overall, our results are consistent when contaminated households were
dropped from the analysis. Excluding contaminated observations from
both groups in our estimation does not change the coefficient estimates in
the DiD and FE estimators (Tables B.1a and B.2a). These estimators use
the baseline and post-intervention data to deal with unobserved factors
that may affect contamination and the decision to plant improved maize
varieties. In addition, the results are largely consistent for the SMD
estimator. Furthermore, including observations from the control group in
our estimation attenuated our full sample estimate (Tables B.1b and
B.2b). The converse is the case when we included contaminated obser-
vations from the treatment group, as ITT effects from the full-sample
estimates are slightly bigger than estimates without contaminated ob-
servations from the treatment group (Tables B.1c and B.2c). In general,
these results, which are largely consistent across the estimators, speak to
the additional robustness benefits that having a baseline and post-
intervention data provide. They further re-affirm our confidence in the
treatment effects as estimated using the full sample above.

8. Conclusions and policy recommendations

We used a randomized controlled trial to estimate the impacts of an
improved storage technology—a hermetic (airtight) bag—on small-
holder farm households in Uganda. To our knowledge, this is one of the
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first large-scale RCTs to evaluate a post-harvest storage technology and
the first to evaluate how storage technology affects smallholders' input
use and planting decisions in the developing world. The main behavioral
hypothesis tested is whether the improved storage technology is causally
linked to production decisions and storage practices in the subsequent
year. Our results indicate that receiving one hermetic bag that can store
100 kg of shelled maize has a direct and positive impact on households'
decisions to cultivate improved maize varieties that are higher-yielding
but more susceptible to insect pests in storage, than traditional maize
varieties.

Our results further indicate that treated households did not store
more maize relative to the control group. We suspect this is mainly
because households generally adopted a safety-first approach, storing
maize—a major staple food—for consumption in an improved technol-
ogy; and those households with liquidity constraints may choose to sell
their remaining maize at harvest rather than store in inefficient tradi-
tional storage technologies. However, the treated households stored
maize for longer periods for both consumption and marketed sales. We
conclude that improved storage technology has the ability to reduce food
insecurity by increasing the duration of storage for consumption. The
treated household in our RCT who received one hermetic bag, stored 20
percent longer on average, and results could be larger if they purchase
additional hermetic bags in the future. Furthermore, we find evidence
that the treated households are less likely to use chemical insecticides on
their stored maize, avoiding the potential health hazards typically asso-
ciated with improper use of these chemicals on their food supply. Lastly,
the intervention also reduced average self-reported storage losses by
61–70 percent, increasing household food supply and availability.

The main policy recommendation that emanates from our study is
that development agencies, researchers and policy makers advocating
the use of improved higher-yielding hybrid maize seeds among small-
holder farmers in SSA should consider promoting hermetic storage
technologies as a complementary intervention. The use of improved
storage technologies can help allay smallholders' concerns about these
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softer-kernel hybrid maize varieties, which are susceptible to pest attacks
in storage. This may be the missing link needed to convince rational
farmers to take-up these higher-yielding varieties. Our experimental re-
sults show that offering a household one free hermetic bag that holds a
maximum of 100 kg can have a meaningful impact on household well-
being in terms of duration of storage, reduction in use of storage chem-
icals and storage losses, which translates into the adoption of
productivity enhancing seeds in the future. The impacts would likely be
even larger for households acquiring multiple bags, who could then store
a substantially larger share of their harvest in an insect-free and
chemical-free environment. Though we have identified some important
shorter-term benefits from hermetic technology, future work should
consider and estimate how the use of these bags affects income, con-
sumption, nutrition, and dietary diversity over a longer period.
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Appendix A
Table A.1
Mean difference at baseline between attritted and returning households.

