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Abstract: The flavor and health benefits of coffee (Coffea spp.) are derived from the metabolites that
accumulate in the mature bean. However, the chemical profiles of many C. canephora genotypes
remain unknown, even as the production of these coffee types increases globally. Therefore, we used
Gas Chromatography-Mass Spectrophotometry to determine the chemical composition of C. canephora
genotypes in Nigeria—those conserved in germplasm repositories and those cultivated by farmers.
GC-MS revealed 340 metabolites in the ripe beans, with 66 metabolites differing (p-value < 0.05) across
the represented group. Univariate and multivariate approaches showed that the ‘Niaouli’ genotypes
could be clearly distinguished from ‘Kouillou’ and ‘Java’ genotypes, while there was almost no
distinction between ‘Kouillou’ and ‘Java,’. Varietal genotyping based on bean metabolite profiling
was synchronous with that based on genome-wide Single Nucleotide Polymorphism analysis. Across
genotypes, the sucrose-to-caffeine ratio was low, a characteristic indicative of low cup quality. The
sucrose-to-caffeine ratio was also highly correlated, indicative of common mechanisms regulating the
accumulation of these compounds. Nevertheless, this strong correlative link was broken within the
‘Niaouli’ group, as caffeine and sucrose content were highly variable among these genotypes. These
‘Niaouli’ genotypes could therefore serve as useful germplasm for starting a Nigerian C. canephora
quality improvement breeding program.

Keywords: Coffea canephora; metabolomics; genomics; cup quality; health benefits

1. Introduction

Coffee (Coffea spp.) is one of the most consumed beverages globally, and there is a clear correlation
between the sensory quality of a coffee variety and its market value [1]. Although Coffea canephora does
not have the cup quality of the more popular Coffea arabica, it continues to be widely grown, especially
in regions where farming is low intensive because of its relative tolerance to a range of biotic and
abiotic stresses [2]. As a result of this, and its competitive pricing, the C. canephora market share has
increased in recent years, totaling 40% of the coffee traded globally [3]. Importantly, C. canephora forms
a critical source of income for millions of smallholder coffee farmers in developing countries [3]. In
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Nigeria, it accounts for 90% of coffee production [4]. Since quality is a major selection criterion for
coffee improvement [5], it is important to determine the chemical profiles of C. canephora varieties
which are important to many resource-poor farmers.

Little is known about the genetic background and the quality profile of the genotypes used for
coffee cultivation in Nigeria. The early establishment of a C. canephora polyclonal seed garden in Nigeria
was based on five sexually compatible genotypes of ‘Java Robusta’, ‘Kouillou’ and ‘Niaouli’ varieties at
the Cocoa Research Institute of Nigeria (CRIN), for replication and distribution to farmers [6]. The use
of these varieties led to an increase in coffee yields from 800 kg to 1.4 ton per hectare [6]. We recently
used Single Nucleotide Polymorphism-Genotype-By-Sequencing analyses to determine the relatedness
of some of the conserved and cultivated C. canephora genotypes in Nigeria [7]. The data showed that
the genetic diversity of the conserved CRIN germplasm was narrow and comprised of three genetic
groups (‘Niaouli’, ‘Kouillou’ and ‘Java Robusta’)—of which, one of the groups (‘Niaouli’) dominated
the cultivated accessions [7]. The chemical composition of the beans from these genotypes has yet to
be investigated. Therefore, their sensory profiles are unknown.

Understanding the metabolomics profile of coffee is essential for coffee cup quality improvement.
Metabolite profiling has been used to discern coffees of different origins, e.g., Asia, Africa, and South
America [8], and in linking high grade Colombian C. arabica beans to its higher sucrose content [9].
Metabolite profiling is also the most efficient way to determine the relative level of key chemicals in
coffee that affect quality [10]. Several compounds with important contributions to the complex chemistry
of coffee roasting have already been identified [11,12]. For example, two abundant metabolites, caffeine
and chlorogenic acid at high amounts, contribute to bitterness and lead to low cup quality [13,14].
Among the fatty acids, linoleic and palmitic acids correlate with high-quality coffee, while oleic and
stearic acids are associated with inferior flavors [15]. In C. arabica, many of the alcohols, aldehydes,
hydrocarbons, and ketones present in the beans are associated with poor aroma, volatility and acidic
profile, causing an earthy flavor [16].

