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Abstract 
This paper explores whether crop genetic engineering can contribute to addressing food security, as 

well as enhancing human nutrition and farming under a changing climate. The review is based on 

peer-refereed literature, using results to determine the potential of this gene technology. It also 

provides a brief summary of issues surrounding this genetic enhancement approach to plant breeding, 

and the impacts on farming, livelihoods, and the environment achieved so far. The genetic 

engineering pipeline looks promising, particularly for adapting more nutritious, input-efficient crops 

in the development of the world’s farming systems. 
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1. Introduction 
Climate change impacts agro-ecosystems through changes over the long-term in key variables 

affecting plant growth (e.g. rising temperatures) and through increasing the variability (frequency and 

intensity) of weather conditions (rainfall, drought, waterlogging and elevated temperature). These 

changes affect both crop productivity and quality as well as how pathogens or pests attack plants. 

Climate change may disturb food availability, access, and the stability of food supply, which will 

likely differ across regions (Wheeler and von Braun 2013). The changing climate is also likely to alter 

food quality by decreasing protein and micronutrient contents or modifying lipid composition 

(DaMatta et al. 2010). Climate change comes with an additional challenge – the mitigation challenge. 

There is a need to reduce greenhouse gas emissions from agriculture as a contribution to cross-

sectoral efforts to reduce overall global emissions. 

Climate is just one component in an emerging picture of food security concerns in the medium to long 

term. The FAO (2009) estimates that by 2050 we must produce 50-70% more food, due to a 

combination of increasing population and shifts in consumption patterns. Even in the absence of 

climate change, this would be a significant challenge, but recent studies indicate that yields of grains 

could be reduced by about 5 percent for each degree Celsius of global warming (Lobell et al., 2011). 

This presents significant challenges, and whilst much can be done to address these challenges by 

reducing the yield gap, reducing food waste, changing consumption patterns, or increasing the 

effectiveness of food systems, the option of increasing yield potentials through crop improvement is a 

promising avenue to explore (building on the success, and failures, of the green revolution in the 

1960s and 1970s). However, Ray et al. (2013) recently analyzed trends in crop yields over the past 50 

years, and projected likely increases in yield over the next 40 years. They conclude however that 

current “business as usual” yield increases are not sufficient to double production by 2050. Annual 

increases are well below the 2.4% necessary (e.g. just 0.9% for wheat). Hence, new approaches to 

tackle the problem are required. 

As noted by the Crop Science Society of America, new cultivars may provide means to adapt farming 

to the changing climate (Boote et al. 2011). There are two ways to adapt crops to new environments: 

developing new crops (long-term endeavor starting with domestication) or introducing target traits 

into existing crops through plant breeding, which includes genetic engineering. However, the job of 

crop improvement is becoming increasingly difficult. Cultivars are needed that are not only high 

yielding, but are also efficient in use of inputs, tailored to ever more stringent market demands, able to 

maintain stability under increasing climate variability, and potentially contribute to climate mitigation. 

These multi-trait demands for new cultivars provide significant challenges for crop breeders, and 

standard selection approaches struggle under such complexity. 

This paper provides a brief summary of issues affecting the deployment of transgenic crops in farming 

systems, as well as an update on emerging innovative germplasm with desired traits for adapting 

crops to the changing climate, with emphasis on the most important staples. It also presents a 

summary of advances in crop genetic engineering for mitigating climate change and improving 

photosynthesis efficiency. 
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2. The promise of transgenic crops  
Progress in biological sciences benefit from technology advances because the latter “opens up new 

horizons and speeds up discovery by orders of magnitude” (Ehrhardt and Frommer 2012). Plant 

biotechnology, through engineering genetically modified, or transgenic, crops has already led to 

significant impacts on canola (or oil rapeseed), cotton, maize, and soybean farming worldwide. 

Furthermore, in the last 20 years new breeding technologies have emerged, thereby enlarging the 

toolbox for plant breeding (Lusser et al. 2012). They include, among others, the modification of gene 

functions through site-directed mutagenesis, the targeted deletion or insertion of genes into plant 

genomes, or using transgenes to facilitate the breeding process. 

A recent meta-analysis reveals that transgenic cotton and maize with insect resistance (due to the Bt 

gene), and transgenic soybean with herbicide tolerance appear to out-yield their conventional 

counterparts in agronomic and economic (gross margin) terms (Areal et al. 2012). Bt-crops perform 

well in the developing world, with Bt-cotton becoming particularly profitable. The net economic 

benefits of transgenic crops at the farm level were US$ 19.8 billion in 2011 and have been US$ 98.2 

billion (in nominal terms) in the period 1996, when farmers started using them, to 2011 (Brookes and 

Barfoot 2013). Farmers in the developing world captured a good portion of these gains (51.2%). The 

cultivation of transgenic crops increased global production of canola, cotton, maize, and soybean 

since their introduction to farming systems in the mid-1990s, e.g. 195 million and 110 million t of 

maize and soybean grains, respectively. Farmers adopting transgenic crops can also reduce their 

production costs by lowering pesticide use, labor, and fuel costs (Kaphengst et al. 2010). Demont and 

Stein (2013) estimated the impact of forthcoming transgenic rice at US$ 64 billion per year. The 

transgenic rice in the pipeline includes traits such as insect resistance, herbicide tolerance, enhanced 

adaptation to drought and salinity, and increased β–carotene content. 

Transgenic crops provide the means for adapting crops to climate change, particularly in terms of 

drought and salinity. Transgenic crops can also contribute to climate change mitigation efforts by 

reducing input use intensity (Lybbert and Sumner 2011). The integration of genetic engineering with 

conventional plant breeding, within an interdisciplinary approach, will likely accelerate the 

development and adoption of crop cultivars with enhanced adaptation to climate change-related 

stresses (Varshney et al. 2011).   

