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Key messages 

◼ Forty percent of developing countries plan to 
use agroforestry to meet climate and 
development goals, yet available systems for 
measurement, reporting and verification (MRV) 
are not capable of counting trees in agroforestry 
systems. 

◼ Before agroforestry can become an important 
response to climate change, countries need 
access to affordable, accessible tools to improve 
their ability to monitor agroforestry. 

◼ We evaluated the effectiveness of Collect Earth, 
an open-source platform that allows assessment 
of land use using freely available high-resolution 
imagery, for identifying primary types of 
agroforestry systems in Colombia and Viet Nam. 

◼ Preliminary results are mixed but showed 
promise. Collect Earth is highly effective in 
identifying some easily distinguished types of 
agroforestry systems (such as agrisilviculture, 
boundary planting, and home gardens) but falls 
short with others (including some types of 
shadow and silvopastoral systems). 

◼ Refinements to our approach—including the 
integration of local expertise into the photo-
interpretation process— could help Collect Earth 
become a valuable tool to ensure that 
agroforestry trees count toward climate goals. 

Many countries have ambitions to use agroforestry to 

meet development and climate change goals. Forty 

percent of developing countries (59 of 147) propose 

agroforestry as a response in their Nationally Determined 

Contributions (NDCs), seven countries have proposed 10 

agroforestry-based Nationally Appropriate Mitigation 

Actions (NAMAs), and 62% of 73 REDD+ countries 

identify agroforestry as a response to mitigate drivers of 

forest loss and degradation.  

Agroforestry is strategic because the integration of trees 

on farms, ranches and landscapes in strategic spatial 

arrangements or temporal sequences can deliver 

livelihood, adaptation and mitigation outcomes. 

Agroforestry helps conserve soil moisture and improve 

soil fertility. It can offer shade, thereby buffering the 

damage that rising temperatures can do to both crops 

and livestock (Figure 1). Trees produce protein-rich 

fodder for animals as well as other products that can 

provide both additional nutrients and a source of income 

for farmers. Trees serve as carbon sinks, removing 

greenhouse gases (GHGs) from the atmosphere through 

both biomass and the soil around them. In short, 

agroforestry offers multiple benefits to transform human 

lives and the landscape.  

Figure 1. Silvopastoral system in Colombia that combines 

trees, livestock and forages. Photo credit: N. Palmer 

(CIAT). 
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However, trees growing in agroforestry systems are rarely 

counted in MRV systems, either under the United Nations 

Framework Convention on Climate Change (UNFCCC) or 

otherwise. This absence has serious implications. If trees 

growing in agroforestry systems aren’t counted in MRV 

systems, then in many ways they don’t count: Only if 

agroforestry resources are measured, reported and 

verified will they gain access to the financial and other 

support they need to effectively contribute to a nation’s 

response to climate change. Improved, robust, MRV is 

critical to scaling up agroforestry and documenting its 

benefits.  

A major obstacle to monitoring agroforestry is the 

difficulty of detecting it in the landscape. Only a few types 

of agroforestry are visible using readily available and 

cost-effective remote-sensing products. As a result, 

countries cannot identify which lands have trees and 

which do not. Furthermore, agroforestry occurs on 

virtually all land uses but is not a land use itself, 

according to the Intergovernmental Panel on Climate 

Change (IPCC) definitions typically used in MRV 

systems. For example, agroforestry can be classified as 

forest when the system meets national definitions of 

forest. This can occur in shadow agroforestry systems 

where coffee, cocoa, and banana are grown under the 

shade of other tree species. Furthermore, agroforestry 

can be practiced on grazing lands in cases where trees 

are interspersed among pastures. Similar examples of 

agroforestry are present on the other IPCC land uses as 

well, such as wetlands (mixed rice-mangrove), 

settlements (home gardens and living fences), and 

croplands (maize-legume intercrops). Thus, the key is to 

be able to distinguish agroforestry within existing land-use 

categories.  

If countries are to incentivize the use of agroforestry, 

there is a need to develop cost-effective and accessible 

tools to improve representation of agroforestry and help 

countries count trees. Here we report on an attempt to 

evaluate one such tool, Collect Earth.  

Collect Earth 

Collect Earth, part of the OpenForis suite of forestry 

management software, is a free tool that is used to 

assess trends in land use and land-use change (Bey et 

al. 2016). The method involves using publicly available 

imagery—ranging from very high-resolution (less than 1 

m) to moderate resolution (30 m)—from DigitalGlobe, the 

Landsat archive, Google Earth, Sentinel 2 and Bing 

imagery. Plots are labelled and characterized in Collect 

Earth using visual image interpretation by individuals. 

