CPWF WORKING PAPER

Most Significant Change Stories from the Challenge Program on Water and Food (CPWF)

Compiled and edited by Cristina de Leon, Boru Douthwaite and Sophie Alvarez
CPWF Impact Project

2009
ACKNOWLEDGEMENTS

‘Most Significant Change’ is part of a repertoire of iterative learning-based approaches employed by the CPWF and its projects in response to emergent change.

Keywords: most significant change, innovation, partnerships, monitoring, evaluation, stories, development, impact pathways, iterative learning, outcomes logic model

Copyright © 2009, CPWF. All rights reserved.

This paper is connected to the synthesis work of the CGIAR Challenge Program on Water and Food through Stories from the Field: CPWF Working Paper 02

You can find the CPWF Working Paper series online at www.waterandfood.org.

The Challenge Program on Water and Food (CPWF), an initiative of the Consultative Group on International Agricultural Research (CGIAR), contributes to efforts of the international community to ensure global diversions of water to agriculture are maintained at the level of the year 2000. It is a multi-institutional research initiative that aims to increase water productivity for agriculture—that is, to change the way water is managed and used to meet international food security and poverty eradication goals—in order to leave more water for other users and the environment.

Working papers may contain preliminary material and research results - data sets, methodologies, observations, and findings - that have been compiled in the course of research, which have not been subject to formal external reviews, but which have been reviewed by at least two experts in the topic. They are published to stimulate discussion and critical comment.
MOST SIGNIFICANT CHANGE STORIES
FROM THE CHALLENGE PROGRAM ON
WATER AND FOOD

CPWF Working Paper 03

Compiled and edited by Cristina de Leon,
Boru Douthwaite and Sophie Alvarez
TABLE OF CONTENTS

Introduction 6

Theme 1 Crop Water Productivity Improvement 8
- Identifying options for growing more food and saving water 8
- Ecosystem services of rice landscapes 9
- Proof of concept of the aerobic rice technology 10
- Aerobic Rice Partnership Development in Asia 11
- Adoption of salt tolerant modern rice varieties in the wet season and non-rice crops in the dry season significantly enhances farmers’ food security and income in Orissa, India 13
- The vital roles of NGOs, local governments and development agencies in a research project on Coastal Resources Management 15
- Deploying Genotypes Resistant to Yellow Rust in Eritrea 16
- New, high yielding lentil variety identified through collaboration with farmers 18
- Farmer-to-farmer dissemination of alternative to slash and burn agriculture (Round 2) 19

Theme 2 Water and People in Catchments 23
- Theme 2 conceptual framework, especially the concept of reverse flows 23
- Payment of analytical services 24
- Deeper understanding of water-poverty relationship 25
- Linking the lake and the páramo, at multiple scales 26
- Multiple use water services 27
- Uptake of home water treatment in Ethiopia (Round 2) 29
- The Long Road for Participatory Technology Development (PTD) in Iran 31
- Mainstreaming capacity building in food and water research in the Limpopo Basin 33
- Alluvial aquifers for high value crop production (Round 2) in the Semi-arid Regions 36
- Evaluation of low head drip irrigation kits and their distribution by NGO programs 40
- Negotiating watershed management alternatives 42
- Making of a watershed management committee (Round 2) 43

Theme 3 Aquatic Ecosystem and Fisheries 45
- Using an impact pathways approach to identify priority interventions at Center, Discipline and CP levels 45
- INRM research supports livelihood in fresh – saline water interface environments 47
- Significant rise in fish production from the floodplains is boosting farmers’ income 49
- Adoption of novel water management and High Yielding Varieties (HYV) of Rice in the Coastal Saline Environments 50
Theme 4: Integrated Basin Water Management System

52	Interdisciplinary capacity building cum knowledge sharing within groundwater governance in Asia
52	From Colossal Anarchy to Sustainable Management: Improving Groundwater Governance in Asia (Round 2)
54	The opportunistic presentation that may change urban agriculture in Ghana
57	Integrating livestock, water and land management enables increased water productivity in Uganda (Round 2)
59	Research uptake during the lifetime of the Small Reservoirs Project (Round 2)
65	Integration of water related externalities into soil science research and post-graduate training (Round 2)

Theme 5: The Global and National Food and Water System

67	The World’s Largest Collection of African Water Treaties
68	World’s largest database on African transboundary water law is changing thinking on how international waters are managed (Round 2)
71	Importance of Complementary Policies in Farm-Level Climate Change Adaptation Strategies
72	Enhancing Social Science Research Capacity in the Limpopo and Volta River Basins