3. Issues to be considered when deploying transgenic crops 
The extent and complexity of biosafety, food safety, and other regulations regarding the use of 

transgenic crops may, however, limit their impacts in farms and livelihoods. For example, EU 

regulations severely affect the use of transgenic crops, thereby leading to € 443 and € 929 million of 

annual revenue foregone by farmers because transgenic crops with herbicide tolerance or insect 

resistance, respectively, cannot be grown (Park et al. 2011) (this covers transgenic canola, cotton, 

maize, soybean, and sugar beet). 

Biosafety 

Irrespective of the ex-post or ex-ante impact assessments indicated above, issues have been raised 

regarding the safety of foods derived from transgenic crops and their potential threat to biodiversity 

and the environment.  
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Transgenic crops and their derived products are evaluated on a case-by-case basis for food safety, 

allergenicity, and nutritional composition, among other factors. As stated by Lemaux (2008) available 

transgenic crops were released after extensive checking by regulatory agencies in the countries where 

they are grown. The literature regarding food safety assessment has significantly increased since 2006 

(Domingo and Bordonaba 2011). Long-term (> 90 days and up to 2 years in duration) and multi-

generational (2 to 5 generations) research concerning the effects of diets containing items derived 

from transgenic maize, potato, rice, soybean or triticale on animal health did not suggest any health 

hazards (Snell et al. 2012). Animal feeding trials also show that transgenic crops are nutritionally 

equivalent to their non-transgenic counterparts and can be safely used. Furthermore, Herman and 

Price (2013) indicated that any unintended chemical composition of crops that could be caused by 

genetic engineering has not materialized after analyzing literature from 20 years of research. They 

further pointed out that compositional equivalence research1 required only for transgenic crops does 

not seem to be defensible if claiming scientific uncertainty. The commercialized transgenic crops and 

their derived products are at least as safe (as food) as those produced through conventional breeding. 

Environment  

One of the most important issues raised regarding transgenic crops relates to the impact of their 

genotype and phenotype on the environment (Lemaux 2009). There are some concerns that transgenic 

crops in farming systems may affect biodiversity and non-target organisms, or that their use could 

lead to new strains of pathogens and pests (a claim that could also apply to conventional breeding of 

host plant resistance). Transgenic crops may, however, contribute to more sustainable farming. For 

example, a life cycle assessment shows that transgenic sugar beet that tolerates herbicide would be 

less harmful to the environment than the conventional crop because of the lower emissions from 

herbicide manufacture, transport, and field operations (Bennet et al. 2004). Moreover, Brookes and 

Barfoot (2012a) indicated that transgenic crops grown by farmers were able to lower pesticide 

spraying by 443 million kg (9.1%) of active ingredients, thereby decreasing the environmental impact 

associated with herbicide and insecticide use by 17.9%. These authors also highlight that transgenic 

crops significantly reduced the release of greenhouse gas emissions from their cropping area, which 

was equivalent, in 2010, to removing 8.6 million cars from the roads. 

Transgenic crops with enhanced adaptation to abiotic stress-prone environments, resulting from 

climate change, may require an updated assessment framework for their regulatory approval2 because 

they pose new questions regarding safety and impact (Ortiz et al. 2007). For instance, the use of 

regulatory genes3 in crop genetic engineering may lead to a cascading effect on various gene 

pathways. This differs from the first generation of transgenic crops based on a one gene-one product 

system. A new framework will need to consider the composition of transgenic plants versus their non-

transgenic counterparts under the target abiotic stress, and the impact of regulatory genes on human 

health and the environment. For example, new phenotypes resulting from transgenic technology for 

abiotic stressful environments may result in increased competitiveness due to transgene flow into wild 

populations or may result in escapes of target crops to other environments, where the escapees 

become weeds. 

                                                      

1 Extensive research comparing the chemical composition, nutritional quality and any levels of potentially toxic 

components of conventional crop and its transgenic counterpart 
2 To control or direct as per guidelines or law 
3 A regulatory gene controls the expression of other gene(s) by encoding a protein or acting at the RNA level 
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Intellectual property 

Some activists are accusing the multinational private seed sector of “patent grab” on “climate ready” 

crops (etc Group 2010). They base their views on the accelerated pace for patenting adaptation-related 

biotechnology, which increased from less than 10 in 1995 to almost 200 in 2007 (Agrawala et al. 

2012). Patents are, however, an indicator for innovation in agro-biotechnology – they can be used as a 

proxy for assessing inventive capacity. 

As noted by Cohen (2005), vibrant knowledge- and resource-intensive public research seems to be 

leading the development of transgenic crops in the developing world. Likewise, user-led 

philanthropy-private-public partnerships could assist the development and deployment of transgenic 

crops in the developing world. This is shown by the Water Efficient Maize for Africa (WEMA) 

project, now in its second 5-year phase. WEMA seeks solutions for improving maize in the drought-

prone environments of the continent (http://wema.aatf-africa.org). This project involves African 

public and private organizations, the multinational seed sector, a Center of the CGIAR Consortium, 

and philanthropy. It aims to make available to smallholder farmers through the African-based seed 

sector new royalty-free crop cultivars with enhanced adaption to drought-prone environments, 

initially in Kenya, Mozambique, South Africa, Tanzania and Uganda. Each country will assess the 

benefits and safety of transgenic maize cultivars following their own approved regulatory framework. 

