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ARTICLE INFO ABSTRACT

Keywords: Traditional agricultural research and extension relies on replicated field experiments, on-farm trials, and de-
Agricultural R&D monstration plots to evaluate and adapt agronomic technologies that aim to increase productivity, reduce risk,
Spatial framework and protect the environment for a given biophysical and socio-economic context. To date, these efforts lack a

Impact assessment

Seall generic and robust spatial framework for ex-ante assessment that: (i) provides strategic insight to guide decisions
caling out

about the number and location of testing sites, (ii) define the target domain for scaling-out a given technology or
technology package, and (iii) estimate potential impact from widespread adoption of the technology(ies) being
evaluated. In this study, we developed a data-rich spatial framework to guide agricultural research and devel-
opment (AR&D) prioritization and to perform ex-ante impact assessment. The framework uses “technology ex-
trapolation domains”, which delineate regions with similar climate and soil type combined with other bio-
physical and socio-economic factors that influence technology adoption. We provide proof of concept for the
framework using a maize agronomy project in three sub-Saharan Africa countries (Ethiopia, Nigeria, and
Tanzania) as a case study. We used maize area and rural population coverage as indicators to estimate potential
project impact in each country. The project conducted 496 nutrient omission trials located at both on-farm and
research station sites across these three countries. Reallocation of test sites towards domains with a larger
proportion of national maize area could increase coverage of maize area by 79-134% and of rural population by
14-33% in Nigeria and Ethiopia. This study represents a first step in developing a generic, transparent, and
scientifically robust framework to estimate ex-ante impact of AR&D programs that aim to increase food pro-
duction and reduce poverty and hunger.

1. Introduction reducing the environmental footprint for a given biophysical' and
socio-economic context. To date, current efforts lack a generic spatial

Traditional agricultural research and development (AR&D) relies on framework for ex-ante impact assessment that can help guide strategic
field experiments, on-farm trials, and demonstrations to evaluate and decisions about the number and location of testing sites, pilot projects,
promote adoption of agronomic technologies that aim to increase land and scaling out local results to larger spatial areas (Grassini et al., 2017;
productivity and reduce poverty, while improving resilience and Rattalino Edreira et al., 2018). Without such a framework, agricultural
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research largely relies on other criteria, such as proximity to roads or
experimental stations, and often with farmers who are not re-
presentative of the farming population at large (de Roo et al., 2017).
Lack of quantitative tools to extrapolate results to larger areas di-
minishes the capacity to target the right set of technologies to the most
receptive environments and farmers (Byerlee et al., 1988; Harrington
and Tripp, 1984), which in turn would reduce return on investment
(ROI) in AR&D.

Farmers’ typically strive to reduce risk (van Oort et al., 2017) and
maximize net profit by adopting cost-effective management practices
that increase yield and/or input-use efficiency as influenced by the
biophysical and socio-economic contexts (Sumberg, 2012). For rainfed
crop production, response to a “package” of technologies (in terms of
yield and/or input-use efficiency), should be predictable and of rea-
sonably similar magnitude within a spatially defined region with si-
milar weather (van Wart et al., 2013) and soil water holding capacity in
the root zone (Rattalino Edreira et al., 2018). Such a unique combi-
nation of biophysical attributes is called a “technology extrapolation
domain” (TED) (Rattalino Edreira et al., 2018). Use of TEDs can im-
prove efficiency of on-farm field trials and analysis of producer survey
data by increasing the crop area coverage from a fixed number of
testing sites or surveyed regions (Mourtzinis et al., 2018; Rattalino
Edreira et al., 2017, 2018). While we acknowledge other efforts to
delineate domains for technology transfer, we note that most of pre-
vious efforts resulted into spatial frameworks that were too fine (e.g.,
Danvi et al., 2016; Muthoni et al., 2017; Singh et al., 1999) or too
coarse (e.g., FAO, 1978; Fischer et al., 2002; Padbury et al., 2002; Soil
Survey Staff, 2006; Wood and Pardey, 1998) to be useful to inform and
evaluate investments on AR&D in a generic and yet robust way.

Evaluation of the TED framework in the North Central US region
indicated that biophysical variables used to delineate TEDs (root-zone
soil water holding capacity and climate) accounted for much of the
observed variation in crop yields because yield reductions from nutrient
deficiencies and pest damage are relatively small and farmers have
access to cost-effective technologies to avoid them (Grassini et al.,
2014). In developing countries, soil properties other than water holding
capacity may also represent major constraints (e.g., soil acidity or
salinity), as well as socio-economic factors governing access and af-
fordability of required technologies to alleviate them. Hence, TEDs may
require additional specification of such factors to assess the likelihood
of technology adoption, especially in regions where farmers have lim-
ited access to markets, inputs, and extension education, and to quantify
the impact of programs that have an explicit focus on reducing poverty
and malnourishment (Croppenstedt et al., 2003; Nkonya et al., 1997;
Thirtle et al., 2003; https://ccafs.cgiar.org; https://www.usaid.gov). In
other words, a robust spatial framework should be flexible enough to
integrate both biophysical and socio-economic factors to have broad
applicability across a wide range of agricultural systems and environ-
ments, and be useful for ex-ante impact assessment.”