Those individuals can be researchers, students or the 

‘crowd’ at large. Collect Earth has become popular 

because it is relatively easy to use compared to other 

remote-sensing applications, it is free with both desktop 

and cloud-based applications, and because the 

information generated can easily be analysed and shared 

among users.  

Collect Earth has emerged as a useful tool for monitoring 

land-use systems in a cost-effective manner. Bastin and 

colleagues (2017) demonstrated that Collect Earth has 

the potential to change the way we measure tree cover 

across landscapes. They estimated the extent of global 

forest land use and tree canopy cover in dryland biomes 

around the world by interpreting tree cover at over 

210,000 plots. They observed 9% more forest using 

Collect Earth compared to estimates from previous 

remote-sensing methods. That is because Collect Earth 

enables interpreters to measure dispersed tree cover or 

open-canopy forests, areas where trees often are 

undercounted in typical mapping efforts using coarser-

resolution data and machine-learning algorithms. 

Although such early results are promising, the overall 

efficacy of Collect Earth for monitoring agroforestry is 

largely unknown. Issues such as the diversity of 

agroforestry systems, similarities between agroforestry 

systems and surrounding landscapes, and the age of the 

trees in the system may hinder the use of Collect Earth 

for monitoring agroforestry. The research reported here 

was intended to answer the following question: Can 

Collect Earth detect agroforestry systems matching 

country goals within MRV constraints?   

Methods 

Viet Nam and Colombia were chosen for the pilot study 

because they offer a diversity of agroforestry practices, 

which was critical to establishing the broad feasibility of 

the Collect Earth platform. At the same time, we wanted 

the results to be directly relevant to national and 

international conversations on agroforestry MRV. Viet 

Nam’s government has expressed interest in integrating 

agroforestry into the 2020 revision of its NDC. In fact, the 

country already recognizes trees outside forests, with its 

last inventory reporting more than 352 million scattered 

trees. Colombia was selected because its government 

and private sector are developing NAMAs around two 

commodities, coffee and cattle, with interventions that 

include agroforestry systems (shade-grown coffee and 

silvopastoral cattle ranching). Cattle and coffee 

production are pervasive across Latin America, with many 

other countries (including Costa Rica, Nicaragua and 

Peru) considering or already having in place NAMAs on 

the same topics. Results from both countries therefore 

have broad implications.  

The study set out to analyse the six agroforestry systems 

summarized by Feliciano and colleagues (2018). These 

systems are not species-specific but represent a broad 

typology of agroforestry spatiotemporal configurations. 

The systems are: 
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◼ Agrisilvicultural systems grow crops and trees in 

the same field.  

◼ Silvopastoral systems integrate the grazing of 

domestic animals on land units that include forests. 

◼ Boundary plantings are linear tree formations that 

can serve multiple functions, including live fencing, 

erosion prevention, or the production of timber, 

fuelwood, or fruits.  

◼ Shadow systems grow coffee, tea, or cocoa under 

multipurpose shade trees.  

◼ Home gardens are integrated systems around the 

homestead where fruit and timber trees are grown in 

association with herbs, annual and perennial crops, 

and livestock.  

◼ Woodlots are cultivated trees, typically monocultures 

grown for timber. 

The pilot studies included seven provinces in Viet Nam 

and eight departments in Colombia. We selected regions 

with sparse tree cover that support intensive agricultural 

land use (Figure 2). ICRAF staff members who do 

mapping in each country were consulted to ensure that 

the chosen regions included a range of the predominant 

types of agroforestry systems in each region.  

Figure 2. Overview of the selected study areas in 

Colombia (left) and Viet Nam (right). 

A systematic random sample was created for each of the 

15 study areas. We then interpreted 1,712 plots in Viet 

Nam covering an area of 52,275 km2, and 3,437 plots in 

Colombia covering 368,170 km2. For each plot, we used 

visual photo interpretation methods to assign a land-use 

label using the six IPCC inventory categories (cropland, 

forest, settlement, grassland, wetlands, and other lands), 

identify agroforestry systems, and estimate tree cover 

(both total and agroforestry-specific).  