Maize with enhanced adaptation to drought-prone environments will bring significant economic 

benefits to African farmers. LaRovere et al. (2010) indicated that the potential impacts of maize-bred 

cultivars with enhanced adaptation to drought-prone locations in Angola, Benin, Ethiopia, Ghana, 

Kenya, Malawi, Mali, Mozambique, Nigeria, Tanzania, Uganda, Zambia, and Zimbabwe ranges from 

US$ 50 to 90 million per annum, assuming most likely adoption rates (based on previous research and 

expert advice), and either 3–20% or 10–34% grain yield gains, respectively. Under the more 

optimistic grain yield gains, about 4 million people (particularly in Nigeria, Malawi and Kenya) can 

be relieved of poverty.  

Bioethics 

Some activists claim that climate-ready transgenic crops will increase farmers’ dependence on such 

crops, jeopardize biodiversity, and threaten food sovereignty (etc Group 2010). This view contrasts 

with that of many scientists involved in plant genetic engineering who see their new crops being used 

in stressful areas, thereby allowing resource-poor farmers to have harvests in most years, ultimately 

improving food security, and increasing opportunities to enter the market economy. As indicated by 

Farre et al. (2010), smallholders may not benefit from transgenic crops if the major barriers for their 

adoption are not overcome. Some of these barriers are political rather than technical. 

4. Adapting crops to new climates through transgenic 

breeding 
Genotypic and phenotypic plasticity4 affect crop adaptation to a given environment (Abberton et al. 

2008). Genotypic plasticity depends on the survival of genotypes in a population while phenotypic 

                                                      

4 Genotypic plasticity refers to epigenetic and genetic changes transmitted to the offspring, while the ability to 

change the phenotype as a response to changes in the environment has been named phenotypic plasticity 

http://wema.aatf-africa.org/
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Environmental_change
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plasticity results from the interaction between genotypes and the environment. Understanding plant 

phenotypic plasticity to the changing environment will be key to predicting and managing climate 

change effects on crops (Nicotra et al. 2010). Genome-wide analysis (GWA)5 in the model plant 

species Arabidopsis thaliana6 led to identifying genomic sites related to climatic adaptation 

(Savolainen 2011). For example, GWA by Hancock et al. (2011) revealed a set of candidate genes for 

climate change adaptation through genetic engineering.  

An interdisciplinary perspective (which includes ecology, evolution, genetics, genomics, physiology 

and molecular biology, among others) will assist in further deepening the knowledge about plant 

phenotypic plasticity in a changing climate. Nicotra et al. (2010) list leaf mass per unit area, stomata 

size and density, height at maturity, flowering time plus size at maturity and phenology, and seed size 

and number among the key functional traits for investigating plant phenotypic plasticity to climate 

change. 

Bhatnagar-Mathur et al. (2007) suggested that genetic engineering could accelerate plant breeding for 

adapting crops to stressful environments. They further underline that engineering the regulatory 

machinery involving transcription factors (TF)7 provides the means for controlling the expression of 

many stress-responsive genes. There are various target traits for adapting crops – through genetic 

engineering – to high CO2 and high O3 environments of the changing climate (Ainsworth et al. 2008). 

Ortiz (2008), Jewell et al. (2010) and Dwivedi et al. (2010, 2013) provide the most recent overviews 

on research advances in genetic engineering for improved adaptation to drought, salinity or extreme 

temperatures in crops. The most cited include TF, and genes involved in (a) signal sensing, 

perception, and transduction (STP), (b) stress-responsive mechanisms for adaptation and (c) abscisic 

acid (ABA) biosynthesis for enhanced adaptation to drought. Transporter, detoxifying and signal 

transduction genes as well as TF are cited for tolerance to salinity. Genes related to reactive oxygen 

species (ROS), membrane and chaperoning modifications, late abundance embryogenesis (LEA) 

proteins, osmoprotectants/compatible solutes and TF are pursued in crop genetic engineering for 

temperature extremes.  

Improving days to flowering and root systems are not among priority target traits but facilitate crop 

adaption to climate change; i.e., they are characteristics with co-benefits for enhancing crop 

performance under a changing climate.  More research is needed to identify other plant traits that will 

enable crops to produce yields under changing climates, thereby increasing their adaptive capacity.  

Drought 

Duration and intensity of drought has increased in recent years, consistent with expected changes of 

the hydrologic cycle under global warming. Drought dramatically reduces crop yields. The yield 

response factor (Ky) can quantify the effects of water deficit on crop growth because it captures the 

essence of the complex linkages between production and water use by a crop, in which many 

biological, physical and chemical processes are involved (Steduto et al. 2012). Table 1 summarizes Ky 

values for several crops. They vary from very sensitive crop responses to water deficits (Ky>1), yield 

                                                      

5 Research for identifying the association of a genetic variant with trait diversity 
6 Thale or mouse-ear cress has been extensively used in research to understand particular traits and their genetics 

or physiology, with the aim that findings in this model plant will give insights into crops 
7 A protein binding specific DNA sequences and thereby governing the flow of genetic information from DNA 

to messenger RNA 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Messenger_RNA
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reduction directly proportional to reduced water use (Ky=1) and more tolerant to water deficits (Ky<1) 

Table 1. Seasonal yield response factor (Ky) clusters for various crops (After Steduto et al. 2012) 

Ky Response to water deficit Crops 

 

> 1 

 

Very sensitive 

Alfalfa, banana, bean, maize, onion, pea, 

pepper, potato, sugarcane, tomato, 

watermelon, wheat 

= 1 Yield reduction directly proportional 

to reduced water use 

 

Sugar beet 

 

> 1 

 

More tolerant 

Cabbage, cotton, groundnut, safflower, 

sorghum, soybean, sunflower 

 

Knowledge about molecular responses of plants to drought stress could assist in breeding transgenic 

crops that withstand water scarcity. Research on Arabidopsis thaliana found key physiological traits 

involved in plant–water relations underlying drought stress responses, but understanding the complex 

genetic architecture of enhanced adaptation to drought seems to be in its infancy (Juenger 2013). Very 

recently Bhardwaj and Yadav (2012) did a thorough review of mechanisms adopted by plants to 

escape, avoid or adapt to drought stress. They stated that enhanced adaptation to drought could be 

provided directly by metabolites such as trehalose, mannitol, glycinebetaine or indirectly through 

regulation of gene expression through TF and kinases in signal transduction. 