Variables Returning Attritted
Mean
 SD
 Coeff.
 p-value
 N
(1)
 (2)
 (3)
 (4)
 (5)
Dependent Variables

Quantity stored (kg)
 609
 1071
 108
 0.575
 2364

Length of storage for consumption (weeks)
 14.26
 9.58
 �0.643
 0.655
 2364

Length of storage for sales (weeks)
 4.38
 5.99
 �0.332
 0.552
 2364

Reported actual post-harvest losses (%)
 3.21
 6.60
 0.741
 0.242
 2131

¼1 if HH used storage chemical on maize
 0.11
 0.31
 0.071
 0.132
 2362

¼1 if HH planted improved maize seed
 0.34
 0.47
 �0.006
 0.923
 2235

¼1 if HH used inorganic fertilizer
 0.09
 0.29
 0.003
 0.932
 2231

Share of improved maize area (%)
 33.27
 46.93
 �1.152
 0.839
 2234

Household Characteristics

Age of household head (years)
 45.0
 14.7
 �5.96***
 0.001
 2380

Household size
 6.4
 3.1
 �0.67*
 0.099
 2380

¼1 if female-headed household
 0.16
 0.37
 0.02
 0.631
 2380

¼1 if Polygamous
 0.17
 0.38
 �0.01
 0.835
 2380

¼1 if HH head has any form of education
 0.88
 0.32
 0.02
 0.512
 2380

¼1 if HH has radio
 0.78
 0.41
 �0.07
 0.230
 2370

¼1 if HH has mobile phone
 0.69
 0.46
 �0.01
 0.851
 2370

Production and PH practices

Total maize area (ha.)
 0.52
 0.48
 0.11
 0.236
 2235

Total quantity harvested-maize (kg)
 905
 1259
 364
 0.160
 2235

Region Effects

¼1 if REGION¼ 200, Eastern
 0.25
 0.43
 0.08
 0.382
 2380

¼1 if REGION¼ 300, Northern
 0.25
 0.43
 0.00
 0.952
 2380
(continued on next column)
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Table A.1 (continued )
Variables
 Returning
190
Attritted
Mean
 SD
 Coeff.
 p-value
 N
(1)
 (2)
 (3)
 (4)
 (5)
¼1 if REGION¼ 400, Western
 0.25
 0.43
 �0.07
 0.152
 2380

¼1 if REGION¼ 100, Central wo Kampala
 0.25
 0.43
 �0.01
 0.823
 2380
Notes: Columns 1 and 2 report means and standard deviations for control villages in the baseline. Columns 3 through 5 report results from an OLS regression comparing
households in treated and control villages in the baseline controlling for region effects and clustering standard errors at the village level. Columns 3 and 4 report the OLS
coefficient and p-value corresponding to the binary treatment indicator and column 5 reports the sample size for each regression.
***p < 0.01, **p < 0.05, *p < 0.1.
Table A.2
Lee bounds estimates to account for attrition bias on treatment effects.

Main Outcome Variables Coef. Std. Err.
¼1 if HH planted improved maize varieties

lower
 0.081***
 0.025

upper
 0.092***
 0.024
Share of improved maize area (%)

lower
 7.903***
 2.496

upper
 9.012***
 2.406
¼1 if HH used inorganic fertilizer

lower
 �0.011
 0.020

upper
 0.000
 0.018
Table A.3
Intra-cluster correlation coefficients for dependent variables.

variables ICC SE N
Quantity Stored (kg)
 0.013
 0.008
 4452

Length of storage for consumption (weeks)
 0.045
 0.019
 4452

Length of storage for sales (weeks)
 0.024
 0.017
 4450

Reported actual post-harvest losses (%)
 0.000
 0.010
 4219

¼1 if HH used storage chemicals
 0.027
 0.038
 4733

¼1 if HH planted improved maize seed
 0.099
 0.126
 4482

Share of improved maize area (%)
 0.103
 0.127
 4481

Total area planted to improved maize (ha.)
 0.102
 0.070
 4482

¼1 if HH uses inorganic fertilizer
 0.014
 0.021
 4478
Notes: An ICC value of zero means there is no difference between the variation within clusters (LC1s) and the
variation between clusters. The closer the ICC is to 1, the more observations (25 households) within each LC1
lack variation (implying no power gain or efficiency from having a larger sample). However, an ICC value closer
to zero indicates a bigger variation in the within sample, which is beneficial in terms of efficiency or power gain.
Source: Authors' compilation.
Table A.4
Comparison of p-values and sharpened q-values for multiple hypothesis testing.