The objective of this study is to present a generic spatial framework
that combines biophysical and socio-economic attributes for ex-ante
impact assessment of AR&D programs. Such a framework has the po-
tential to improve the efficiency and effectiveness of AR&D investments
through identification of highest impact in terms of increasing regional
crop production and lowering risks and, by doing so, contribute to re-
ducing poverty and malnourishment. We highlight the principles that
underpin development of the framework and provide proof of concept
using a nutrient-response trial program in sub-Saharan Africa as a case
study. While we focus on the impact of technologies to close existing
yield gaps, the framework can also be used in programs that aim to
improve input-use efficiency and increase resilience of agricultural

2 Procedure to evaluate the potential impact on system performance (e.g.
yield, income, soil erosion, etc.) from widespread adoption of a new tech-
nology.
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2. Materials and methods
2.1. Framework development

Yield potential is the yield of a well-adapted cultivar when grown
without nutrient limitations and kept free of biotic constraints such as
weeds, diseases, and insect pests (Evans, 1993). Hence, in absence of
these limiting and reducing factors, yield is determined by solar ra-
diation, temperature, and, in the case of rainfed crops, precipitation and
soil properties influencing crop water balance (van Ittersum et al.,
2013). The yield gap is the difference between yield potential and
average farmer yield. It provides a useful indicator to discern changes in
crop productivity due to technology adoption as it accounts for spatial
and temporal variation in the factors that drive yield potential (Lobell
et al., 2009). The yield gap can be interpreted relative to their prox-
imate and ultimate causes (Sadras et al., 2016). For example, in-
sufficient nitrogen (N) supply is a typical proximate cause of yield gaps,
but the underpinning causes may be related to socio-economic factors
such as availability and cost of fertilizer and access to technical in-
formation on how to use it (Gurara and Larson, 2013; van Dijk et al.,
2017). Hence, probability of narrowing the yield gap is greater when a
technology® to remove the proximate cause of the yield gap exists and
the socio-economic environment fosters adoption.

We developed a generic framework (Fig. 1) that builds on the bio-
physical TED framework developed for the Global Yield Gap Atlas
(Rattalino Edreira et al., 2018; http://www.yieldgap.org/web/guest/
czted). Briefly, the TED framework delineates regions with similar cli-
mate and soil water holding capacity (see description below). Here, we
bring other factors into the TED framework, recognizing the importance
of both biophysical and socio-economic conditions in driving tech-
nology adoption and impact in agricultural systems. The framework
allows ex-ante impact assessment using parameters that are relevant to
the goals of a given AR&D program, potentially serving also as a tool for
monitoring and ex-post impact assessment (Grassini et al., 2017).

The proposed framework consists of seven steps (Fig. 1):

Step (1)

Selection of target geographic area (e.g region, country, adminis-
trative unit, agro-ecological zone, etc.), cropping system, and tech-
nology (or suites of technologies) as identified a priori by the AR&D
program and the entities funding the research. Typical funders include
government agencies within a country, development agencies in de-
veloped countries, private sector companies, non-governmental orga-
nizations (e.g environmental advocacy groups), and large charitable
foundations.

Step (2). Mapping of TEDs within the target region

TEDs are delineated based on four key biophysical attributes with
greatest influence on yield potential and yield stability. Three of these
attributes are climate-related parameters that delineate climate zones
(van Wart et al., 2013): (i) annual total growing degree-days (sum of
daily temperature after subtracting a base temperature), which, in large
part, determines the length of crop growing season, (ii) aridity index,
calculated as the ratio between annual precipitation and potential
evapotranspiration, which reflects the degree of water limitation in
rainfed cropping systems, and (iii) annual temperature seasonality,
which differentiates between temperate and tropical climates. A fourth
attribute, plant-available water holding capacity in the rootable soil
depth, determines the capacity of a soil to supply water to support crop
growth during rain-free periods.* Each TED corresponds to a unique

3 Application of knowledge/set of techniques for practical purposes.
“Two of the TED attributes are not as relevant for irrigated agriculture such
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testing
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Fig. 1. A generic framework for ex-ante impact assessment in rainfed crop agriculture. Sequential steps are numbered from one to seven. A detailed description of

each step is provided in the main text. TED: technology extrapolation domain.

combination of these four spatial variables. For example, the TED fra-
mework developed for sub-Saharan Africa (SSA) is shown in Fig. 2. A
detailed description of the TED framework development and validation
is reported elsewhere (Rattalino Edreira et al., 2018; http://www.
yieldgap.org/web/guest/cz-ted).