Genetic engineering may be one of the biotechnology tools for developing crop cultivars with 

enhanced adaptation to drought (Ruane et al. 2008). It should be seen as complementary to 

conventional plant breeding rather than as an alternative to it. The function of a TF such as the 

Dehydration-Responsive Element Binding (DREB) gene in water stress-responsive gene expression 

has been extensively investigated (Sakuma et al. 2006). The main research goal was to gain a deep 

understanding of this TF for developing transgenic crops targeting drought-prone environments (Ortiz 

et al. 2007). For example, the DREB1Agene was placed under the control of a stress-inducible 

promoter from the rd29Agene and inserted via biolistic transformation8 into bread wheat 

(Pellegrineschi et al. 2004). Plants expressing this transgene demonstrated significant adaptation to 

water stress when compared to controls under experimental greenhouse conditions as manifested by a 

10-day delay in wilting when water was withheld. Saint Pierre et al. (2012) indicated, however, that 

these transgenic lines did not generally out-yield the controls under water deficit in confined field 

trials. Nonetheless, they were able to identify wheat lines combining acceptable or high yield under 

enough irrigation that also showed stable performance across the water deficit treatments used in their 

experiments; i.e., severe stress, stress starting at anthesis, and terminal stress.  

Farooq et al. (2009) discuss the advances in transgenic breeding for drought-prone environments. In 

their review, they noted the testing of 10 transgenic rice events9 under water scarcity. It seems that the 

transgenic expression of some stress-regulated genes leads to increased water use efficiency (WUE)10. 

                                                      

8 Biolistic transformation (also known as particle bombardment) refers to DNA delivery into plant cells by high 

velocity gold or tungsten particles 
9 Unique DNA recombination taking place in one plant cell and thereafter to be used for generating entire 

transgenic plant(s) 
10WUE is the ratio of biomass produced to the water used 
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For example, the Arabidopsis’ HARDY (HRD) gene improved WUE by enhancing photosynthetic 

assimilation and reducing transpiration (Karaba et al. 2007). The enhanced photosynthesis 

assimilation and efficiency observed in transgenic rice bearing this gene seems to result from an 

increase of both leaf biomass and bundle sheath cells. This finding shows the benefits of using a plant 

model system as source of variation for crop breeding. Likewise, this research suggests that exploring 

genetic engineering to improve photosynthesis in a C3 crop such as rice using C4 traits could be 

beneficial (further details are given below in Section 6). 

Drought affects maize throughout its life cycle but mostly when stress occurs before and after 

flowering. Nelson et al. (2007) used functional genomics to identify the transcription factor AtNF-

YB1, which confers enhanced adaptation to Arabidopsis under drought. Thereafter, their 

bioinformatics11 analysis led to identifying maize homologs to this TF. They selected ZmNF-YB2 for 

genetic engineering it into an elite maize inbred. Transgenic maize lines showed enhanced adaptation 

to drought as measured by their chlorophyll content, stomatal conductance, leaf temperature, reduced 

wilting, and maintenance of photosynthesis. Enhanced adaptation to the stress translated into grain 

yield advantage under drought. The best-performing transgenic maize had about 50% increase in 

grain yield vis-à-vis the controls, whose grain yields were 50% below that expected under full 

watering.  

Further research by a multinational seed company (Castiglioni et al. 2008) showed that bacterial RNA 

chaperones12 also provide enhanced adaption to drought stress and improved grain yield in maize 

under water scarcity. The gene encoding cold shock protein B (CspB) from Bacillus subtilis – a soil 

bacterium – was used for genetic engineering MON 87460 maize. CspB allows the transgenic maize 

plant to react more quickly to drought, slowing its growth and conserving water, thereby making 

water available for key plant functions after the onset of drought stress. Based on this transgenic 

event, the DroughtGard™ hybrid maize was bred and released for farming in the USA in 2013.13 Prior 

to the release, the company facilitated 250 large-scale on-farm trials (on about 4000 ha) of 

DroughtGard™ in the western half of the US Great Plains. Under stress, a DroughtGard™ hybrid 

used 261 mm of water from the soil while the control used 338 mm of water from the soil; i.e., their 

WUE rates (or the amount of water for producing 1 bushel or 25.4 kg of maize grains) were 0.59 and 

0.44, respectively. At harvest, DroughtGard™ had more grain yield than non-transgenic maize 

hybrids with enhanced WUE (up to 0.4 t ha-1 greater in some locations of the western Great Plains). In 

theory, DroughtGard™ can save about 2.5 mm of water inputs per hectare; i.e., 5 trillion liters of 

water, which translates to providing water to the US city of Denver (Colorado) for one month. 