Outcome Variables SMD DID FE
p-val
 q-val
 p-val
 q-val
 p-val
 q-val
¼1 if households planted improved maize varieties
 0.027
 0.043
 0.046
 0.059
 0.031
 0.058

Share of improved maize area (%)
 0.022
 0.043
 0.033
 0.053
 0.022
 0.055

¼1 if households used inorganic fertilizer
 0.598
 0.290
 0.797
 0.295
 0.513
 0.172

Quantity of maize stored (kg)
 0.225
 0.107
 0.943
 0.309
 0.979
 0.325

Length of storage for consumption (weeks)
 0.047
 0.058
 0.000
 0.001
 0.000
 0.001

Length of storage for sales (kg)
 0.199
 0.107
 0.103
 0.074
 0.057
 0.063

¼1 if households used storage chemicals
 0.000
 0.001
 0.003
 0.011
 0.021
 0.055

Self-reported storage losses (%)
 0.000
 0.001
 0.022
 0.047
 0.053
 0.063
Note: The sharpened q-values were computed from the unadjusted p-values derived from Huber-White robust standard errors, clustered at the LC1 level, following
Anderson (2008).
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Table A.5
Treatment effects on on-farm storage losses at the household level.

Dependent variable: Self-reported on-farm storage losses (%) (1) (2) (3) (4) (5) (6)
19
1
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 �0.017
(0.505)
�0.008
(0.510)
�0.300
(0.831)
�0.260
(0.864)
�0.287
(0.867)
�0.361
(0.844)
Household size
 0.096**
(0.039)
0.088
(0.057)
0.057
(0.123)
Age of household head
 �0.019**
(0.009)
�0.017*
(0.009)
�0.005
(0.016)
¼1 if HH head is educated
 �0.023
(0.534)
�0.118
(0.333)
2.230*
(1.311)
Female headed household
 �0.021
(0.568)
�0.556
(0.353)
1.936***
(0.707)
¼1 if Eastern Region
 1.035*
(0.593)
0.893
(0.584)
0.689
(0.701)
0.522
(0.716)
¼1 if Western Region
 �0.007
(0.518)
�0.171
(0.510)
�0.287
(0.676)
�0.472
(0.693)
¼1 if Northern Region
 �0.014
(0.553)
�0.191
(0.525)
�0.390
(0.670)
�0.590
(0.685)
Season dummies?
 No
 Yes
 Yes
 Yes
 Yes
 Yes

HH fixed effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 2.987***

(0.442)

3.381***
(0.936)
3.509***
(0.773)
4.036***
(0.980)
3.951***
(0.242)
1.560
(1.009)
Observations
 2088
 2088
 4219
 4219
 4219
 4219

R-squared
 0.006
 0.011
 0.005
 0.010
 0.004
 0.009

Number of HHs
 1242
 1242
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Appendix B
Table B.1a
Treatment effects on household planting improved maize varieties (sample without the treatment and control groups contaminated observations).

Dependent variable:¼1 if HH planted improved maize (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 0.079**
(0.036)
0.079**
(0.036)
0.085*
(0.049)
0.088*
(0.049)
0.103**
(0.040)
0.096**
(0.041)
Household size
 0.011***
(0.004)
0.006**
(0.002)
�0.011**
(0.005)
Age of household head
 �0.000
(0.001)
�0.001
(0.001)
�0.001
(0.001)
¼1 if HH head is educated
 0.025
(0.058)
0.090**
(0.034)
0.032
(0.036)
Female headed household
 �0.072**
(0.027)
�0.095***
(0.029)
0.120*
(0.065)
¼1 if Eastern Region
 0.024
(0.075)
0.013
(0.076)
0.049
(0.060)
0.038
(0.057)
n/a
 n/a
¼1 if Western Region
 �0.149**
(0.061)
�0.160**
(0.061)
�0.103*
(0.058)
�0.121**
(0.054)
¼1 if Northern Region
 �0.074
(0.060)
�0.085
(0.060)
�0.040
(0.053)
�0.065
(0.052)
Season dummies?
 No
 Yes
 Yes
 Yes
 Yes
 Yes

HH fixed-effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 0.274***

(0.058)

0.215**
(0.088)
0.342***
(0.046)
0.343***
(0.071)
0.347***
(0.012)
0.395***
(0.088)
Observations
 2166
 2166
 4397
 4397
 4397
 4397

R2
 0.033
 0.047
 0.027
 0.053
 0.034
 0.040

Number of households
 1243
 1243
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table B.1b
Treatment effects on household planting improved maize varieties (sample without the control group contaminated observations).