Basin Focal Projects

74	Improvement of strategic planning of water resource management in basins
75	The impact of the Impact Pathways and the Scaling Workshops organized in the basin on projects of the Volta basin
76	Adoption and co-development of Participatory Impact Pathways Analysis by the International Potato Center (Round 2)
81	Research to estimate flow in ungauged catchments provides vital information to improve water management (Round 2)

Small Grants Program

82	Creating an oasis in the dessert
86	Knowledge Sharing and Communication Strategy in Agricultural Water Innovation Systems
88	Water and Soil management led to food security
89	Reducing pest incidence and water usage in cotton with ladies finger as a trap crop
91	Agro-biodiversity, rainwater harvesting and community empowerment (Round 2)
INTRODUCTION

The following stories were collected from CPWF project and theme leaders in two rounds. The first round of stories were collected in January 2007 based on the following two questions:

1) What has been the most significant technical development or advance made by your CPWF project / theme / basin since the start?
2) What has been the most significant partnership change (significant in terms of making scientific progress and/or developmental impact more likely) that has taken place since the start of your CPWF project (or theme or basin)?

In June 2009 we repeated the process asking the same basic question, without specifying between technical and partnership changes. We asked for photographs and references to documents that substantiate the stories. We collected 54 stories in Round 1, and 15 in Round 2. A selection of 44 stories are presented here. Those we left out we did so if the stories they told were not clear, if they did not follow the format, or if we did not receive answers to clarifying questions.

The stories are organized by the CPWF’s five themes and according to First Call projects, Basin Focal Projects and Small Grants projects. They show the broad range of outcomes and impacts that the CPWF is beginning to have. The stories are not a comprehensive audit of CPWF impact, but rather what people felt motivated to write about. The stories provide gateways to evidence of change, and are not to be interpreted as definitive but as iterative. Indeed, some projects presented change stories in both rounds.

CPWF Theme Leaders selected the first round story or stories they thought most significant and gave their reasons. The selection decisions and criteria are given as feedback to the projects as a way for the CPWF to focus innovation towards explicitly valued directions and away from less valued ones. One story was selected as the most significant from the second round stories.

The Most Significant Change (MSC) method was used to collect and analyze the stories\(^1\). MSC is part of a repertoire of iterative learning-based approaches that are employed by the CPWF and its projects in response to emergent change. The authors of the stories are principally the program’s Theme Leaders, Project Leaders and Principle Investigators. In writing the stories they were able to give their interpretation of the emerging issues and changes that most mattered to the leadership in these projects.

CPWF project types

Three types of project submitted change stories. Most come from the ‘First Call’ projects that resulted from a competitive call placed by the CPWF in the last quarter of 2002. Thirty-three projects were funded at an average funding level of USD 1.1 million per project over an average of four years. Projects were chosen according to their compatibility with the CPWF development objectives, scientific merit of proposed research, strategic relevance to CPWF research agenda and priorities, quality and institutional mix of the research team and degree of stakeholder participation, likely impact on beneficiaries, and value for money. The projects are variable and many are cross cutting across both basins and

\(^1\)See http://en.wikipedia.org/wiki/Most_significant_change
research themes. Some of the stories presented here are part of projects with impacts on a global level—others are more location-specific and are catalyzing changes on a smaller level.

Stories were also submitted by Basin Focal Projects that began in 2005 to build up coherent and systematic basin-level data-sets and then use them to evaluate— at the whole basin level—water availability, water productivity, poverty and water poverty, institutional frameworks, stakeholder networks and, ultimately, the likely consequences on water productivity and poverty of introducing different sets of innovations. The first Basin Focal Projects were started in the Karkheh, Volta, Mekong and Sao Francisco basins with an average budget of $750,000 for an average pf two and half years.

Stories were also submitted by Small Grants projects that were commissioned in 2005 to bridge the gap between research and development, and emphasise impact and innovation. Small grant projects received a total budget of between $25,000 and $75,000 for up to eighteen months.