While the metabolite profiles of coffee beans from various regions are well represented in
literature [8], the chemical composition of the beans of C. canephora genotypes in Nigeria is unknown,
and their quality from a chemical perspective is lacking. A combination of genome-wide Single
Nucleotide Polymorphisms and metabolomic analyses could help to link variation in genotype
to variation in phenotype (mainly quality parameters). Some Single Nucleotide Polymorphisms
(SNPs) may even cause significant changes in the accumulation of some metabolites, which may
be manifested at the phenotypic level as alterations in disease resistance and cup quality [5,17].
Different analytical techniques such as High-Performance Liquid Chromatography (HPLC) [18,19], Gas
Chromatograph-Mass Spectrometry (GC-MS) and Proton Nuclear Magnetic Resonance (H1-NMR) [20]
have been successfully used for the classification of coffee genotypes. Metabolomics of coffee beans
will help to decipher the features contributing to good quality and their profiles, while the genomics
study will help in linking good quality metabolomic profiles to DNA polymorphisms.

The aim of this study is to determine the chemical fingerprint of the coffee germplasm maintained
at CRIN and those grown by Nigerian farmers, and to relate this to their SNP-variation. Specifically, we
aim to: (a) assess the metabolomic profiles of C. canephora genotypes cultivated in Nigeria, (b) determine
the chemical diversity of the genotypes in relation to SNP diversity and (c) identify genotypes with
potential good cup quality to be incorporated in the breeding program for cup quality improvement.

2. Results and Discussion

2.1. Metabolite Profiles of the Three C. canephora Genotypes: “Niaouli’, ‘Kouilou’ and ‘Java Robusta’

A total of 340 untargeted metabolites were detected—of which, 163 (Table S1) were identified
across all three varieties of C. canephora, ‘Niaouli’, ‘Kouilou’ and ‘Java Robusta’, used in the study. A
similar number of metabolites (182) was detected in Asian palm civet coffee using GC-MS [21]. The
metabolites identified in our study were grouped into eight biochemical classes: amines, amino acids,
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sugars, sugar derivatives, organic acids, fatty acids, phenolic acids/alkaloids and inorganic compound
(Table S1).

The major compounds identified in the Nigerian varieties were compared to those in other studies.
Caffeine, chlorogenic acids, quinic acid, citric acid and sucrose were the most abundant metabolites
identified in these varieties (Figure 1), which is similar to the predominant compounds identified in C.
arabica derived from Asian palm civet [21]. Stearic acid, palmitic acid, linoleic acid and pelargonic acid
were the major fatty acids in the three Nigerian genotypes (Table S1). This fatty acid profile was similar
to that described by Dong et al., who studied the green coffee beans of seven cultivars of C. canephora
grown in Hainan Province, China [22]. In their study, and similar to ours, linoleic acid and palmitic
acid were among the most abundant fatty acids, but oleic acid, and arachidic acid were also high in
content [22]. The most abundant amino acids in our study did not overlap with those identified by
Dong et al. [22]. In this study, aspartic acid, glutamic acid, proline, and tryptophan were highest in
abundance (Table S1), while Dong et al. identified leucine, lysine and arginine to be the most dominant
amino acids in their study [22].
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Figure 1. Variation in the relative abundance of coffee metabolites across genotypes. Metabolites
that occur with maximal abundance within each of the eight main metabolite classes are indicated by
the white bars. Also shown (indicated as a black bar) is the minimal abundance of that metabolite
across genotypes.

Next, we looked at the compounds known to influence coffee quality. The relative abundance of
important cup quality precursors, including amino acids, fatty acids, and sugars was low, while the
compounds associated with poor hedonistic value, such as caffeine, organic acids, and polyphenols
were relatively high (Figure 1). This suggested that the sensory attributes of these Nigerian varieties
may not match that of high-quality coffees [14,19,23,24] and that there is a need for a concerted coffee
breeding program in Nigeria focusing on the improvement of sensory attributes.
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Another important aim was to look for variability in metabolites among the Nigerian genotypes.
One-way ANOVA identified 66 (~20%) metabolites that differed among the coffee varieties within
the ‘Niaouli’ group (Nia_1, Nia_2 and Nia_3), the ‘Kouillou’ group (C111 and C36) and the ‘Java
Robusta’ (T1049) group (p < 0.01 and FDR < 0.05; Table 1 and Figure S1). Many metabolites could
be differentiated between the ‘Niaouli,’ and, the ‘Kouillou’ genotypes, and between the ‘Niaouli,’
and ‘Java Robusta’ (herein called ‘Java’) genotypes. However, in contrast, there were few differences
in metabolite abundance between ‘Kouillou’ and ‘Java’. As a result, the latter two genotypes were
grouped together and described as ‘Kouillou/Java.’