Dependent variable:¼1 if HH planted improved maize (1) (2) (3) (4) (5) (6)
192
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 0.103**
(0.041)
0.102**
(0.042)
0.104**
(0.048)
0.106**
(0.048)
0.107**
(0.044)
0.101**
(0.045)
Household size
 0.011***
(0.004)
0.007***
(0.002)
�0.010*
(0.005)
Age of household head
 �0.000
(0.001)
�0.001
(0.001)
�0.001
(0.001)
¼1 if HH head is educated
 0.028
(0.058)
0.091***
(0.034)
0.032
(0.036)
Female headed household
 �0.075***
(0.027)
�0.096***
(0.029)
0.119*
(0.065)
¼1 if Eastern Region
 0.022
(0.076)
0.010
(0.076)
0.048
(0.060)
0.036
(0.057)
n/a
 n/a
¼1 if Western Region
 �0.142**
(0.064)
�0.153**
(0.063)
�0.098
(0.059)
�0.117**
(0.056)
¼1 if Northern Region
 �0.079
(0.060)
�0.091
(0.060)
�0.044
(0.053)
�0.069
(0.052)
Season dummies?
 No
 No
 Yes
 Yes
 Yes
 Yes

HH fixed-effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 0.274***

(0.058)

0.207**
(0.089)
0.342***
(0.046)
0.339***
(0.071)
0.349***
(0.012)
0.396***
(0.087)
Observations
 2190
 2190
 4423
 4423
 4423
 4423

R2
 0.034
 0.050
 0.026
 0.053
 0.033
 0.038

Number of households
 1244
 1244
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table B.1c
Treatment effects on household planting improved maize varieties (sample without the treatment group contaminated observations).

Dependent variable:¼1 if HH planted improved maize (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 0.072*
(0.036)
0.072*
(0.037)
0.079
(0.049)
0.082*
(0.049)
0.095**
(0.041)
0.088**
(0.042)
Household size
 0.011***
(0.004)
0.006***
(0.002)
�0.011**
(0.005)
Age of household head
 �0.000
(0.001)
�0.001*
(0.001)
�0.000
(0.001)
¼1 if HH head is educated
 0.033
(0.057)
0.093***
(0.033)
0.028
(0.036)
Female headed household
 �0.064**
(0.030)
�0.091***
(0.030)
0.121*
(0.066)
¼1 if Eastern Region
 0.034
(0.077)
0.022
(0.077)
0.054
(0.060)
0.043
(0.057)
n/a
 n/a
¼1 if Western Region
 �0.148**
(0.062)
�0.160**
(0.061)
�0.101*
(0.058)
�0.120**
(0.054)
¼1 if Northern Region
 �0.071
(0.059)
�0.084
(0.060)
�0.039
(0.053)
�0.065
(0.051)
Season dummies?
 No
 No
 Yes
 Yes
 Yes
 Yes

HH fixed-effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 0.278***

(0.058)

0.219**
(0.087)
0.342***
(0.046)
0.342***
(0.071)
0.347***
(0.012)
0.398***
(0.089)
Observations
 2223
 2223
 4456
 4456
 4456
 4456

R2
 0.035
 0.056
 0.026
 0.053
 0.030
 0.036

Number of households
 1244
 1244
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.



O.J. Omotilewa et al. Journal of Development Economics 135 (2018) 176–198
Table B.2a
Treatment effects on share of area planted to improved varieties (sample without the treatment and control groups contaminated observations).