The public Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional 

(CINVESTAV, Mexico) announced in 2010 the development of cisgenic14 maize with enhanced 

adaptation to severe drought and extreme temperatures15. Under drought stress a maize plant begins 

                                                      

11 Collection, classification, storage, and analysis of complex biochemical and biological information related to 

molecular genetics and omics using computers and based on mathematics and information theory 
12 Proteins aiding in the process of RNA folding by preventing misfolding or by resolving misfolded structures 
13http://www.genuity.com/corn/Pages/Genuity-DroughtGard-Hybrids.aspx or 

http://www.monsanto.com/products/Pages/droughtgard-hybrids.aspx 
14 Cisgenic plants ensue from genetic engineering using a natural gene from a crossable (i.e., sexually 

compatible) species in the recipient plant 
15http://www.2000agro.com.mx/biotecnologia/el-cinvestav-crea-maiz-resistente-a-sequia-y-temperaturas-

extremas/ 

http://www.monsanto.com/products/Pages/droughtgard-hybrids.aspx
http://www.genuity.com/corn/Pages/Genuity-DroughtGard-Hybrids.aspx
http://www.monsanto.com/products/Pages/droughtgard-hybrids.aspx
http://www.2000agro.com.mx/biotecnologia/el-cinvestav-crea-maiz-resistente-a-sequia-y-temperaturas-extremas/
http://www.2000agro.com.mx/biotecnologia/el-cinvestav-crea-maiz-resistente-a-sequia-y-temperaturas-extremas/
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producing sugars such as trehalose, which can be broken by the glycoside hydrolase enzyme 

trehalase. When this sugar is not destroyed, the plant shows enhanced adaptation to drought stress. 

Hence, antisense RNA expression was used for silencing trehalase in the popular maize inbred line 

B73 (derived from Iowa Stiff Stalk Synthetic), which was used in the public maize sequencing project 

and has been one of the most successful parents of North American and other hybrids worldwide. The 

CINVESTAV announcement indicated that their cisgenic maize (CIEA-9) required 20% less water, 

endured high temperatures (up to 50°C), and had better flowering plus ears than local cultivars. CIEA-

9 seeds also germinated at 8°C, demonstrating their ability to withstand cold at early development 

stages. Due to these promising results, CINVESTAV filed a petition for field-testing of CIEA-9 

(Cabrera Ponce et al.  2011), and trials are ongoing in Sinaloa (northwest Mexico).  

Salinity 

Soils affected by salinity are found in more than 100 countries, and about 1/5 of irrigated agriculture 

is adversely affected by soil salinity. Therefore, breeding salt-tolerant crops should be a priority 

because salinity will likely increase under climate change. Mumms (2005) lists some candidate genes 

for salinity tolerance, indicating the putative functions of these genes in the specific tissues in which 

they may operate. Genes involved in tolerance to salinity in plants limit the rate of salt uptake from 

the soil and the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells in 

roots and shoots, and regulate leaf development and the onset of plant senescence. The most 

promising genes for the genetic engineering of salinity tolerance in crops, as noted by Chinnusamy et 

al. (2005), are related to ion transporters and their regulators, as well as the C-repeat-binding factor. 

The recent genome sequencing of Thellungiella salsuginea, a close relative of Arabidopsis thriving in 

salty soils, will provide more resources and evidence about the nature of defense mechanisms 

constituting the genetic basis underlying salt tolerance in plants (Wu et al. 2012).  

Advances have occurred in the quest for breeding transgenic rice and tomato showing salt tolerance. 

Plett et al. (2010) were able to show an improved salinity tolerance in rice by targeting changes in 

mineral transport. They initially observed that cell type-specific expression of AtHKT1;1 – a sodium 

transporter – improved sodium (Na+) exclusion and salinity tolerance in Arabidopsis. Further research 

explored the GAL4-GFP enhancer trap16 to drive expression of AtHKT1;1 specifically in the root 

cortex in transgenic rice plants. The transgenic plants had a higher fresh weight under salinity stress 

due to a lower concentration of Na+ in the shoots. They also noted that root-to-shoot transport of 22Na+ 

decreased and was correlated with an upregulation of OsHKT1;5 – the native transporter responsible 

for Na+ retrieval from the transpiration stream. Moghaieb et al. (2011) bred transgenic tomato plants 

producing ectoine – a common compatible solute in bacteria living in high salt concentrations. 

Ectoine synthesis was promoted in the roots of transgenic tomato plants under saline conditions, 

which led to increased concentration of photosynthates in improving water uptake. Likewise, the 

photosynthetic rate of ectoine-transgenic tomato plants increased through enhancing cell membrane 

stability in oxidative conditions under salt stress. 

Heat 

Global warming will reduce yields in many crops: about 6% and 5% average yield loss per 1°C in C3 

and C4 crops, respectively, whose optimum temperature ranges are 15–20°C and 25–30°C (Yamori et 
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al. 2013). The extent of yield loss depends on crop, cultivar, planting date, agronomy and growing 

area. For example, an increase of 1°C in the night time maximum temperature translates into a 10% 

decrease in grain yield of rice, whereas a rise of 1°C above 25°C shortens the reproductive phase and 

the grain-filling duration in wheat by at least 5%, thereby reducing grain yield proportionally. Heat 

stress will exacerbate climate change impacts in the tropics, while it may put agriculture at risk in 

high latitudes where heat-sensitive cultivars are grown today. Hence, new cultivars must be bred to 

address heat stress. 

Ainsworth and Ort (2010) suggested giving priority to traits improving photosynthesis for adapting to 

heat stress. However, plants have various mechanisms to cope with high temperatures, e.g. by 

maintaining membrane stability, or by ion transporters, proteins, osmoprotectants, antioxidants, and 

other factors involved in signaling cascades and transcriptional control (Wahid et al. 2007; 

Hasanuzzaman et al. 2013). Furthermore, Gao et al. (2008) noted that bZIP28 – a gene encoding a 

membrane-tethered TF – upregulated17 in response to heat in Arabidposis. Some of these genes can be 

used in crop genetic engineering for enhancing plant adaptation to heat stress. For example, some 

stress-associated genes such as ROB5 – a stress inducible gene isolated from bromegrass – enhanced 

performance of transgenic canola and potato at high temperatures (Gusta 2012). Likewise, Katiyar-

Agarwal et al. (2003) introduced hsp101–a heat shock protein gene from Arabidopsis – in basmati 

rice. This transgenic rice had a better growth in the recovery phase after suffering heat stress. 