Table 1. Metabolomic markers that could be used to differentiate ‘Java/Kouilou’ from ‘Niaouli’
genotypes as detected by one-way ANOVA and post-hoc analyses (f > 4.0; p < 0.01; −Log10 (p) > 2.0;
FDR < 0.05). Fisher’s LSD identified ‘Java/Kouilou’ to be higher in content in the metabolites listed
here compared to ‘Niaouli.’ The f -value is derived from the F-statistic test for significance, the p-value
is used to test variability between two groups, −LOG10(p) determines the significant levels, such as *, **.
and ***. The False discovery rate (FDR) assists in testing significant result from p-value.

Metabolomic Markers f. Value p. Value −Log10(p) FDR

6404 37.478 1.41 × 10−10 9.8511 4.30 × 10−8

125788 23.897 1.35 × 10−8 7.8688 2.06 × 10−6

Citramalic acid 21.799 3.29 × 10−8 7.4826 2.96 × 10−6

Tryptophan 21.428 3.88 × 10−8 7.4112 2.96 × 10−6

34007 14.774 1.17 × 10−6 5.9327 4.29 × 10−5

Palatinitol 14.587 1.30 × 10−6 5.8846 4.29 × 10−5

134465 14.39 1.47 × 10−6 5.8333 4.29 × 10−5

2193 14.304 1.55 × 10−6 5.8109 4.29 × 10−5

Erythritol 13.379 2.74 × 10−6 5.5625 6.96 × 10−5

134464 13.05 3.38 × 10−6 5.4711 7.36 × 10−5

Threitol 12.92 3.68 × 10−6 5.4344 7.48 × 10−5

1-methylgalactose NIST 12.663 4.35 × 10−6 5.3615 8.29 × 10−5

127358 12.044 6.58 × 10−6 5.1815 0.0001
Gluconic acid 11.973 6.91 × 10−6 5.1606 0.0001

2-hydroxyglutaric acid 11.239 1.15 × 10−5 4.9383 0.000146
3182 11.072 1.30 × 10−5 4.8861 0.000152

Maleic acid 10.247 2.39 × 10−5 4.6219 0.000241
Sophorose 10.215 2.45 × 10−5 4.6114 0.000241

16594 9.5222 4.18 × 10−5 4.3787 0.000399
4850 9.3508 4.79 × 10−5 4.3195 0.000443

125830 8.252 0.000119 3.9236 0.00107
Butane-2,3-diol NIST 8.0335 0.000144 3.8414 0.001253

1,2-anhydro-myo-inositol NIST 8.0039 0.000148 3.8301 0.001253
Pseudo uridine 7.6369 0.000205 3.6888 0.001688
6-deoxyglucitol 7.2396 0.000294 3.5316 0.00236

Mannitol 7.0457 0.000352 3.4532 0.002755
102728 6.4686 0.000612 3.2131 0.004446
133018 5.6757 0.001363 2.8655 0.009037

Hexadecylglycerol NIST 4.8794 0.003208 2.4938 0.019967
Arachidic acid 4.5156 0.004832 2.3159 0.026794

Sorbitol 4.4837 0.005011 2.3001 0.02724
trans-4-hydroxyproline 4.0293 0.008518 2.0697 0.042538

beta-gentiobiose 3.8623 0.010403 1.9829 0.048073
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Table 1. Cont.

Metabolomic Markers f. Value p. Value −Log10(p) FDR

Fisher’s Least Square Difference (LSD) identified ‘Niaouli’ to be higher in content in the metabolites
listed here compared to ‘Java/Kouilou’.

Threonine 16.164 5.27 × 10−7 6.2779 3.22 × 10−5

Uric acid 15.162 9.30 × 10−7 6.0315 4.29 × 10−5

Nornicotine 13.222 3.03 × 10−6 5.5189 7.10 × 10−5

Adipic 12.564 4.64 × 10−6 5.3331 8.33 × 10−5

17094 12.205 5.90 × 10−6 5.229 9.47 × 10−5

Pentitol 11.778 7.90 × 10−6 5.1025 0.000109
5-hydroxynorvaline NIST 11.414 1.02 × 10−5 4.992 0.000135

Tyrosol 11.076 1.30 × 10−5 4.8875 0.000152
Proline 10.719 1.68 × 10−5 4.7747 0.00019

Methanolphosphate 10.547 1.91 × 10−5 4.7195 0.000201
Trisaccharide 5.7878 0.001214 2.9159 0.008225

110009 4.2989 0.006203 2.2074 0.032621
Isocitric acid 4.114 0.007704 2.1133 0.039825