Dependent variable: Share of improved maize area (%) (1) (2) (3) (4) (5) (6)
193
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 8.154**
(3.541)
8.181**
(3.625)
9.089*
(4.822)
9.402*
(4.841)
10.936***
(3.978)
10.247**
(4.056)
Household size
 1.067***
(0.369)
0.609***
(0.224)
�1.132**
(0.500)
Age of household head
 �0.014
(0.073)
�0.129
(0.083)
�0.064
(0.118)
¼1 if HH head is educated
 1.738
(5.773)
8.356**
(3.369)
3.228
(3.637)
Female headed household
 �7.336***
(2.624)
�9.434***
(2.865)
11.356*
(6.385)
¼1 if Eastern Region
 2.630
(7.239)
1.455
(7.335)
5.032
(5.850)
3.921
(5.585)
n/a
 n/a
¼1 if Western Region
 �14.048**
(6.031)
�15.079**
(6.011)
�9.917*
(5.734)
�11.730**
(5.405)
¼1 if Northern Region
 �6.268
(5.866)
�7.279
(5.949)
�3.307
(5.242)
�5.732
(5.117)
Season dummies?
 No
 No
 Yes
 Yes
 Yes
 Yes

HH fixed-effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 26.290***

(5.618)

20.452**
(8.675)
33.571***
(4.485)
33.710***
(7.040)
34.098***
(1.161)
39.703***
(8.716)
Observations
 2166
 2166
 4396
 4396
 4396
 4396

R2
 0.032
 0.046
 0.027
 0.052
 0.034
 0.040

Number of households
 1243
 1243
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table B.2b
Treatment effects on share of area planted to improved varieties (sample without the control group contaminated observations).

Dependent variable: Share of improved maize area (%) (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 10.171**
(3.916)
10.073**
(3.969)
10.798**
(4.681)
10.980**
(4.690)
11.104**
(4.252)
10.535**
(4.399)
Household size
 1.135***
(0.402)
0.652***
(0.229)
�1.025*
(0.532)
Age of household head
 �0.012
(0.076)
�0.128
(0.084)
�0.074
(0.119)
¼1 if HH head is educated
 1.959
(5.774)
8.497**
(3.387)
3.189
(3.611)
Female headed household
 �7.591***
(2.656)
�9.554***
(2.884)
11.311*
(6.369)
¼1 if Eastern Region
 2.385
(7.340)
1.164
(7.422)
4.900
(5.929)
3.741
(5.668)
n/a
 n/a
¼1 if Western Region
 �13.600**
(6.289)
�14.660**
(6.210)
�9.634
(5.864)
�11.485**
(5.521)
¼1 if Northern Region
 �6.839
(5.901)
�7.842
(5.950)
�3.606
(5.243)
�6.060
(5.110)
Season dummies?
 No
 No
 Yes
 Yes
 Yes
 Yes

HH fixed-effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 26.302***

(5.709)

19.816**
(8.697)
33.560***
(4.538)
33.284***
(7.027)
34.221***
(1.191)
39.587***
(8.579)
Observations
 2190
 2190
 4422
 4422
 4422
 4422

R2
 0.033
 0.049
 0.027
 0.052
 0.033
 0.039

Number of households
 1244
 1244
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table B.2c
Treatment effects on share of area planted to improved varieties (sample without the treatment group contaminated observations).

Dependent variable: Share of improved maize area (%) (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 7.461**
(3.629)
7.473*
(3.718)
8.539*
(4.847)
8.831*
(4.874)
10.122**
(4.071)
9.437**
(4.146)
Household size
(continued on next column)
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Table B.2c (continued )
Dependent variable: Share of improved maize area (%)
 (1)
 (2)
194
(3)
 (4)
 (5)
 (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
1.090***
(0.372)
0.630***
(0.223)
�1.152**
(0.488)
Age of household head
 �0.034
(0.071)
�0.139*
(0.082)
�0.060
(0.116)
¼1 if HH head is educated
 2.556
(5.647)
8.712**
(3.331)
2.767
(3.589)
Female headed household
 �6.512**
(2.966)
�9.021***
(2.962)
11.420*
(6.439)
¼1 if Eastern Region
 3.647
(7.428)
2.397
(7.466)
5.541
(5.932)
4.405
(5.645)
n/a
 n/a
¼1 if Western Region
 �13.990**
(6.059)
�15.097**
(6.018)
�9.769*
(5.744)
�11.593**
(5.409)
¼1 if Northern Region
 �6.038
(5.809)
�7.219
(5.877)
�3.206
(5.194)
�5.692
(5.055)
Season dummies?
 No
 No
 Yes
 Yes
 Yes
 Yes

HH fixed-effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 26.660***

(5.670)

20.867**
(8.539)
33.499***
(4.509)
33.599***
(7.039)
34.078***
(1.198)
40.005***
(8.759)
Observations
 2223
 2223
 4455
 4455
 4455
 4455

R2
 0.033
 0.047
 0.026
 0.052
 0.031
 0.036

Number of households
 1244
 1244
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
Table B.3
Treatment effects on household storage capacity.