Step (3). Stratification of TEDs into sub-domains

Technology adoption and impact can be influenced by other factors
besides those used to delineate the TEDs such as soil chemical prop-
erties, terrain slope, farming system, farm typology, and water regime.
For example, adoption of a technology can vary between large and
smallholder farms located within the same TED (Lopez-Ridaura et al.,
2018); in this case, it would be desirable to have two sub-domains to
account for the contrasting farm typology. Likewise, the impact of a
technology on yield can differ markedly across soils with large differ-
ences in pH within the same TED, or within a single farm (Chikowo
et al., 2014; Tittonell et al., 2005) in a region where soil amendments
(such as lime) are not available to modify pH. Hence, if there are other
biophysical and socio-economic factors relevant to the program objec-
tives, creation of “sub-domains” within TEDs may be needed to account
for their influence on technology adoption and impact. The number of
sub-domains, however, should be limited to the most important factors
affecting performance of the crop production system; if too many

(footnote continued)

that the framework can be simplified to exclude soil water holding capacity and
aridity index to evaluate irrigated systems. Hence, the same stepwise process
shown in Fig. 1 could be used with the simplified TED framework for irrigated
agriculture.
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Fig. 2. Technology extrapolation domains (TEDs) in Africa based on both the
climate zone scheme developed by van Wart et al. (2013) and spatial data on
plant-available soil water holding capacity in the root zone from the Africa Soil
Information Service (Leenaars et al., 2018; AfSIS). Each color represents a un-
ique TED, whereas land area in white corresponds to climate zones where major
food crops are not grown (van Wart et al., 2013). Current trial locations of the
Taking Maize Agronomy to Scale in Africa (TAMASA) program are indicated
with white dots in Nigeria (a), Tanzania (b), and Ethiopia (c). The program
focused exclusively on the savanna agro-ecological zone in Nigeria (borders are
shown in black). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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factors are included, representing the range of possible TEDs and sub-
domains becomes unmanageable. These sub-domains may not be spa-
tially explicit within the TEDs as spatial information usually does not
account for micro heterogeneity at field/local level.

Once the target sub-domains are identified, the next question is how
many sites are needed per sub-domain to adequately vet the technology
(ies) being evaluated. More than one site per sub-domain might be
desirable for TEDs with large extent and to account for unintended
failures in the implementation of the program (e.g., trials lost due to
hail or livestock) and for variation in unaccounted factors. Likewise,
number of sites per domain may need further adjustment based on the
uncertainty associated with underpinning climate and soil data used to
develop TEDs and sub-domains (Grassini et al., 2015). As a rule, the
more reliable the underpinning data are, the smaller the number of
required sites. Expert opinion, complemented with analysis of legacy
data, if available, should also help to decide the number of sites per sub-
domain.

Step (4). Characterization of TEDs

The framework is flexible on this step, as the characterization of
TEDs will be based on the program goals, such as poverty reduction,
improved nutrition or soil conservation. Data layers that might be
considered as overlays to the TED framework include crop area, yield
gaps, inter-annual yield variation (i.e., a proxy to climate risk) and
demographic or socio-economic factors such as rural population, pov-
erty, nutritional status, farm size, production objectives, access to
markets, etc.

Step (5). Selection of TEDs and associated sub-domains

Once the TEDs within the target area have been characterized based
on key attributes from step 4, it is possible to rank them from the most
to the least relevant according to the program goals. In many cases, the
number of selected TEDs would be determined by the required number
of sites per sub-domain (step 3) and funding resources available to
support the evaluation. Further refinement may be needed based upon
partner availability and logistics; for example, it may be difficult (if not
impossible) to have sites in extremely remote areas. Likewise, if it is
known that the technology is more likely to work best in specific en-
vironments (e.g., sandy soils in cool environments, or environments
with reliable rainfall) and socio-economic factors that favor adoption
(e.g., access to market), specific regions within a TED zone can be
identified to meet specific criteria. After step (5), the outcome is a list of
TEDs (and associated sub-domains) explicitly selected based on prio-
rities of the research program, conditions under which the technology
(ies) under evaluation are most likely to perform well and be adoptable,
and logistical constraints governing where the trial sites can be estab-
lished.