Fisher’s LSD identified ‘Java’ to be higher in content in the metabolites listed here compared to
‘Kouilou’

Lyxitol 12.382 5.24 × 10−6 5.2807 8.88 × 10−5

Glycerol 5.4388 0.001748 2.7574 0.01111

2.2. Metabolomic Markers for Differentiating Genotypes

Metabolomic markers can be useful in differentiating genotypes grown in different regions and in
selecting genotypes with metabolite profiles for use in breeding programs [10,25]. Such metabolites
were identified in this study by using the analysis of variance (ANOVA), and more potential markers
were uncovered using variable importance in projection (VIP) at a Partial Least Square (PLS) regression
value above 2 (Figure 2). Most of the discriminatory metabolomic markers were in abundance in
‘Kouillou/Java’ compared to ‘Niaouli’ (Table 1; Figure 2). These distinct metabolites were mainly
sugar derivatives, while the others were organic acids, amino acids and amines. The most distinctive
metabolomic marker differentiating ‘Niaouli’ from “Kouillou/Java’ was an unknown compound ‘6404,’
identified using both the Significant Analysis of Microarrays (SAM) and one-way ANOVA analyses. It
was higher in ‘Kouilou/Java’ than ‘Niaouli’. However, its role in flavor characteristics is unknown and
needs to be further studied.

Sugar derivatives. These are compounds that are usually derived from monosaccharides, but
which have undergone further chemical modification. They include sugar alcohols, sugar acids, amino
sugars and deoxy sugars. Of these, the sugar alcohol palatinitol was higher in ‘Kouillou/Java’ compared
to ‘Niaouli’ (Table 1; Figure 2) and could therefore serve as a potential biomarker to differentiate
between these genotypes. The farmers’ cultivated accessions, which were all of the ‘Niaouli’ group,
had low palatinitol content, and this metabolite can be used to distinguish among C. canephora varieties
in Nigeria (p = 1.30 × 10−6).

Amino acids. Generally, amino acids make positive contributions to coffee hedonistic value. They
react favorably with sugars during the Maillard reaction, producing pleasant aroma precursors [26].
Tryptophan, proline, and threonine were the amino acids also identified as potential biomarkers.
Threonine and proline have high-quality attributes [27], while tryptophan is linked to low bean quality;
it is a specific marker linked with bean immaturity, and the presence of high levels negatively impact
the flavor of roasted coffee [28] Tryptophan levels were higher, while proline and threonine were lower
(p = 3.88 × 10−8), in ‘Kouillou/Java’ compared to ‘Niaouli’. This amino acid profile suggested that
‘Kouillou/Java’ has an inferior amino acid profile compared to ‘Niaouli’ (Table 1). Notably, the farmers’
accessions, which were all of the ‘Niaouli’ genotypes, were characterized by high threonine and proline
with p-values of 1.68 × 10−5 and 5.27 × 10−7, respectively.
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(groups 4–5) and ‘Java’ (group 6). The variable importance in projection (VIP) scores on the x-axis
provide an estimate of the contribution of a given predictor (metabolites shown on the y-axis) to the
Partial Least Square (PLS) regression above 2. The higher the VIP score, the better the metabolite is as a
predictor of the discrimination among genotypes.

Polyphenols. Coffee is one of the most important sources of polyphenols. The polyphenols with
the potential to act as biomarkers of Nigerian C. canephora coffee beans were tyrosol, gluconic acid
and nornicotine. Tyrosol and nornicotine were high in ‘Niaouli’ compared to ‘Kouillou/Java’ (Table 1).
Tyrosol is an essential polyphenol in olive oil which protects the actin filament network from oxidized
Low-Density Lipoproteins. The tyrosol derived from coffee could also serve a protective function [29].

Fatty acids. In coffee beans, fatty acids contribute to the desirable aroma precursors of roasted
coffee beans [30] but high fatty acids metabolites are linked to low grade (quality) coffee [29]. We found
that hexadecyl glycerol and arachidic acid were statistically higher in “Kouillou/Java’ compared to
‘Niaouli’. Interestingly, glycerol was one of the few metabolites that could differentiate between ‘Java’
and ‘Kouillou’ and it was higher in the latter, compared to the former (Table 1).

2.3. Metabolite-to-Metabolite Correlations and Their Potential Influence on Cup Quality and Other
Beneficial Traits

The relative abundance of multiple metabolites and their interaction greatly affects cup quality
and other beneficial properties of coffee [31]. To study these interactions, heatmap analyses of
metabolite-to-metabolite correlations were drawn, identifying metabolites that are positively and
negatively correlated in abundance across genotypes (Figure 3a,b).

