Kenya County Climate Risk Profile Annex: Kilifi County

Annex 1

Crop and Livestock Indicators in Kilifi County

The following graphs provide more detailed information about aspects of production ad productivity for some of the main value chain commodities considered in this profile.

Crop or Livestock Value Chain	Production (90 kg bags)	Value (KSh)	
	Сгор		
Dry Maize	232,810	703,086,200	
Cow pea	23,287	144,845,140	
Cassava	137,938	282,221,148	
Mango	113,841	34,801,193.7	
CROP TOTAL	1,164,953,682	1,164,953,682	
Livestock/	Animal Product*		
Milk	44,585	1,139,100,000	
(millions litres)	44,383	1,139,100,000	
Beef	36,498	6,201,600,000	
(Kg)	50,478	0,201,000,000	
Mutton Production	2,861	442,240,000	
(Kg)	2,001	442,240,000	
Eggs production	431,886.30	129,560,000	
(trays)	121,000120	12),000,000	
Poultry Meat Production	542,615.63	81,390,000	
(Kg)		- ,	
Fish	443,689	41,666,000	
(Kg)			
Honey Production	58,030	12,690,000	
(Kg)			
Pork Production	902	880,000	
(Kg)		0.040.126.000	
LIVESTOCK TOTAL		8,049,126,000	

Table 1: Crop and Livestock/ Animal Production in Kilifi County

Source: GoK (2013)

Annex 2

Climate analysis

For the current study, past trends and future projections of precipitation- and temperaturerelated hazards, such as flooding events (including flash floods) and drought during the growing season were analyzed. The growing season was defined as follows: the First season (Season 1) is the 100-day wettest period during the months of January to June, while the Second season (Season 2) is the 100-day wettest period during the months of July-December. In the case of floods, the focus was on heavy precipitation events during the First and Second season, defined as the 95th percentile of daily precipitation. For each pixel, the 95th percentile of daily precipitation distribution conformed of 100 wettest days per season per year was calculated. Then we identified the 95 extreme percentile, value which was plotted in time series¹. Fluctuations in heavy precipitation events can have important consequences on water availability for agriculture, by impacting drought and flood events.

To assess the degree of adequacy of rainfall and soil moisture to meet the potential water requirements for agriculture, the focus was on drought stress, represented by the maximum number of consecutive days in each season where the ratio of actual to potential evapotranspiration (ETa/ETp) is below 0.5. This was calculated for each pixel per season per year² by evaluating soil's water capacity and evapotranspiration in order to define the number of days that could undergo a level of stress.

Two Representative Concentration Pathways (RCPs) were used, also known as the four greenhouse gas concentration (not emissions) trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report (AR5) in 2014. The two RCPs, RCP2.6 and RCP8.5, are named after a possible range of radiative forcing values in the year 2100 relative to pre-industrial values (+2.6 and +8.5 W/m2, respectively). The pathways are used for climate modelling and research. They describe two possible climate futures, considered possible depending on how much greenhouse gases are emitted in the years to come. RCP 2.6 assumes that global annual GHG emissions (measured in CO2-equivalents) peak between 2010 and 2020, with emissions declining substantially thereafter. In RCP 8.5, emissions continue to rise throughout the 21st century.

¹ In this case, we only used precipitation as input file.

² In this case, as input files we used maximum temperature, minimum temperature, precipitation, solar radiation, and water capacity of soil.

Annex 3

Adaptation options in Kilifi, as identified in the ASDSP

Various adaptation strategies were identified by stakeholders and residents of Kilifi County in the Government of Kenya's "Agricultural Sector Development Support Programme (ASDSP)" of 2014. The table below compiles these results and disaggregates them by percentage of the population using each practice, as well as percentage based on the gender and age of the head of the household.

Adaptation strategy	Value chain	Value chain link	Inputs	Results	Challenges
Crop diversification (e.g. introduction of ABE chillies)	All	Production	Seeds, Fertilizers	Increased income from ABE chilies	Large number of farmers in the County; limited extension services
Genetic Materials (e.g. short maturity crops)	All	Production	Seeds, Fertilizers	Increased yields	Costs of inputs, implementation
Water harvesting	All	Production	Water Pans, Negarims, Zai-Pits, Sunken Beds, Water Tanks	Increased yields, reduced animal movements, reduced conflicts, reduced distances to water points	Some of the soils are very porous and cannot hold water; lack of funds to establish some of the adaptations
Tree planting	All	Production	Seedlings	Improve microclimate and reduce heat stress; reduce deforestation	Lack of seeds; lack of water; high demand of seedlings
Soil conservation	All	Production	Labour, Construction materials	Improve water retention, reduce soil erosion	Cost of soil conservation measures
Value addition	Cassava	Post- harvest	Chippers, Frying equipment	Increased incomes	Lack of funds to buy equipment

Table 2: Adap	otation strate	egies adopte	ed in Ki	ilifi County

Source: GoK (2014)