VARIABLES (1) (2)
Ln (storage capacity)
 Ln (storage capacity)
¼1 if HH received a hermetic bag
 0.039
(0.080)
0.029
(0.074)
Household size
 0.059***
(0.014)
Age of household head
 0.006**
(0.002)
¼1 if HH head is educated
 0.360***
(0.079)
¼1 if female headed household
 �0.218***
(0.078)
¼1 if Eastern Region
 �0.248**
(0.112)
�0.321***
(0.100)
¼1 if Western Region
 0.112
(0.121)
0.113
(0.100)
¼1 if Northern Region
 0.083
(0.139)
0.077
(0.134)
Season dummies?
 Yes
 Yes

Constant
 6.573***

(0.068)

5.780***
(0.174)
Observations
 3660
 3660

R2
 0.012
 0.064
Notes: Robust standard errors, clustered at the LC1 level, are shown in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
Appendix C
Table C.1
Treatment effects on household decisions to sell at harvest.

Dependent variable: 1 if HH sold maize at harvest (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 0.014
(0.041)
0.014
(0.042)
0.034
(0.038)
0.034
(0.038)
0.034
(0.039)
0.036
(0.039)
Household size
 0.007**
(0.003)
�0.001
(0.004)
�0.001
(0.006)
Age of household head
 �0.003***
(0.001)
�0.003***
(0.001)
�0.000
(0.002)
(continued on next column)
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Table C.1 (continued )
Dependent variable: 1 if HH sold maize at harvest
 (1)
 (2)
195
(3)
 (4)
 (5)
 (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
¼1 if HH head is educated
 �0.033
(0.050)
�0.001
(0.025)
�0.035
(0.078)
Female headed household
 �0.102**
(0.041)
�0.062**
(0.027)
�0.097
(0.089)
¼1 if Eastern Region
 �0.213***
(0.051)
�0.228***
(0.046)
�0.200***
(0.059)
�0.204***
(0.057)
¼1 if Western Region
 0.025
(0.054)
�0.000
(0.052)
�0.032
(0.051)
�0.053
(0.048)
¼1 if Northern Region
 �0.071*
(0.040)
�0.097**
(0.039)
�0.062
(0.043)
�0.084*
(0.042)
Season indicators
 No
 Yes
 No
 No
 Yes
 Yes

HH fixed effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 0.545***

(0.033)

0.684***
(0.086)
0.738***
(0.039)
0.998***
(0.066)
0.763***
(0.017)
0.838***
(0.096)
Observations
 2377
 2377
 4749
 4749
 4749
 4749

R2
 0.037
 0.055
 0.056
 0.088
 0.083
 0.084

Number of households
 1245
 1245
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table C.2
Treatment effects on storage at harvest for sales in the lean period.

Dependent variable:¼1 if HH stored maize for sale at harvest (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 0.030
(0.023)
0.029
(0.024)
0.067**
(0.030)
0.067**
(0.030)
0.070**
(0.031)
0.069**
(0.030)
Household size
 0.002
(0.004)
0.004
(0.003)
0.000
(0.005)
Age of household head
 �0.000
(0.001)
�0.001
(0.001)
0.001
(0.002)
¼1 if HH head is educated
 0.023
(0.034)
0.043**
(0.018)
0.007
(0.036)
Female headed household
 �0.063*
(0.034)
0.009
(0.028)
0.098**
(0.037)
¼1 if Eastern Region
 �0.077***
(0.027)
�0.081***
(0.029)
�0.066***
(0.019)
�0.071***
(0.019)
¼1 if Western Region
 0.099***
(0.027)
0.092***
(0.028)
0.092***
(0.023)
0.085***
(0.023)
¼1 if Northern Region (0/1)
 0.105***
(0.030)
0.097***
(0.031)
0.070***
(0.021)
0.059***
(0.022)
Season indicators
 No
 Yes
 No
 No
 Yes
 Yes

HH fixed effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 0.182***

(0.018)

0.183***
(0.067)
0.153***
(0.014)
0.119**
(0.053)
0.151***
(0.010)
0.094
(0.099)
Observations
 2376
 2376
 4740
 4740
 4740
 4740

R2
 0.034
 0.040
 0.030
 0.042
 0.019
 0.021

Number of households
 1245
 1245
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table C.3
Treatment effects on maize yield.