Step (6). Ex-ante impact assessment at local and regional level

Indicators to evaluate potential impact of a technology may range
from simple calculations of crop area, rural population, and number of
farmers that would be impacted by the program to more specific me-
trics such as the extra crop production that would result from wide-
spread adoption of the technologies being evaluated, or reduction in
poverty and malnourishment to name a few. The framework allows ex-
ante impact assessment across spatial scales from districts to provinces,
states and countries through aggregation procedures developed by the
GYGA project for upscaling estimates of yield gaps (van Bussel et al.,
2015). Combining estimates of impact on yield with economic analysis
of cost and benefits from technology adoption can provide an objective
measure of ROI as well within the same spatial structure.

Step (7) Outcome revision and fine-tuning

Based upon the impact calculated in step (6), it may be necessary to
re-iterate from step (3) to fine-tune site selection and explore different
scenarios. Once the program is established, the framework can be used
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as a tool to monitor impact over time using the same set of indicators
used for the ex-ante evaluation.

2.2. Case study

Hundreds of millions of dollars are invested every year on AR&D
programs in SSA by governments, international donors, and the private
sector (Kassam, 2007; Piesse and Thirtle, 2010; Pardey et al., 2013). We
used the spatial framework to evaluate the potential impact of an on-
going maize agronomy project in SSA as a case study. We used maize as
a case study because: (i) maize accounts for as much as one third of
total caloric intake in some SSA countries (Naylor et al., 2007), (ii)
maize area in Africa is increasing rapidly (from 28 to 41 Mha in the last
decade) (FAO, 2018), and (iii) there is large potential to increase maize
yields through better agronomic management (van Ittersum et al.,
2016). The project “Taking Maize Agronomy to Scale in Africa” (TA-
MASA, http://www.tamasa.cimmyt.org) seeks to improve nutrient use-
efficiency, productivity, and profitability of smallholder maize farmers
in Ethiopia, Nigeria, and Tanzania through development and use of
nutrient management decision support tools. The program conducted
496 on-farm nutrient omission trials to assess nutrient deficiencies and
responses, and to parameterize a decision-support tool for fertilizer
application (Nutrient Expert; http://software.ipni.net/article/nutrient-
expert) (Fig. 2). In 2015, a total of 78, 95, and 323 trials were con-
ducted in Ethiopia, Nigeria, and Tanzania, respectively. In each
country, TAMASA selected sites based on geographic or administrative
areas where suitable partners were available, size of maize production
area, population density (> 25 km™2), and access to market quantified
as distance to market (travel time < 4 h). Sites were selected based on a
stratified sampling of 10 x 10km cells, allocating 10-15 replicated
trials within these areas, following well established protocols (Kihara
et al., 2016; Njoroge et al., 2017). Field sites were selected to represent
a composite index of soil organic matter content (SOC), pH, soil texture,
and cation exchange capacity (CEC). In the case of Nigeria, the program
explicitly focused on the northern Nigerian savanna agro-ecological
zone and selection of the area of interest was constrained to this region
(Shehu et al., 2018). Evaluation of TAMASA trials within the TED fra-
mework found that these trials were located in TEDs that accounted for
22% (Ethiopia) and 75% (Tanzania) of national maize area. In the case
of Nigeria, trials were located in TEDs that account for 74% of the
maize area located within the target agro-ecological zone and 31% of
national maize area.

Current TAMASA's trial site allocation was compared with three
alternative scenarios derived from application of the assessment fra-
mework of Fig. 1 with the goal of achieving greatest impact in terms of
maize area and rural population coverage without increasing number of
sites or, alternatively, achieving the same level of impact with fewer
sites. Following step (2) in our framework, we first disaggregated each
country into TEDs (Fig. 2). Given that one goal of the TAMASA project
is to evaluate yield response to nutrients and design fertilization re-
commendations to reduce the yield gap, we created sub-domains within
TEDs based on two additional soil factors (pH and organic carbon
content [SOC]) following Step 3 of Fig. 1. Among soil fertility factors,
soil pH and organic matter content are known to have a large influence
on yield response to addition of fertilizer nutrients (e.g, Kihara et al.,
2016; Wortmann et al., 2017; Shehu et al., 2018); hence, it is relevant
to consider them when selecting experimental sites. We used gridded
estimates of soil properties (250 x 250 m spatial resolution) for dif-
ferent soil depth intervals (0-5, 5-15, and 15-30 cm; http://www.isric.
org) and calculated a weighted average for the entire (0-30 cm) topsoil
(Fig. 3). Four different soil classes were created (Step 3, Fig. 1) com-
bining two pH categories (< 5.7 and > 5.7) and two categories of SOC
(< 12.5 and > 12.5gkg’1) (Fig. 3). Thresholds were based on ob-
served ranges for these two variables and their influence on crop
growth (Hengl et al., 2015; Kihara et al., 2016; Leenaars et al., 2018;
Shehu et al., 2018; Wortmann et al., 2017). These soil classes were
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mapped to determine those that were predominant in each TED.
However, these sub-domains were not considered spatially explicit for
trial allocation given that local (field to field) variation may not be
properly represented in the maps. While other soil variables may also
influence crop response to fertilizer (e.g., soil texture, CEC), we note
that these variables are highly correlated with plant-available water
holding capacity, pH, or SOC; hence, we did not include them in our
analysis.