Interpretation was conducted by nine students studying 

geographical information systems at Kenyatta University 

in Kenya. The team of interpreters had a total of 24 

hours—three 8-hour days—to learn the Collect Earth 

system and interpret all the plots. Training covered the 

Collect Earth software, photo interpretation methods, and 

classification of agroforestry systems. The students then 

worked together to analyse plots using available high-

resolution imagery in Google Earth Pro, Google Earth 

Engine, and Bing Maps. Data were recorded on 

customized survey cards integrated into the Collect Earth 

platform and were saved on each interpreter’s local 

computer. After completing the inventory, students were 

asked to complete surveys assessing the challenges they 

encountered in identifying agroforestry systems and 

collecting their insights as to how the identification 

process might be improved.  

We conducted analyses in Saiku and in the R statistical 

software environment to summarize land use, 

agroforestry prevalence, and tree cover for each study 

site. Finally, we used published carbon stock and 

sequestration factors specific to each agroforestry system 

and region to estimate the carbon benefits of agroforestry 

in the study regions. 

Identifying agroforestry systems 

The ability to detect agroforestry using available high-

resolution aerial imagery varied by agroforestry system. 

Interpreters consistently found that agrisilvicultural, 

boundary planting, and home garden systems were easy 

to identify from the high-resolution imagery (Figure 3). 

Shadow systems and silvopastoral were the most 

challenging to identify with high-resolution imagery, 

depending on the plant heights and presence of 

contextual indicators such as ranches. Interpreters noted 

the importance of being able to consult with fellow team 

members on difficult plots, especially in the absence of 

local knowledge of the region.  

There was group consensus that boundary plantings 

were easiest to identify, as thin, linear rows of trees used 

as buffers along a farm or as fencing were very clear in 

the imagery. Home gardens were also highly visible 

because the presence of homes surrounded by trees and 

other plantings produced clear spatial patterns. Home 

gardens were frequently observed in Hai Duong, which 

aligns with information derived from interviews with 

provincial officials. Interpreters found that detecting 

agrisilvicultural systems also posed few challenges. Trees 

co-planted with crops, such as maize and cassava, had 

very clear patterns that were easy to distinguish. 

Interpreters did note that sometimes woodlots looked very 

similar to agrisilvicultural buffers.  

Observations for Colombia confirmed the challenges of 

identifying shadow systems. Coffee is an important crop 
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grown in the Colombian departments of Antioquia, 

Caldas, and Tolima. In our analysis, however, interpreters 

did not observe a high rate of shadow systems in these 

areas. This discrepancy indicates a need to determine 

whether the uncertainty arose from our experimental set-

up or from Collect Earth itself. Due to constraints of the 

pilot exercise, we used interpreters in Kenya who have 

little experience in the tropical Americas. Persons with 

greater understanding of local farming systems might be 

better able to distinguish these systems from the 

available high-resolution imagery.  

Figure 3. Example image chips for each agroforestry 

system. 

One of the main challenges of the study was the lack of 

available high-resolution imagery for some parts of 

Colombia. Twelve percent of the inventory sample in the 

Colombia case study lacked adequate high-resolution 

imagery, with the problem being particularly acute in high-

elevation regions. Where high-resolution imagery was not 

available, interpreters relied on the moderate-resolution 

data available in Google Earth Engine, such as the 

Landsat archive and derivatives. In the absence of high-

resolution imagery, it is more challenging—though not 

impossible—to identify the subtler patterns produced by 

certain agroforestry systems, such as shadow systems. In 

such circumstances, one alternative is to use time-series 

trends of dense Landsat image stacks, which can allow 

interpreters to identify the distinctive planting and 

harvesting phenology signatures of certain crops. Indeed, 

a recent study successfully mapped shade-grown coffee 

(a shadow system) in Nicaragua using multi-seasonal 

Landsat 8 imagery in Google Earth Engine (Kelley et al. 

2018), suggesting the potential of using Collect Earth 

even for difficult-to-identify systems.     

Silvopastoral systems were among the most challenging 

to identify. The key features used to identify livestock-

based systems were the presence of fodder crops and 

ranch buildings, but the interpreters found these features 

difficult to identify. Further, some extensive silvopastoral 

systems do not have this type of infrastructure. Some 

observers noted that it was challenging to distinguish 

silvopastoral from bare or degraded lands with 

interspersed trees. Training interpreters to spot additional 

contextual clues, such as watering holes and livestock 

tracks, would help them correctly identify silvopastoral 

landscapes. 