Dependent variable: Maize yield (kg/ha) (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Treatment effect (τ)
 88.871
(116.841)
88.856
(114.073)
172.546
(115.541)
178.541
(118.593)
94.495
(93.317)
90.766
(94.051)
Household size
 19.172*
(10.030)
22.632***
(7.791)
�0.366
(11.380)
Age of household head
 �5.558*
(3.209)
�5.063**
(1.985)
�4.537*
(2.312)
¼1 if HH head is educated
 �116.086
(108.131)
32.948
(66.048)
21.247
(138.264)
Female headed household
 �375.977***
(79.089)
�245.574***
(66.112)
105.311
(195.721)
(continued on next column)
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Table C.3 (continued )
Dependent variable: Maize yield (kg/ha)
 (1)
 (2)
196
(3)
 (4)
 (5)
 (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
¼1 if Eastern Region
 �457.511***
(133.748)
�497.150***
(131.735)
�521.806***
(100.787)
�565.298***
(95.266)
¼1 if Western Region
 204.193
(171.753)
133.768
(176.638)
105.843
(145.907)
48.493
(142.443)
¼1 if Northern Region
 �253.063
(153.638)
�317.654*
(162.919)
�263.550**
(112.980)
�330.805***
(115.453)
Season indicators
 No
 Yes
 No
 No
 Yes
 Yes

HH fixed effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 1275.626***

(119.735)

1620.369***
(303.055)
1895.379***
(91.630)
2080.860***
(160.501)
1795.070***
(36.803)
1966.098***
(194.536)
Observations
 2247
 2247
 4481
 4481
 4481
 4481

R2
 0.058
 0.089
 0.099
 0.132
 0.125
 0.126

Number of households
 1245
 1245
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(τSMD); columns (3) and (4) are the DID treatment effect estimates ðτDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðτFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table C.4a
Spillover effects on household planting improved maize varieties.

Dependent variable:¼1 if HH planted improved maize (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Spillover effect (γ)
 0.033
 0.040
 �0.036
 �0.028
 �0.025
 �0.035

¼1 if HH is in a DEMO village but not treated
 (0.045)
 (0.045)
 (0.039)
 (0.040)
 (0.045)
 (0.043)

Household size
 0.008**

(0.003)

0.004*
(0.002)
�0.013**
(0.005)
Age of household head
 �0.000
(0.001)
�0.001
(0.001)
0.000
(0.001)
¼1 if HH head is educated
 0.019
(0.063)
0.072**
(0.035)
0.013
(0.037)
Female headed household
 �0.090***
(0.032)
�0.107***
(0.034)
0.124*
(0.067)
¼1 if Eastern Region
 0.045
(0.086)
0.038
(0.085)
0.063
(0.061)
0.058
(0.056)
¼1 if Western Region
 �0.130**
(0.062)
�0.141**
(0.062)
�0.102*
(0.052)
�0.119**
(0.048)
¼1 if Northern Region
 �0.070
(0.062)
�0.080
(0.062)
�0.032
(0.051)
�0.056
(0.049)
Season indicators
 No
 Yes
 No
 No
 Yes
 Yes

HH fixed effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 0.257***

(0.063)

0.222**
(0.100)
0.313***
(0.047)
0.337***
(0.078)
0.350***
(0.012)
0.394***
(0.081)
Observations
 1804
 1804
 3591
 3591
 4039
 4039

R2
 0.029
 0.043
 0.032
 0.057
 0.035
 0.041

Number of households
 1243
 1243
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(γSMD); columns (3) and (4) are the DID treatment effect estimates ðγDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðγFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table C.4b
Spillover effects on share of area planted to improved varieties.