5. Mitigating climate change through transgenic crops 
Agriculture contributes significantly to greenhouse gas (GHG) emissions. As indicated by Philippot 

and Hallin (2011), plant breeding should therefore give priority to developing cultivars that can be 

used in farming systems with reduced GHG emissions. In this regard, transgenic crops have been 

contributing to lower GHG emissions through reducing fuel use, due both to less pesticide 

applications and increasing the area grown under conservation agriculture, which involves practices 

such as “no-till” or “reduced-till”. Brookes and Barfoot (2012b) estimated that farming with 

transgenic crops since 1996 has led to additional soil carbon sequestered, equivalent to 133,639 

million t of CO2. Likewise, transgenic poplar trees overexpressing cytochrome P4502E1 – a key 

enzyme in the metabolism of a variety of halogenated compounds – increased the rates of metabolism 

and removal of volatile environmental pollutants such as hydrocarbons, including trichloroethylene, 

vinyl chloride, carbon tetrachloride, benzene, and chloroform (Doty et al. 2007). 

Nitrous oxide and dioxide are potent GHGs released by manure or nitrogen (N) fertilizer, particularly 

in intensive cropping systems. Crops are bred for N-use efficiency (NUE) because this trait is a key 

factor for reducing N fertilizer pollution, improving yields in N-limited environments, and reducing 

fertilizer costs. There are various genetic engineering activities for improving NUE in crops (Shrawat 

and Good 2008). The gene Alanine aminotransferase from barley, which catalyzes a reversible 

transamination reaction in the N-assimilation pathway, seems to be a promising candidate for 

accomplishing this plant breeding target. Transgenic plants overexpressing this enzyme can increase 

N-uptake at early stages of growth. This gene technology was licensed to a private biotech company, 

which was founded with the aim of promoting sustainable agriculture (Daemrich et al. 2008). A patent 

issued a few years ago gave this company the rights to use this gene technology in major cereals – 
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wheat, sorghum, rice, maize and barley – as well as in sugarcane. They have been testing the 

technology with rice in China, and researching further with rice and wheat in India, and assessing its 

value for maize and rice in sub-Saharan Africa through private-public partnerships.  

Keeping N in ammonium form will affect how N remains available for crop uptake and will improve 

N-recovery, thus reducing losses of N to streams, groundwater and the atmosphere.  There are genes 

in tropical grasses such as Brachiaria humidicola and in the wheat wild relative Leymus racemosus 

that inhibit or reduce soil nitrification18 by releasing inhibitory compounds from roots and suppressing 

Nitrosomonas bacteria (Subbarao et al. 2007). Their value for genetic engineering crops for reducing 

nitrification needs to be further investigated. Almost one-fifth of global methane emissions are from 

enteric fermentation in ruminant animals. Apart from various rumen manipulation and emission 

control strategies, genetic engineering is a promising tool to reduce these emissions. The amount of 

methane produced varies substantially across individual animals of the same ruminant species. Efforts 

are ongoing to develop low methane-emitting ruminants without impacting reproductive capacity and 

wool and meat quality. A recent study to understand why some sheep produce less methane than 

others, by Rubin et al (2014), deployed high-throughput DNA sequencing and specialized analysis 

techniques to explore the contents of the rumens of sheep. The study showed that the microbiota 

present in sheep rumen was solely responsible for the differences among low and high methane-

emitting sheep. It was further observed that the expression levels of genes involved in methane 

production varied more substantially across sheep, suggesting differential gene regulation. There is an 

exciting prospect that low-methane traits can be slowly introduced into sheep.  

6. Re-engineering cereal photosynthesis 
Photosynthesis involves the use of the sun’s energy to obtain sugar and oxygen after binding CO2 and 

water. There are two types of photosynthesis in the major crop species: C3 and C4. In C3 

photosynthesis CO2 is first incorporated into a 3–carbon compound and the photosynthesis enzyme 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is involved in CO2 uptake. In C4 

photosynthesis CO2 is first incorporated into a 4–carbon compound and phosphoenolpyruvate 

carboxylase (PEP) is the enzyme involved in the uptake of CO2. C4 photosynthesis occurs in inner 

cells and requires the special Kranz anatomy, while C3 photosynthesis takes place throughout the leaf. 

Photosynthetic efficiency in C4 species (maize, sorghum, sugar cane) can exceed that of C3 species 

(rice, wheat) by up to 50% at temperatures above 21 to 23°C. This is due to photorespiration 

suppression in the former. C3 plants are well adapted to environments with cool temperatures. Genetic 

engineering C4 photosynthesis into C3 plants has been advocated to improve photosynthetic efficiency 

(Hibberd et al. 2008), which should translate into increasing biomass and grain yields per unit of 

water transpired. Ghannoum (2009) warns, however, that C4 photosynthesis is highly sensitive to 

water stress (more so than C3 photosynthesis). Another genetic engineering approach considers 

introducing components of a high efficient CO2-concentrating mechanism from blue-green algae 

(cyanobacteria) into chloroplasts of C3 plants. Mathematical modeling suggests that photosynthesis 

may improve up to 28% by introducing single-gene cyanobacterial bicarbonate transporters BicA and 

SbtA into C3 chloroplasts (Price et al. 2013).   
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There have been many attempts at introducing transgenes into nuclear and plastid genomes to increase 

photosynthetic efficiency (Maurino and Weber 2013). This very ambitious genetic engineering 

undertaking may prove to be very difficult – introducing C4 photosynthetic enzymes and changes in 

leaf anatomy and biochemistry into C3 species will depend on several hundred genes. Denton et al. 