From a biophysical perspective, maize area and yield gap (as well as
yield stability) are the most relevant variables to quantify potential
impact of a given technology on maize production. However, high
population density, better access to markets, and growing demand for
livestock products are important drivers for farming system in-
tensification in developing countries and, ultimately, determinants of
technology adoption (Baltenweck et al., 2003; McIntire et al., 1992;
Tesfaye et al., 2015). We note that this assumption may not apply in
countries at a higher level of economic development with adequate
infrastructure, mechanization, and access to markets. However, our
assumption seems reasonable for a case study focused on SSA. Hence,
for simplicity, we used cattle density, rural population, average dis-
tance to markets (as a measure of access to markets), and total maize
area (Step 4, Fig. 1) as metrics to guide site selection and evaluate the
potential impact associated with adoption of improved fertilization
management practices aimed at increasing farmers net income. If other
metrics such as income, farm size, child nutritional status were readily
available within a complementary spatial framework, they too could be
used in the evaluation. Gridded rainfed maize area in each country was
retrieved from MAPSPAM (2005) (You et al., 2017; http://www.
mapspam.info; Fig. 4), which represents the best current available
source of area in SSA by crop type. Gridded data for rural population,
cattle density, and distance to markets (travel time to nearest settle-
ment with population > 20,000) were obtained from the Harvest
Choice database (http://harvestchoice.org; Fig. 4).

We explored three scenarios in which current trial location was
modified by limiting the number of sites per sub-domain and/or re-
allocating some of the existing sites to maximize coverage of maize
production area, rural population, cattle density, and distance to mar-
kets, which are important factors governing adoption of improved
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Fig. 3. Soil pH (top), soil organic carbon (SOC;
middle), and soil classes (pH x SOC combina-
tions; bottom) in the topsoil (0-30cm) for
Nigeria (left), Tanzania (center), and Ethiopia
(right). Each color represents a pH x SOC
combination in the bottom panels. Data source:
http://www.isric.org. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this
article.)

nutrient management (Sadras et al., 2016; van Dijk et al., 2017),
(Fig. 4). Scenario #1 was based on current distribution of trials but used
TEDs and associated sub-domains to determine the number of sites
needed to account for variation in soil classes (i.e., pH x SOC combi-
nations) within each TED. For simplicity, we assumed here that a
minimum number of three sites per sub-domain (i.e., combination of
TED x soil class) is needed for a reasonable estimation of average re-
sponse to fertilizer and its variability. Hence, we first selected those
TEDs that currently have at least one site, and then allocated three
experimental sites per sub-domain (soil class) until covering minimum
90% of total maize area within each TED. Sub-domains that accounted
for a small share of crop area within each TED (< 5%) were omitted.
The objective of this scenario was to evaluate whether current trial
number per TED was excessive or insufficient to represent soil classes.

In scenario #2, sites were selected based only on maize area, ig-
noring proxies for socio-economic factors. We selected TEDs, starting
from the one with largest maize area, allocating three sites per sub-
domain within that TED, and then continued doing this with other TEDs
until reaching the same number of sites as in the current project (i.e.
496). Same criteria as for scenario #1 was used to select/exclude
subdomains within TEDs.

In scenario #3, sites were selected based on both maize area and the
other three factors governing technology adoption. Hence, TEDs were
ranked according to maize area, cattle head density, rural population,
and proximity to markets. Overall ranking of TEDs was obtained based
upon the sum of ranks, from the lowest to the highest values for each
parameter. For simplicity, we assumed all variables to have the same
weight, recognizing that, in reality, some of the variables may be
weighted more heavily (e.g., access to market). We assigned trials into
sub-domains following the same procedure as in scenario #2.