Dependent variable: Share of improved maize area (%) (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Spillover effect (γ)
 3.834
 4.497
 �2.605
 �1.833
 �1.361
 �2.311

¼1 if HH is in a DEMO village but not treated
 (4.357)
 (4.351)
 (3.729)
 (3.786)
 (4.345)
 (4.124)

Household size
 0.879***

(0.314)

0.422*
(0.225)
�1.319**
(0.540)
Age of household head
 �0.018
(0.083)
�0.124
(0.090)
0.010
(0.097)
¼1 if HH head is educated
 0.998
(6.260)
6.609*
(3.434)
1.382
(3.666)
Female headed household
 �9.265***
(3.133)
�10.725***
(3.350)
11.437*
(6.484)
¼1 if Eastern Region
 4.775
(8.122)
3.972
(8.115)
6.621
(5.848)
6.041
(5.385)
¼1 if Western Region
 �12.215**
(5.949)
�13.284**
(5.962)
�9.760*
(5.053)
�11.423**
(4.676)
(continued on next column)
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Table C.4b (continued )
Dependent variable: Share of improved maize area (%)
 (1)
 (2)
197
(3)
 (4)
 (5)
 (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
¼1 if Northern Region
 �5.906
(5.939)
�6.770
(6.022)
�2.371
(4.924)
�4.730
(4.753)
Season indicators
 No
 Yes
 No
 No
 Yes
 Yes

HH fixed effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 24.363***

(5.941)

20.604**
(9.734)
30.708***
(4.509)
33.045***
(7.676)
34.313***
(1.204)
39.306***
(7.855)
Observations

R2
 1804
 1804
 3590
 3590
 4038
 4038

Number of households
 0.028
 0.043
 0.033
 0.056
 0.035
 0.041
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(γSMD); columns (3) and (4) are the DID treatment effect estimates ðγDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðγFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Table C.4c
Spillover effects on households using fertilizer.

Dependent variable:¼1 if HH used fertilizer (1) (2) (3) (4) (5) (6)
SMD
 SMD
 DiD
 DiD
 FE
 FE
Spillover effect (γ)
 �0.019
 �0.008
 �0.004
 0.000
 0.021
 0.021

¼1 if HH is in a DEMO village but not treated
 (0.028)
 (0.027)
 (0.018)
 (0.019)
 (0.023)
 (0.023)

Household size
 0.002

(0.004)

0.005
(0.005)
0.001
(0.003)
Age of household head
 �0.002***
(0.001)
�0.002**
(0.001)
�0.000
(0.000)
¼1 if HH head is educated
 �0.049
(0.056)
�0.007
(0.031)
�0.063**
(0.031)
Female headed household
 �0.082***
(0.026)
�0.058***
(0.019)
0.006
(0.019)
¼1 if Eastern Region
 �0.072
(0.055)
�0.079
(0.049)
�0.065
(0.045)
�0.074
(0.044)
¼1 if Western Region
 �0.194***
(0.034)
�0.213***
(0.035)
�0.183***
(0.033)
�0.200***
(0.036)
¼1 if Northern Region
 �0.180***
(0.037)
�0.199***
(0.039)
�0.179***
(0.034)
�0.199***
(0.037)
Season indicators
 No
 Yes
 No
 No
 Yes
 Yes

HH fixed effects?
 No
 No
 No
 No
 Yes
 Yes

Constant
 0.241***

(0.034)

0.393***
(0.080)
0.206***
(0.033)
0.291***
(0.058)
0.119***
(0.007)
0.165***
(0.033)
Observations
 1804
 1804
 3588
 3588
 4035
 4035

R2
 0.061
 0.084
 0.065
 0.085
 0.007
 0.010

Number of households
 1243
 1243
Notes: For simplicity, the first row shows the ITT estimates for all estimators with and without covariates. Columns (1) and (2) are the simple mean difference estimates
(γSMD); columns (3) and (4) are the DID treatment effect estimates ðγDIDÞ, which is the ‘treated*post-intervention’ interaction term; and columns (5) and (6) are the
treatment effects estimates from the FE estimator ðγFEÞ. Robust standard errors, clustered at the LC1 level, are shown in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Appendix D. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jdeveco.2018.07.006.
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