(2013) indicate that the genetic basis of C4 photosynthesis remains mostly unknown, but there are 

some advances in understanding it through comparative genetic analysis of C3 and C4 species 

facilitated by the completion of their genome sequencing. 

Manipulating Rubisco19 has been regarded as a primary target for enhancing photosynthesis, thus 

improving both crop yield and input efficiency (Parry et al. 2013). Mathematical modeling suggests 

that genetic engineering plants expressing different types of Rubisco in sunlit and shade leaves may 

maximize C gains at current and elevated CO2 levels (Zhu et al. 2004). Hanson et al. (2013) give an 

overview on manipulating Rubisco properties through plastid genetic engineering and how plastid 

operons could be changed for expressing various genes involved in pathways or controlling enzymes 

enhancing photosynthetic rates or reducing photorespiration. 

7. Beyond climate change adaptation and mitigation: the 

transgenic pipeline 
In spite of the positive impacts of farming transgenic crops, there are few transgenic traits and 

cultivars used commercially (Lemaux 2006). Herbicide tolerance, host plant resistance to insects and 

viruses, crop nutrient composition, and extended shelf life were the main traits of the first generation 

of approved transgenic cultivars. These included transgenic cultivars of alfalfa (lucerne), canola, 

cotton, eggplant, maize (including sweet corn), papaya, potato, rice, squash, soybean, sugar beet, and 

tomato. The newest release includes enhanced maize adaptation to drought-prone environments. A 

very recent e-conference convened by the United Nations Food and Agriculture Organization (FAO) 

highlighted some of the traits and crops in the genetic engineering pipeline ensuing from both private 

and public endeavors targeting the developing world (Ruane 2012). Traits are related to host plant 

resistance to pathogens (bacteria, fungi, nematodes, viruses) and insects, tolerance to herbicides, 

enhanced food and feed quality (β-carotene, fatty acid profiles, high lysine, low phytate content), 

enhanced adaptation to stressful environments (due to drought, heat and salinity), and improved input 

efficiency (nitrogen, water). Crops covered include banana, bean, cabbage, canola, cassava, chickpea, 

cotton, cowpea, eggplant, groundnut (peanut), maize, potato, rice, pigeonpea, sorghum, soybean, 

sugarcane, and wheat. Tammisola (2010) indicated that the global biofuel demand may pave the way 

for further use of genetic engineering for improving bio-energy crops and tapping the crop wild 

relatives gene reservoir.  

Governments will play, through their regulation guidelines, a major role in determining whether or 

not some of these transgenic crops become new cultivars in farming systems. Stein and Rodríguez 

Cerezo (2009) argued that since each country regulates transgenic crops at its own pace and using its 

own rules, the global trade of such crops will be likely affected by this asynchronous approval system.  
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Functional foods for enhancing human health and better feed 

sources 

Crop genetic engineering can deliver food with human health benefits beyond basic nutrition (Pew 

Initiative on Food and Biotechnology 2007). The targets include micronutrient-dense crops, increased 

protein content in main staples, oil crops with healthy fatty acid profiles, foods with enhanced 

antioxidant levels, and better dietary fibers and prebiotic/probiotics (Newell-McGloughlin 2008). As 

indicated by Goldman (2011), the interest in functional foods20 coincides with an increasing consumer 

demand for healthy and nutritious food. The use of genetic engineering in producing functional foods 

does not challenge current regulatory frameworks per se, but it may expose some regulatory 

classification boundaries. 

There have been significant advances in developing rice with enhanced β-carotene content (Datta et al 

2007). This Golden Rice (as popularly known) ensues from incorporating transgenes for 

carotenogenesis in grains without changing other agronomic traits. Current versions of Golden Rice 

are based on a transgene from maize and thus represent a transgenic event between two cereals that 

are relatively closely related in an evolutionary sense. Stein et al. (2006) did an ex-ante impact 

analysis and noted that in India alone 1.4 million healthy life years could be saved annually if Golden 

Rice were consumed widely. They further indicated that Golden Rice compares favorably to 

alternative vitamin A interventions such as supplementation: the cost for saving one disability 

adjusted life year (DALY) is < US$ 20 for Golden Rice vis-à-vis US$ 134 to 599 for 

supplementation. Recent research shows that β-carotene in Golden Rice is as good as pure β-carotene 

in oil at providing vitamin A to children (Tang et al. 2012). Between 100 to 150 g of cooked Golden 

Rice (about 50 g dry weight) will likely provide approximately 60% of China’s recommended nutrient 

intake of vitamin A for 6- to 8-year old children. Likewise, a stable transgenic maize plant with 

elevated amounts of β-carotene, ascorbate and folate in its endosperm was bred by genetically altering 

simultaneously their respective metabolic pathways (Navqi et al. 2009). This genetic engineering 

achievement could pave the way for breeding highly nutritious maize, which is the main staple of 

disadvantaged people in many parts of Africa and Latin America. 

Holme et al. (2012) using cisgenesis with an endogenous phytase gene were able to improve the 

phosphate bioavailability (from 30 to 60%) of barley grains that are widely used for feeding 

monogastric animals such as chickens and pigs. This proof-of-concept of cisgenic plant engineering 

demonstrates the feasibility of using a crop’s own genetic resources as well as the variation available 

in related wild species. 