Agroforestry systems identified were largely consistent 

with the IPCC land-use class expected. Agroforestry was 

rarely present in forests, wetlands and in the ‘other lands’ 

category, but it was common on croplands, and woodlots 

were identified on forest lands. This suggests a potential 

opportunity to match recognizable patterns of agroforestry 

systems to IPCC land uses that are already the basis of 

MRV systems. 

Analysis of the seven provinces in Viet Nam produced 

results that largely agreed with information available from 

other sources. In the province of Ben Tre, for example, 

our study showed that shadow systems and woodlots 

were the most prevalent agroforestry systems (Figure 4). 

This is consistent with the reports in the ICRAF Viet Nam 

Spatially Characterized Agroforestry (SCA) database, 

which is based on provincial statistics and which indicates 

that cacao and coconut plantations are dominant 

agroforestry practices there. Similarly, our team’s 

identifications suggested that both agrisilvicultural and 

shade systems are dominant in Binh Phuoc, Gia Lai, Hai 

Duong, and Thua Thien Hua, findings that agreed with 

the SCA database. 

Figure 4. Land-use composition and prevalence of 

agroforestry systems in Ben Tre, Viet Nam. Grasslands 

were not observed. 

Opportunities for carbon accounting 

The ability of trees to sequester carbon is one of the key 

reasons that countries are interested in promoting 

agroforestry, and our study attempted to quantify these 

benefits. An area’s carbon budget is determined by 

current carbon stocks, annual sequestration, and annual 

emissions. Collect Earth can generate estimates of tree 

cover (figure 5) and areal extent of agroforestry. Data on 

areal extent of various systems can be combined with 

published carbon stock change factors to estimate carbon 

stocks and stock changes. For example, using the later 

method and estimates of carbon stock change published 

in two studies (Feliciano et al. 2018, Albrecht and Kandji 

2003) we estimated that the annual carbon accumulation 

benefits range from 700,000 tC ha-1yr-1 across 232,000 

 



 C C AF S  IN F O  N O T E  5  

 

  

hectares in Ben Tre, Viet Nam, to 4.1 million tC ha-1 yr-1 

across 6.3 million hectares in Antioquia, Colombia. 

Much uncertainty, however, surrounds the estimates, 

because of the high degree of variation of published 

rates. In addition, no aboveground carbon sequestration 

rates for boundary plantings or shadow systems were 

available in Asia, requiring the study to rely on published 

values from Latin America. These uncertainties could be 

reduced through more studies of local carbon 

accumulation rates that take into account the variety of 

agroforestry tree integration and management strategies. 

There is a need for estimates that are sensitive to specific 

regions, climates, and practice factors for agroforestry 

systems that align with the reporting categories that 

countries and programs already use. 

Figure 5. Percent of one-hectare plots covered by tree 

cover associated with an agroforestry practice in Viet 

Nam and Colombia. Confidence intervals represent the 

standard error about the mean. The standard error 

estimates are low since the cover estimates are recorded 

using increments of 10% cover. 

Challenges and lessons learned 

The success of the Collect Earth system depends on two 

broad factors: the quality of available imagery and the 

skill of the interpreters. One of the main challenges of 

working with Collect Earth was the lack of available high-

resolution imagery. As discussed above, adequate high-

resolution imagery was lacking for a substantial portion of 

the inventory sample in the Colombia case study. This 

challenge, however, can be overcome with additional 

training on how to improve accuracy through the 

assessment of time series. 

Our pilot further suggests that identifications made by 

interpreters can be improved with some simple training 

techniques and considerations. Those conducting the 

training should start by providing clear descriptions of the 

classification systems and teaching interpreters to identify 

the characteristic patterns of each. Then, after each 

trainee labels a small subset of plots, these results should 

be compared to determine whether everyone labelled 

each plot in the same way. If inconsistencies are 

identified, the trainer should lead a group discussion and 

refer to the inventory protocols to help the trainers learn 

to identify the plots correctly. These quality-control checks 

can be repeated throughout the data collection process to 

improve the training and ensure consistency. 

Additional information and expertise would prove useful 

as well. Interpreters requested access to additional 

information including land-use data and regional reports 

on crop-yields, etc. They found that this helped improve 

agroforestry system identification in situations where the 

imagery was ambiguous. Identification could be improved 

further by working with local experts familiar with the 

landscape and agricultural practices, especially for the 

agroforestry classes such as silvopastoral systems that 

have subtle signatures even in high-resolution imagery.  