Caffeine. This metabolite correlated moderately with sucrose (r2 = 0.42; Table 2). This moderate
association of sucrose with caffeine should have the effect of reducing the bitterness caused by the high
caffeine content of many C. canephora types [31]. Although caffeine contributes to bitterness in coffee, it
has long been valued for its beneficial cognitive and other health effects [32], even whether there are
negative consequences for overconsumption [33].
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Table 2. Metabolites showing similar correlation pattern with sucrose and caffeine (p < 0.05).

Metabolite Identified as Markers
Correlation Coefficient (r2)

Sucrose Caffeine

Caffeine 0.4079 -
16548 0.4044 0.5182
6404 −0.3705 -

Palatinitol −0.4961 -
68 0.4991 0.4502

Tryptophan −0.4599 -
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Sugars. Sucrose and fructose were the two major sugars found in the coffee beans of C. canephora
cultivated in Nigeria (Supplementary Table S1). High-quality coffee usually accumulates high levels
of sucrose [9]. The positive Pearson’s correlation coefficient for sucrose and caffeine observed in this
study was in contradiction to the negative correlation found by Caporaso et al. [34]. In our work,
sucrose and caffeine were found to be positively correlated with two unknown compounds ‘16548’
and ‘68’ (Table 2). Interestingly, a negative correlation was found between sucrose and palatinitol
(Table 2); this could be explained by the fact that sucrose is a precursor of palatinitol biosynthesis [35].
Metabolite ‘6404’ is potentially a metabolomic marker, differentiating cultivated accession ‘Niaouli’
from ‘Java/Kouillou’ (Table 1). This metabolite could contribute to low cup quality as it was negatively
correlated with sucrose (r = −0.37).

Phenolic acids. Chlorogenic acid and quinic acid were the most abundant polyphenols
(Supplementary Table S1). These compounds cause a high degree of bitterness and could contribute
to the low cup quality [36] of Nigerian C. canephora, since they are higher in abundance relative to
sucrose, amino acids and the fatty acids, compounds that are associated with high cup quality [27,37,38].
However, while chlorogenic acids negatively affect taste, they do have beneficial health properties
as antioxidants.

Amino acids. Several amino acids identified as good cup quality precursors were found to be
positively associated in coffee genotypes used in the study. These included aspartic acid, glutamine,
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oxoproline, serine, N-acetyl-D-galactosamine, beta-glutamic acid, proline and threonine (Figure 3a).
Of these, it is known that proline produces pleasant, flowery and fragrant aromas; aspartic acid and
serine generates pleasant and fruity aromas; and threonine produces a pleasant caramel-like odor [27].
Aspartic acid and glutamic acid could be explored as potential markers differentiating Nigerian C.
canephora genotypes. These amino acids accumulated to relatively high levels (Supplementary Table S1)
compared to that reported by Arnold et al., [39], where asparagine and glutamic acid were the two
major amino acids found in the coffee beans in their study.

Fatty Acids. Arachidic acid, stearic acid, palmitic acid, linoleic acid and glycerol are fatty acids
linked to coffee with better sensory qualities [30] and, in this study, we found these metabolites to be
positively correlated with each other (Supplementary Table S2).

Sugar alcohols. Apart from cup quality improvement, the identification of genotypes with high
drought tolerance traits is of great importance in the face of climate change. Here, galactinol and
beta-gentiobiose were positively and highly correlated, (r2 = 0.98) (Figure 3b). Galactinol, together
with raffinose, are essential in protecting plant cells from the oxidative damage caused by various
types of stress conditions [40]. Galactinol and beta-gentiobiose had the highest positive correlation
coefficient (r2 = 0.97), followed by lactobionic acid and beta-gentiobiose (r2 = 0.96). Galactinol
synthase is a key enzyme in the synthesis of the raffinose family of oligosaccharides, which function
as osmoprotectants in plant cells [40]. The Pearson correlation was statistically significant (p < 0.05)
among different chemicals.