Engineering fatty acids and oils for nutritious diets  

Each human consumes on average 25 kg per year of fats and oils, of which 80% are from plant 

sources. Genetic engineering can change fatty acid content of oilseed plants with the aim of 

improving human health or producing nutritional fatty acids absent in crops (Damude and Kinney 

2008). These include fatty acids associated with lowering risks of coronary heart disease (Haslam et 

al. 2013).  

So far, there are 10 transgenes that have led to the accumulation of high value fatty acids in plants. 
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The genetic engineering of such oils in crops will require addressing regulatory issues because 

modifying plant composition to enhance its nutrient profile needs safety tests as well as oversight 

measures – especially to demonstrate that the changes will benefit most consumers and do not harm 

people. 

Host plant resistance to tackle old and emerging pathogen 

epidemics 

Weather influences how pathogens and pests affect and interact with crops and their host plant 

resistance, and thus climate change could have wide-ranging impacts on pests and diseases (Dwivedi 

et al. 2013). Late blight, which is caused by Phytophthora infestans, ranks as the most damaging 

potato pest. Late blight accounts for 20% of potato harvest failures worldwide, translating into 14 

million t valued at € 2.3 billion. Global warming will increase late blight spread, e.g. expanding its 

range above 3,000 m in the Andes (Ortiz 2012 and references therein). Chemical control may lead to 

more aggressive strains of the pathogen and chemical control is often regarded as being 

environmentally damaging. Cisgenic potato cultivars with late blight resistance are becoming 

available and will impact growers, consumers and the environment favorably (Haverkort et al. 2008). 

Related wild Solanum species can be sources of alleles for enhancing host plant late blight resistance 

in potato. For example, Solanum bulbocastum – a wild relative with high resistance to late blight from 

Mexico – was used to breed the cultivar Fortuna using genetic engineering. Cisgenesis allows 

inserting several host plant resistance genes from wild species in one step without linkage drag21. 

A recent outbreak of Xanthomonas campestris pv. Musacearum led to the devastating Xanthomonas 

wilt of banana in the Great Lakes Region of Africa, thereby threatening the food security and income 

of millions of East and Central African people who depend on this crop. Transgenic banana plants 

with the hypersensitivity response-assisting protein (Hrap) gene from sweet pepper did not show any 

infection symptoms after artificial inoculation of potted plants with Xanthomonas wilt in the 

screenhouse (Tripathi et al. 2010). Selected transgenic banana plants with putative host plant 

resistance to Xanthomonas wilt are ongoing confined field-testing in East Africa, where elevated 

temperatures, due to the changing climate, will likely favor banana production. 

8. Outlook 
Crop breeding through genetic engineering begins with the discovery of genes and includes several 

stages (and years) of development and testing (including field trials). Transgenic crops are released 

for farming after assessing any potential risks to human health, food safety, the environment, and 

biodiversity. Crop physiology, plant genetics, and genomics are providing a better understanding of 

the physiological and molecular controls for key adapting traits in different agro-ecosystems. 

Genetic engineering provides innovative methods for modern plant breeding to adapt crops to 

agricultural systems facing new challenges brought by the changing climate. New breeding methods, 

relying on genetic engineering, can accelerate the pace of improving crops, or be more precise for 

transferring desired genes into plant germplasm. Some limited target traits already available in 
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transgenic cultivars include those adapting agriculture to climate change and reducing their emissions 

of greenhouse gases.   

However, only a handful of success stories exist, many of them focused on traits that reduce inputs or 

enhance the nutritional quality of crops. Rommens (2011) includes trait efficacy in the field, critical 

products concepts, freedom-to-operate, industry support, identity preservation and stewardship, 

regulatory approval, and last but not least, retail and consumer acceptance among the main barriers for 

farming more transgenic crops. Although the technologies demonstrate potential to reduce crop 

losses, food waste, and enhance nutritional quality, there remains only limited evidence that 

transgenic cultivars can increase yields and contribute to greater yield stability under a changing 

climate through exploitation of abiotic resistances. Nonetheless, farmers’ surveys reveal that increased 

yields are among the benefits for growing transgenic crops (Carpenter 2010). Such a finding results 

from yield increases because of reduced losses from insect pests and weeds. In most developing 

countries, crop yields are low and yield gaps are large because of low input use, poor soil health, and 

pests and diseases. Genetic engineering has a lot promise in increasing overall adaptive capacity of 

agriculture but emphasis on good agricultural practices, including maintenance of soil, water, and 

genetic resources and increasing irrigation and fertilizers remains critical to increasing production. 

Globally, there is increasing emphasis on climate-smart agriculture. Climate-smart agriculture ensures 

a sustainable increase in agricultural productivity and income along with strengthening resilience to 

climate change and reducing or removing greenhouse gases emissions, wherever possible. The 

examples listed in earlier sections demonstrate how genetic engineering can facilitate yield increases 

in stress-prone environments. There are, however, no examples yet in the literature to demonstrate 

that molecular or conventional breeding can result in simultaneous improvements in productivity, 

resilience, and the adaptation and mitigation capacity of agriculture.   

Given that current trends in yield increase are insufficient to double food production by 2050 (Ray et 

al. 2013) and keep up with population and shifting consumption patterns, new approaches to the 

problem are needed. Transgenic cultivars could be a piece of that puzzle, building on success stories 

such as that of WEMA, but it is crucial that safety concerns are adequately addressed.  Further 

research should benchmark conventional approaches to crop improvement, compare them with likely 

yield increases available from transgenic approaches, and explicitly address climate impacts to 

ascertain the true potential of transgenic technologies in adapting to and mitigating climate change in 

the long term. 
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