THEME 1 CROP WATER PRODUCTIVITY IMPROVEMENT

IDENTIFYING OPTIONS FOR GROWING MORE FOOD AND SAVING WATER

Classification: Technical
Name of persons reporting: Liz Humphreys and B.A.M. Bouman
Date when the change occurred: 2005-2006
Place where the change occurred: Theme 1 Office, IRRI

The Story:
The challenge to produce more food with decreasing water availability has led to the notion that crop water productivity (WP) needs to increase. However, the debate on how to increase WP is confounded by different definitions and spatial and temporal scales of analysis, and poor understanding of what constitutes a real water saving. For example, water savings at the field level, such as reduced runoff and reduced percolation beyond the rootzone, do not always translate into water savings at a regional level where losses at the field level can be captured and reused elsewhere in the system. Furthermore, merely increasing water productivity may not solve the dual challenges of increasing food production - it may even decrease it - and saving water. Bas Bouman (CPWF Theme 1 leader 2004-2006) saw the need to develop a means of analyzing WP in a systematic way to identify interventions with the potential to increase food production and save water.

Why is the story significant?
The framework provides a systematic means of identifying potential interventions that can increase food production while saving water, at a range of scales from the plants to region. The framework is based on generic principles that can be readily applied across cropping systems, environments and spatial scales. It will assist CPWF projects that aim at improving crop water productivity.

What were the critical factors that led to the change?
- Perceived lack of understanding of water flows and true water savings generated by presumed ‘water-saving technologies’ in a number of CPWF and non-CPWF projects.
- Lack of a suitable framework – there was need for a methodology to assist scientists and practitioners who are trying to develop sound water management technologies and improve crop water productivity.
- The framework was developed through interaction with many scientists/professionals from different disciplinary backgrounds.

What were the constraints?
The framework helps understand conceptually the effects of the very wide range of interventions (such as breeding, agronomic management, irrigation management, recycling, etc.) on water productivity, food production, water use, and true water savings. To move from the conceptual to the analytical stage, (simulation) models need to be applied and/or empirical field data need to be collected. These activities are constrained by lack of skills, capacity, and equipment (e.g. for monitoring water flows) in many of the current CPWF projects. These constraints could be alleviated by new partnerships (adding the right skills) and capacity building (training).
What are the future implications for actions (e.g., future research), if any?
The framework needs to move from a conceptual stage to an analytical stage and then needs to be tested and applied in a range of applications—a logical place to start is with themes 1 and 4 CPWF projects.
- Capacity building (skills in using equipment to measure water flows, skills in modeling)
- Link the Crop Productivity framework with the framework of Water Accounting at the landscape-watershed/basin scale.
- The framework is most useful for examining potential interventions for increasing crop water productivity at a range of spatial scales. However, it needs further development to better take temporal scales into account, and financial measures of crop water productivity.

ECOSYSTEM SERVICES OF RICE LANDSCAPES

Classification: Technical

Name of person reporting: B.A.M. Bouman

Date when the change occurred: June 2005

Place where the change occurred: CA/CPWF Workshop at IRRI, Los Banos, Philippines

The Story:
CPWF Theme 1 and the Comprehensive Assessment of Water Management in Agriculture (CA) joined forces in 2005 in developing an assessment of ‘Rice and Water’. A workshop was held in June 2005 with a variety of specialists working on the interface rice-water from different angles: food security, water management, climate change, gender equity, poverty alleviation, etc. Participants came from different disciplines and geographical locations. Most of the assessment centred on conventional topics of water use, mitigating water scarcity, food security, poverty alleviation. However, during discussions and through background material prepared, it was realized that rice production was only one of the many ecosystem services provided by rice landscapes. Rice fields seem to provide very unique, but often unrecognized, ecosystem services such as providing a habitat for birds, fish and other animals, recharging groundwater, mitigating floods, controlling erosion (through terraces), flushing salts from the soil, providing water filtration, sequestering carbon, and regulating temperature/climate.

Why is the story significant?
To date, most research and development work to mitigate water scarcity has focused on the food production component of ecosystem services, such as the development of water-saving technologies and modernization of irrigation systems. However, there is little understanding on how water scarcity (or other major hydrological changes such as increased flooding and salinization) will affect the other ecosystem services from rice landscapes and what options exist to safeguard valuable ecosystem services and minimize damage to the environment with major hydrological changes.

What were the critical factors that led to the change?
The key factor was the decision to develop a special CA chapter on ‘Rice and Water’. Irrigated rice worldwide receives around a quarter to a third of all tapped freshwater
resources, and provides the staple food for three billion people. The chapter would not have been possible without the CA and the CPWF linking up.

What were the constraints?
Broadening our thinking; getting people from different backgrounds together.