2.4. Metabolite and Genomic Diversity within and among Varieties

Principal Component Analysis (PCA) and Partial Least Squares (PLS) both detected group
differences. PCA is an unsupervised approach. PLS, in contrast, is a supervised approach that seeks to
maximize separation between groups by reducing within group variation [41,42]. This explains why
clear separation between ‘Java’ and ‘Kouillou’ was possible with Partial Least Squares-Discriminant
Analysis (PLS-DA), but not with PCA (Figure 4). Both PCA and PLS detected 32.2% and 28.7%
variations, respectively (Figure 4a,b). They also indicated that there are two metabolomic diverse
groups, which we designated as clusters I and II. Cluster I comprised of all the ‘Niaouli’ genotypes,
while cluster II was made up of the ‘Java’ and ‘Kouillou’ genotypes (Figure 4a,b).
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Figure 4. Multivariate classification of Nigerian Coffea canephora coffee genotypes. (a) Principal
Component Analysis (PCA) and (b) Partial Least Squared (PLS) Analysis. PLS is a supervised method
that minimizes within group variability and maximizes intergroup variability to achieve the greatest
separation (discrimination) among groups.
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Because of post-transcriptional modification, a change in metabolite level may result in phenotypic
changes more than alterations in DNA sequence [10,43]. Still, it was of interest to compare how the
genotypes would be classified based on SNPs vs. based on their metabolite profiles. Genomic analysis
through the characterization of 433,048 SNPs grouped the genotypes into three genetic units (clusters
III, IV and VI) (Figure 5a). Hierarchical analysis of the GC-MS data also led to a similar clustering of the
genotypes i.e., (I, II and III) (Figure 5a). Among the coffee genotypes studied, genetic diversity based
on SNPs can be linked to chemical or metabolomics diversity, as the data proved to be complementary.
Single Nucleotide Polymorphism analysis of both the phenolic and vitamin E pathways revealed
metabolite-specific genetic diversity among the rice varieties examined [44].Plants 2019, 8, x FOR PEER REVIEW 11 of 18 
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Figure 5. Comparing the metabolite profiles and Single Nucleotide Polymorphism (SNP) diversity
of C canephora. (A) Hierarchical clustering of the metabolomics data derived from 30 coffee samples.
(B) Hierarchical clustering of Single Nucleotide Polymorphism-Genotype-By-Sequencing data derived
from 47 coffee samples, including those used in the metabolomics analysis. Dotted red circles denote
genotypes used for metabolomics analysis. The red rectangular box contains the ‘Niaouli’ genotypes.
(C) This table matches the ‘Niaouli’ genotypes in (A) to those in (B), where Nia_11 is the same as
Can_24.

2.5. Genotypes with Favorable Bean Quality Traits

Our analysis showed that some genotypes contained high and low levels of some important
chemicals linked to coffee quality and health benefits (Table 3). High levels of sucrose and low levels of
aminobutyric acid (GABA), quinic acid, choline, acetic acid and fatty acids were reported to be the
metabolomic markers of high-grade green coffee [9]. The Nia_14 and Nia_15 genotypes of ‘Niaouli’
have a low caffeine content and relatively higher sucrose content (Table 3). Thus, bitterness may be
reduced within these genotypes, and the caffeine level may make it suitable to some consumers who
have health concerns. Determining whether there are SNP differences in the gene coding for these
“favorable” metabolites may point to a genomic cause for differences in metabolite levels among these
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genotypes (Table 3) that might be exploited in coffee breeding and coffee functional genomic analysis.
Sucrose and caffeine showed a broad range of concentrations (Table 3 and Figure 6). The variability
of sucrose was 39-fold, while caffeine was 5-fold, offering targets for breeding programs. A high
level of natural variability for caffeine and sucrose in green coffee beans was also observed in other
studies [24,33]. Metabolites differentiating high- (C. arabica) and low-quality coffee (C. canephora) are
summarized in Table 4.
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Table 3. Genotypes grouped based on the relative levels of the key metabolites identified from
hierarchical analysis (Figure 6).

Metabolites
Metabolite Levels

Very High High Medium Low Very Low

Caffeine Nia_24, Nia_25 Nia_15, Nia_14

CGA Nia_25 Nia_14 C111_2

Sucrose Nia_25, Nia_22,
Nia_15, Nia_14 Nia_22 Nia_24 C36_5

Quinic acid Nia_25, Nia_31,
Nia_34 C36_1 Nia_14

Butane-2,3 diol C36_2 All Nia except
Nia_25 Nia_22

Saccharic acid Nia_15 Nia_22, Nia_11,
Nia_31

Ferulic acid Nia_33

Tryptophan C36_5 Nia_24

Putrescine C36_5 Nia_22, Nia_25,
Nia_32, Nia_33 C111_5

Proline Nia_33 C111_3

Very high (4 and above); high (2 to 4); medium (0 to 2); low (0 to −2); and very low (−2 to −4).

Table 4. Relative levels of metabolites that contribute to coffee quality based on published data.