Regional and national maize area and rural population coverage
(Step 6; Fig. 1) were assessed for the current site distribution and for
each scenario, assuming that those two variables are indicators of po-
tential to improve maize production and farm income. For each sce-
nario, ROI was estimated as the ratio between maize area or rural po-
pulation and the total number of trials or their associated cost (in USD).
For this calculation, we used an average cost of USD 360 per trial, in-
cluding field activities, supplies, and data processing, as estimated by
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Fig. 4. Rainfed maize area (a, b, c), rural population (d, e, f), distance to market (g, h, i), and cattle number (j, k, 1) in Nigeria (left), Tanzania (center), and Ethiopia
(right). Some of these factors are co-linear and a correlation matrix table is provided in Table S1.

TAMASA researchers.

3. Results
3.1. Site location and ex-ante impact assessment

Fig. 5 shows the TEDs covered by the current experimental network
and the three scenarios, while the number of sites per TED is shown in
Table 1. Average maize area covered per trial by TAMASA was 5000,
5579, and 6780ha in Ethiopia, Nigeria, and Tanzania, respectively
(Table 1). The current trial network did not cover some important (top
ranked) TEDs and, in some cases, there was only one experiment per
TED (which would be too risky or insufficient to derive strong in-
ferences) or, conversely, too many experiments (more than three per
sub-domain, Supplementary Fig. S2). In the proposed scenarios (#1-3),
this issue was addressed by assigning three sites per selected sub-do-
main, whereas in scenarios #2 and #3, some of the sites were also
reallocated towards more important TEDs (Supplementary Fig. S2 g-1).

In scenario #1, the number of trials could be reduced by 20% in
Ethiopia and still achieve the same maize area and rural population
coverage as with the current site locations (Fig. 5, Supplementary Fig.
S2 f, Table 1). Conversely, total number of sites would increase by 15%
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in Tanzania to meet the requirement of three sites per subdomain
(Supplementary Fig. S2 e). In the case of Nigeria, there was little change
in site number between the current trials and the improved scenario #1,
although variability within each TED is better represented with the
proposed scenario (Supplementary Fig. S2 d). Scenario #2 shows it
would be possible to increase coverage of national maize area
(79-134%) and rural population (14-33%) in Nigeria and Ethiopia,
without increasing current number of sites, simply by reallocating some
trials to other (unrepresented) TEDs with large maize area (Fig. 5,
Supplementary Fig. S2 g-i, Table 1). For example, reallocation of some
of the sites in Ethiopia following scenario #2 allowed representation of
important maize producing areas in the eastern part of the country
(Fig. 5). Conversely, little change was observed for Tanzania in terms of
area coverage increase because major maize producing TEDs are cov-
ered by the current trials.

Site allocation based solely on maize area (scenario #2) changed
little when socio-economic factors were taken into account for site se-
lection in Nigeria and Tanzania (scenario #3). Indeed, 62% and 84% of
selected TEDs in scenario #2 for Nigeria and Tanzania, respectively,
were also selected following scenario #3 (Fig. 5 and Supplementary Fig.
S2). The positive correlation between maize area and socio-economic
related factors (especially rural population density and cattle density)
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Nigeria

Current/Scenario #1

Tanzania Ethiopia

Scenario #2

Scenario #3

Fig. 5. Colored area represents technology extrapolation domains (TEDs) covered with current trial distribution and scenario #1 (upper), scenario #2 (center), and
scenario #3 (bottom) in Nigeria (left), Tanzania (center), and Ethiopia (right). TEDs are based on both the climate zone scheme developed by van Wart et al. (2013)
and spatial data on plant-available soil water holding capacity in the root zone from the Africa Soil Information Service (Leenaars et al., 2018; AfSIS). Each color
corresponds to one TED. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

explained this finding (Fig. 6, Supplementary Fig. S1). Maize is the
major staple food crop in all three countries and it was not surprising to
find such strong correlation. However, selection of TEDs changed more
between scenarios #2 and #3 in Ethiopia (only 50% of selected TEDs in
scenario #2 were also selected in scenario #3) because some maize
producing TEDs in the eastern region were selected at expense of others
in the western region due to more favorable socio-economic context
(Fig. 5). This is consistent with the greater data dispersion around the
regression line observed for the ranking comparison in Ethiopia (Fig. 6).

Changes between current trial location and the three scenarios in
terms of rural population coverage were similar to those reported for
maize area (Table 1). An exception was the observed change between
scenarios #2 and #3 for Nigeria and Ethiopia; in those cases, there was
a substantial improvement in rural population coverage despite crop
area coverage changing little as a result of selecting TEDs with

Table 1

relatively less maize area but higher population density. Considering
crop area coverage and cost per trial for the three countries, current site
location has a ROI of 17 ha per USD, with the alternative scenarios #2
and #3 increasing the ROI up to 22-24 ha per USD. Similarly, in terms
of rural population, current site location reached 279 habitants per
dollar invested. In this case, scenario #3 presented the highest ROI with
370 habitants per USD, while ROI for scenario #2 was 322 habitants
per USD (Table 1).