Crowd-based land use classification systems (e.g., 

GeoWiki) have been shown effective to rapidly inventory 

large areas. Based on our experience here, identifying 

agroforestry may require too much training to use the 

‘crowd’ in this way. However, future efforts may 

investigate ways to achieve acceptable accuracy using 

crowd-based systems and Collect Earth. In the meantime, 

the system here is still cost-effective by comparison to 

alternatives.  

Future efforts may do well to more rigorously assess the 

accuracy of estimates of the extent of agroforestry. While 

verifying accuracy with field work would be the gold 

standard, it is much more expensive and therefore tends 

to be cost prohibitive over the scale often desired and 

with the resources available. An alternative would be to 

give two (or more) interpreters a subset of the same 

sample sites to label, and then to evaluate the agreement 

between the two operators. Having two or more 

interpreters classifying the same plots would increase the 

trust in how the plots are being labelled and could serve 

as a proxy to represent accuracy (Olofsson et al. 2014). 

To support efficient and cost-effective data collection, 

careful thought should go into the construction of the 

forms used to collect data in Collect Earth. The goal is to 

ensure all the required information is collected, while 
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reducing the inclusion of unnecessary fields. Our pilot 

studies revealed improvement opportunities. In this 

project, we recorded only one agroforestry system at 

each plot. In the future we would include the ability to 

record multiple agroforestry systems, because in some 

cases more than one is present on a single plot. In most 

of the provinces in Viet Nam, for example, the average 

size of farms and landholdings was less than one 

hectare, making it likely that there will be multiple 

agroforestry practices in a one-hectare plot. Recording 

only the dominant system means important information is 

lost. In addition, we would include an attribute in which 

interpreters assign a coverage and tree density estimate 

to each observed agroforestry land use. 

We also would improve the data management practices. 

Having multiple users collecting data on separate 

desktops necessitates the later merger of multiple 

databases. If we were to repeat this study, we would 

consider working with the online version of Collect Earth, 

which saves all entries to a project database in the cloud. 

This enables simultaneous data collection without the 

need for further database management after collection 

efforts have concluded. It also offers the ability to use 

more advanced time-series algorithms that have been 

customized to the signature of specific crop cycles (i.e., 

phenologic signals), such as those used for the study of 

shade-grown coffee in Nicaragua (Kelley et al. 2018). 

These features are not available in the desktop version. 

The use of Collect Earth and tree cover estimates from 

remote sensing methods for precise carbon accounting is 

in its infancy. This is simply because the conversion from 

tree cover to carbon in biomass is variable. Biomass, and 

therefore carbon stock, is a function of both tree cover 

and stand structure (such as species and tree age). In 

addition, local conditions such as soil type, moisture 

regime, light and other resource availability play a role in 

determining tree size, so estimates of biomass from one 

system may not adequately represent characteristics in 

other conditions.  

Despite these limitations, however, the advantage of the 

Collect Earth approach is that it offers reliable information 

at a relatively affordable price. This pilot, which cost less 

than $7,000 in total, provides a first approximation of the 

importance of agroforestry to national carbon budgets, 

and it can be used to assess relative change over time as 

the area dedicated to agroforestry expands or contracts. 

With improvements in localized carbon stock change 

factors, precision and accuracy could increase 

significantly. 

Conclusions 

Representation of lands – in general and in agroforestry, 

specifically – in land-use classification is among the most 

significant challenges that countries face in conducting 

MRV in the agriculture, forestry and land-use sector. A 

challenge for agroforestry is that it occurs on virtually all 

land uses, yet it is not itself considered a land use. 

Without classification schemes and measurement tools 

that specifically assess agroforestry, it is not possible to 

accurately account for the contributions it makes to a 

country’s climate change goals. This is particularly 

problematic for the 40% of countries that have expressed 

intention in their NDCs to rely on agroforestry to help 

reach their goals under the UNFCCC, as well as to the 

numerous countries that suggest agroforestry as one 

solution to forest loss and degradation.  

This effort piloted the use of Collect Earth to identify and 

represent land uses. We had mixed success, as some 

agroforestry systems were easy to identify by photos 

while others were less so. However, Collect Earth is a 

very cost-effective tool for MRV and could be improved 

through the use of experts who have local experience 

with tselect farming systems and through simple 

procedures to improve data collection. In short, the pilot’s 

results show smoke, and with fine tuning we suspect we 

will find fire. 
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