Relative Metabolite Levels

Coffee Type and
Perceived Quality High Low Source

Palm civet (Superior) Citric acid, malic acid, and
glycolic acid

Quinic acid, caffeine, and
caffeic acid [21]

Coffea arabica (Good) Sucrose, triglyceride, and
threonine, proline

Caffeine, chlorogenic acid,
aminobutyric acid (GABA),
quinic acid, choline, acetic

acid, and fatty acid

[9,19,27]

C. canephora (Poor) Caffeine and chlorogenic acid Sucrose [45,46]

Levels of sucrose are exceptionally higher in the ‘Niaouli’ genotypes, with the highest concentration
found in Nia_25 and Nia_22, while those with the lowest concentration were C111_1 and C36_5. It
could be deduced that the genetic group ‘Nia_2’ has high sucrose synthase enzyme and could be
linked to SNPs changes. A low sucrose concentration in C. canephora green coffee beans has been
attributed to the limited capacity of sucrose synthase to synthesize sucrose at the final stage of coffee
grain development [45–47]. It will be interesting to further evaluate the sucrose synthase sequence of
these genotypes having high and low sucrose content to determine whether there is a SNP change at
this locus.

3. Materials and Methods

3.1. Single Nucleotide Polymorphism Genotype-By-Sequencing Analysis

DNA from 48 samples comprising 18 accessions from Cocoa Research Institute of Nigeria (CRIN)
and 30 accessions from farmers’ fields were analyzed. The CRIN accessions consisted of five Coffea
species including Coffea arabica, Coffea abeokutae, Coffea liberica, Coffea stenophylla and Coffea canephora.
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The C. canephora varieties used were ‘Kouillou’, ‘Gold Coast’, ‘Java Robusta’, ‘Niaouli’, ‘Uganda’ and
‘Java Robusta Ex Gamba’. More information about the methods used for this analysis is available [7].

The farmers’ accessions known to be the ‘Niaouli’ variety were grouped into 3 genotypes (Nia_1,
Nia_2 and Nia_3) based on the hierarchical clustering of 433,650 SNPs using SNPRelate software
(http://www.Rproject.org) [48]. These genotypes and those within the ‘Kouillou’ and ‘Java Robusta’
groups were used for metabolomics analysis. These varieties (‘Niaouli’, ‘Kouillou’ and ‘Java Robusta’)
represented three genetic structures detected by GBS-SNP analysis on C. canephora repository in
Nigeria [7]. These genotypes were selected because they were used to establish the pioneer model
polyclonal seed garden plot, which will be replicated in farmers’ fields.

3.2. GC-MS Analysis

The genotypes used for metabolomics were cultivated C. canephora accessions in Nigeria [7],
consisting of ‘Niaouli’, ‘Kouillou’ and ‘Java Robusta’ varieties. They were further classified into one of
six groups based on the result from SNP-GBS analysis [7]. ‘Niaouli’ is comprised of three genotypes:
Nia_1, Nia_2 and Nia_3, (classified as Groups 1, 2 and 3, respectively), ‘Kouillou’ is comprised of two
genotypes: C111 and C36, (classified as Groups 4, and 5, respectively) and, ‘Java Robusta’ is comprised
of one genotype: T1049, and was classified as Group 6. There were five replicates for each group
(genotypes), giving a total of 30 samples (Table 5).

Table 5. Sample genotypes and symbols.

Variety ‘Niaouli’ ‘Kouilou’ ‘Java Robusta’

Group/Genotype Group 1
(Nia_1)

Group 2
(Nia_2)

Group 3
(Nia_3)

Group 4
(C111)

Group 5
(C36) Group 6 (T1049)

Sample Symbols

Nia_11 Nia_21 Nia_31 C111_1 C36_1 T1049_1
Nia_12 Nia_22 Nia_32 C111_2 C36_2 T1049_2
Nia_13 Nia_23 Nia_33 C111_3 C36_3 T1049_3
Nia_14 Nia_24 Nia_34 C111_4 C36_4 T1049_4
Nia_15 Nia_25 Nia_35 C111_5 C36_5 T1049_5

Reddish matured (ripened), coffee bean (Figure 7b) of these genotypes were collected in ice bags
and immediately transferred to −80 ◦C. The endosperms of the coffee bean (Figure 7c) were excised
using a sterile blade and re-transferred to −80 ◦C. These endosperms were lyophilized, ground into
powder with Udy mill (Udy Corporation) and sealed prior to metabolomics analysis.
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Note, only the ripe beans were used for the analysis. (c) The endosperm, which was the portion of the
coffee bean dissected and used to extract metabolites for chemical analysis.