Site reallocation led to an increase in maize area coverage from
5000 (Ethiopia), 5579 (Nigeria), and 6780 ha (Tanzania) per trial in the
current network to respectively 8269, 12188, and 7222 ha per trial on
average for scenarios #2 and #3 (Table 1; Supplementary Fig. 3).
Changes in ROI in Nigeria and Ethiopia due to site re-allocation was
substantial because of absence of trials in some important maize pro-
ducing TEDs in the current site allocation (Supplementary Fig. S2).

Changes in maize area and rural population coverage for the current site locations (C) and scenarios #1 (S1), #2 (S2), and #3 (S3) in Nigeria, Tanzania, and Ethiopia.
Return on investment is presented as maize area or population coverage per USD. See also Supplementary Fig. 3.

Nigeria Tanzania Ethiopia

C S1 S2 S3 C S1 S2 S3 C S1 S2 S3
Number of trials 95 96 96 96 323 372 324 324 78 63 78 78
Maize area
Total coverage (M ha) 0.53 0.53 1.25 1.09 2.19 2.19 2.39 2.29 0.39 0.39 0.70 0.59
Coverage per trial (ha X 1000) 5.5 5.5 13.0 11.3 6.8 5.9 7.4 7.1 5.0 6.2 9.0 7.6
Coverage per USD (ha) 15 15 36 32 19 16 20 20 14 17 25 21
Rural population
Total coverage (M) 12.6 12.6 16.7 19.9 221 221 23.5 23.4 15.2 15.2 17.3 22.8
Coverage per trial (x 1000) 132 131 174 207 68.4 59.4 72.5 72.2 195 241 222 292
Coverage per USD 368 365 483 576 190 165 201 201 541 670 616 812
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Fig. 6. Ranking of technology extrapolation domains (TEDs) based on maize
area versus overall TED ranking based on both maize area and proxies for socio-
economic factors (rural population, cattle density, and proximity to markets).

Rural population coverage per trial exhibited similar changes to those
reported for maize area (Table 1; Supplementary Fig. 3). Conversely,
site reallocation in Tanzania resulted in a relatively small increase in
maize area and rural population coverage per trial because most im-
portant maize producing TEDs are currently covered, accounting for
75% of national maize area. Hence, limiting experimental sites to most
relevant TEDs in Tanzania may be a much more convenient approach to
increase ROI.

4. Discussion

The spectacular increase in crop production during the Green
Revolution was driven by massive adoption of technological packages
(high-yielding varieties, irrigation, fertilizer, pesticides) that were ef-
fective and predictable at increasing farmer yield and profit across a
wide range of environments (Borlaug, 2007; Evans, 1997). Adoption of
these technologies was facilitated by socio-economic factors such as
better access to markets, subsidies for inputs, extensive capacity de-
velopment, and mechanisms to support grain prices (Pingali, 2012).
While highly successful at increasing crop production, the Green Re-
volution also led to inefficient use of inputs and associated negative
environmental footprint (Pingali, 2012; Tilman et al., 2002). Perhaps
more importantly, finding technologies with consistent impact on yield
and yield stability across environments has become increasingly diffi-
cult, and governments and societies are now more reluctant to support
policies (e.g., subsidies) that facilitate farmer adoption of technologies
(Myers and Kent, 2001). We argue that further increases in crop yields
and input-use efficiencies will require better targeting of improved
technologies to those geographic areas where these technologies are
likely to be adopted and to have the greatest impact. The framework
presented here provides a first step to improve current approaches to
better target and scale out technologies and evaluate their potential
impact.

Better impact assessment, based on extrapolation domains (TEDs)
and other biophysical and socio-economic factors, represents an op-
portunity to improve representativeness and potentially therefore ROI
in AR&D programs as shown for the maize program in SSA in this study.
One of the strengths of this framework is to be able to integrate both
biophysical and socio-economic variables for guiding site selection and
ex-ante impact assessment. In our case study, we proposed an overall
ranking to integrate biophysical and socio-economic factors in order to
orient site selection towards TEDs with large maize areas and/or rural
population coverage and where socio-economic context favors tech-
nology adoption. In practice, there will be a compromise between
within-domain replication and the number of domains, especially
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where, for example, field to field (or even within-field) variation is
known to be large (Tittonell et al., 2007, 2013). In the case of soil
fertility, it is clear that even with > 20 trial sites in a 10 x 10 km pixel
the range of responses cannot be easily captured (Kihara et al., 2016;
Njoroge, 2017). In addition, experience with large numbers of spatially
distributed trials in TAMASA shows that considerable replication is
needed to account for unforeseen loss of trials, especially in more re-
mote locations. Lastly, in the context of using frameworks for scaling
out of technologies or innovations, the institutional context, i.e. the area
of interest of the partner organization(s) doing the scaling, will be
important and incorporating these institutions into the framework de-
cision-making process is a key step. The who and the how, and not just
the what and the where, are also important. Nonetheless, the frame-
work is flexible enough so that the range of variables to be considered
(and their weights) for impact assessment can be accommodated to the
wide range of goals observed across AR&D programs.

Our analysis has focused on increasing representativeness, and po-
tentially ROI, through fine-tuning of site selection at a national level,
treating countries separately due to contrasting biophysical and socio-
economic conditions. However, ROI can further increase if local results
are extrapolated beyond national borders for countries sharing some
TEDs (Omamo et al., 2006; Rattalino Edreira et al., 2018). In other
words, the current trial design could be even more efficient by avoiding
selection of the same sub-domains within TEDs in more than one
country. For example, in scenario #3, it would be possible to reduce the
total number of sites from 496 to 469 by avoiding allocation of sites
into the same sub-domains across countries.

Similarity in selected TEDs with and without considering socio-
economic factors was not surprising as it seems that regions with high
maize area also exhibited high population and cattle density, though
not closer proximity to markets. However, this finding cannot be gen-
eralized as we noted that the ranks used for TED selection may change
depending upon the criteria used to weigh the socio-economic vari-
ables. For example, weighting distance to market more heavily than
population and cattle density would have led to more contrasting re-
sults due to the weaker correlation between maize area and market
proximity compared with correlations among maize area and rural
population and cattle density (average r*: 0.03 versus 0.63; Fig. S1).
Likewise, socio-economic conditions are country-specific and the cor-
relation among them, and with crop area, can change drastically be-
tween countries, especially between developed and developing coun-
tries. For example, maize area and population density are closely
related in SSA but this association becomes very weak in developed
countries as it is illustrated for USA in Fig. 7.

In our case study, for simplicity, we used maize area as a proxy to
estimate potential impact on crop production. However, the current
yield gap could also be used as a proxy in each TED, together with the
expected degree of yield gap closure due to adoption of a particular
technology, for estimating extra potential crop production. Following
this approach, we estimated an extra maize production potential of 2.6
Mt, in TEDs covered with trials, for scenario #3 in Ethiopia. For this
calculation, we used the best available estimates of yield gaps for
Ethiopia (www.yieldgap.org) and assumed that adoption of improved
fertilization practices would increase actual yields to a level of 50% of
water-limited yield potential (from =18% in 2010 as estimated by van
Ittersum et al., 2016). In turn, estimates of extra production potential
would provide a basis to estimate gains in farmer income and improved
diets, which ultimately translate into changes in poverty and nutrition.
Finally, if complemented with measurements of key variables over time
(e.g., actual yields, climate), the yield gap can also be used as an in-
dicator of impact over time, allowing monitoring and ex-post assess-
ment.

This framework has the potential to be applied by a wide range of
users with different objectives. For example, it could be used by private
seed companies seeking greatest crop area coverage when evaluating
cultivars, or by fertilizer supply companies that want to focus on areas
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with high return on farmer investment in increased use of nutrient in-
puts, while being close to markets and located within a large cropping
area. From a different perspective, this framework could also be applied
by governments, policy makers, or charitable foundations seeking to
conduct agricultural research programs to reduce poverty/malnour-
ishment or to identify areas with infrastructure limitations and large
potential for food production (Gurara and Larson, 2013). To sum-
marize, the framework is generic and flexible enough to accommodate
the goals of a wide range of end users, being transparent regarding
assumptions and data sources (and uncertainties). Hence, we believe
that the framework has the potential to make a substantial contribution
to improve investment and prioritization in AR&D, serving as a basis to
estimate the impact on relevant variables such as food production in-
crease and poverty and malnourishment reduction.

5. Conclusions

The spatial framework proposed here proved to be generic and ro-
bust when used for research site selection through maximizing the re-
turn on investment in AR&D programs in relation to explicit perfor-
mance criteria. It acknowledges the importance of both biophysical and
socio-economic related factors influencing technology adoption and
impact, and gives flexibility to add more variables (biophysical, socio-
economic, or both), with a defined weight, depending on user objec-
tives. For these reasons, the proposed framework represents a sig-
nificant step towards better ex-ante assessment of impact from AR&D
programs that focus on food production, poverty reduction and/or
hunger alleviation.
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