The metabolomics analysis was performed according to Fiehn et al. [49]. The analyte was extracted
from the sample using a solvent containing isopropanol/acetonitrile/water at the volume ratio of 3:3:2.
The supernatant was concentrated in a Centrivap cold trap vacuum concentrator (http://www.labconco.
com) at room temperature for 4 h. The extracts were immediately derivatized for GC–Time-of-Flight

http://www.Rproject.org
http://www.labconco.com
http://www.labconco.com
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(TOF) mass spectrometry analysis by adding 90 µL of N-methyl-N-trimethylsilyltrifluoroacetamide
and 1% (v/v) trimethylchlorosilane (1 mL bottles; Pierce) to the extract and shaken at 37 ◦C for 30 min.
The reaction mixture was transferred to a 2 mL clear glass auto-sampler vial with micro-insert (Agilent;
http://www.agilent.com) and closed using an 11 mm T/S/T crimp cap.

Samples (0.5 µL) were injected between 2 and 24 h after derivatization in an Agilent 6890 gas
chromatograph controlled by using LecoChromaTOF software version 2.32 (http://www.leco.com). The
analytical GC column was Restek corporation Rtx-5Sil MS (30 m length × 0.25 mm internal diameter
with 0.25 µm film made of dimethyl/diphenylpolysiloxane at the volume ratio 95:5) and the mobile
phase used was Helium.

The data was acquired on a Mass spectrometry Instrument, a Leco Pegasus IV time-of-flight
mass spectrometer controlled using LecoChromaTOF software version 2.32, at a mass resolving power
R = 600 from m/z 85–500 at 20 spectra per second, and 1550 V detector voltage, without turning on the
mass defect option. Recording ended after 1200 s.

3.3. Statistical Analysis of Metabolomics Data

All metabolites, including those identified and those not identified using the National Institute
of Standards and Technology mass spectral library, were used for data analysis. Both univariate and
multivariate statistical approaches were performed with metaboAnalystR [50]. One-way Analysis of
Variance (ANOVA) test was performed to ascertain the significant variables, and they were expressed
as f - and p-values. The level of statistical significance (−Log10(p)) was determined, followed by
post-hoc analyses to correct the p-value and thus generate the False Discovery Rate (FDR). Fisher’s least
significant difference method (LSD) was used to identify groups that differ in their metabolite profile.
Pearson’s correlation coefficient between the metabolites was calculated using metaboAnalystR [50].
Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA)
were performed using the prcomp package within the R statistical package [51]. Prominent potential
discriminatory metabolites were identified with variable importance in projection (VIP) scores at
a PLS regression value above 2. Calculations for these analyses were based on singular value
decomposition [50]. Hierarchical Clustering Analysis was used to classify genotypes by employing
Pearson’s correlation as a similarity measure. The clustering algorithm used was Ward’s linkage,
which minimizes the sum of squares of any two clusters [50]. The metabolomic analyses results were
compared to hierarchical clustering of SNP data obtained by SNP relate [50].

4. Conclusions

For the first time, metabolites in the beans of Nigerian C. canephora were evaluated. The farmers’
cultivated accessions have unique metabolite profiles and genomic structures compared to the conserved
accessions. There was high variability within the varieties for caffeine and sucrose—the two key
compounds in coffee. However, the high caffeine, quinic acid and chlorogenic acid may contribute to
low quality and bitterness. Genomic technologies such as transgenesis, molecular marker-assisted
breeding, genomics, proteomics, and metabolomics should complement traditional breeding efforts
for hastening the genetic improvement of coffee. The alteration of major metabolites that contribute
to coffee taste, such as caffeine and sucrose, has been one of the strategies used in developing high
cup quality coffee. Based on the flavor profile we have assayed, it was found that the ratio of caffeine
to sucrose is higher than desirable for good cup quality. It remains to be seen whether there are
polymorphisms for known enzymes and proteins that regulate the levels of these compounds among
our genotypes. Such data can be obtained by careful examination of our GBS-SNP data, and the utility
of this information will be further extended by using them as genetic markers for breeding. By altering
this design, the desirable flavor profile will be achieved. It will be of great interest to characterize those
genotypes conferring relatively low caffeine, and high sucrose, together with other important quality
precursors to determine the cause of such variation and identify some important quality trait markers.

http://www.agilent.com
http://www.leco.com
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Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/10/425/s1,
Table S1: The eight classes of metabolites identified in the Nigerian C. canephora coffee genotypes, Table S2: Fatty
acids with high Pearson’s Coefficient correlative scores (r2 > 0.80; p < 0.05), Figure S1: Metabolites detected from
one-way Analysis of variance that significantly varied across genotypes.
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