What are the future implications for action (e.g., future research), if any?
New research is needed on the various ecosystem services of rice landscapes, and how they are affected by major hydrological changes (water scarcity, flooding, etc) and potential response options such as a shift to nonflooded cropping systems. What are the downstream and offsite effects of rice production and such changes; who benefits and who loses? Can there be mechanisms for payment for ecosystem services?

PROOF OF CONCEPT OF THE AEROBIC RICE TECHNOLOGY

Classification: Technical

Name of person reporting the story: B.A.M. Bouman

Project / Theme / Basin: CPWF Project 16 / Theme 1 / Yellow River Basin

Date when the change occurred: Throughout 2005-2006

Place where the change occurred: Yellow River Basin, North China Plain

The Story:
Since the early 2000s, reports came out of China about farmers pioneering aerobic rice - that is, rice grown under nonflooded and nonpuddled conditions just like wheat or maize - under water-scarce conditions and realizing “high” yields. However, no information was available on actual yield levels and water (irrigation, rainfall, groundwater) requirements, and it was suspected that shallow groundwater tables made high aerobic rice yields possible. Using a combination of well-designed field experiments, monitoring farmers’ performances, and crop growth simulation modeling, we confirmed that aerobic rice yields of 3.8-5.6 t ha\(^{-1}\) are obtainable with groundwater tables deeper than 2 meters, with only 2 to 3 supplemental irrigations (150-225 mm) and rainfall of 115-670 mm. For comparison, lowland rice in the same environments produced 6-9 t ha\(^{-1}\), but required 900-1,300 mm of combined rainfall and irrigation water with groundwater tables of 20 to 30 cm depth. Moreover, it was experimentally demonstrated that aerobic rice can withstand prolonged flooding.

Why is the story significant?
With the concept well proven, aerobic rice can become an alternative crop for increased livelihood and food security under conditions of water scarcity:
- In rainfed areas where maize is the current dominant grain crop, farmers are testing aerobic rice for crop diversification (reduced market dependence on maize, rice security for home consumption).
- In irrigated areas where water shortages make the growing of lowland rice impossible, aerobic rice can be introduced alongside upland crops such as maize or cotton for a diversified cropping system (again, rice security for home consumption).
- Especially in areas with water shortage and risk of flooding, aerobic rice is the preferred crop because of risk of failure of upland crops such as maize or cotton.
What were the critical factors that led to the change?

- Development of special aerobic rice varieties that combine drought resistance of upland rice with high yield characteristics (lodging resistance, input-responsiveness) of modern high-yielding lowland rice.
- Combination of field experiments, farmer participatory R&D, and simulation modeling demonstrated the potentials of aerobic rice and guided the development of appropriate management practices.
- A multidisciplinary research team that combines breeding, agro-climatology, plant nutrition, agronomy, water management, and economics, and works with a combination of approaches.
- Strong local champions who speak the farmers’ language, and involvement of local governments.

What were the constraints?

- In terms of the project team: forming a coherent multidisciplinary research team where individual scientists break down disciplinary boundaries.
- In terms of involvement and adoption of aerobic rice by farmers: gaining trust by repeated presence of scientists; getting local government support; extension support; availability of aerobic rice seed (distribution system); and market boundary conditions, i.e. relative price of outputs (rice versus maize, cotton, etc) and inputs (seed price, water price, etc), labor availability and costs.

What are the future implications for action (e.g., future research), if any?

With increasing water shortage in traditional rice-based cropping systems, field conditions will become more aerobic (less flooded conditions) with adoption of alternate wetting and drying, aerobic rice, and upland crops. This will have major implications for sustainability, environmental impact, and ecosystem services that are still very poorly understood. Research is needed to develop response options for farmers to maintain crop production capacity while safeguarding critical ecosystem services.

AEROBIC RICE PARTNERSHIP DEVELOPMENT IN ASIA

<table>
<thead>
<tr>
<th>Classification:</th>
<th>Partnership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of person reporting the story:</td>
<td>B.A.M. Bouman</td>
</tr>
<tr>
<td>Project / Theme / Basin:</td>
<td>CPWF Project 16 / Theme 1 / Indus-Ganges Basin</td>
</tr>
<tr>
<td>Date when the change occurred:</td>
<td>April, 2006</td>
</tr>
<tr>
<td>Place where the change occurred:</td>
<td>At IRRI HQ, but affecting countries in South Asia and the IGP</td>
</tr>
</tbody>
</table>

The Story:

Based on the promising developments of the aerobic rice technology by PN16 (STAR), the Irrigated Rice Research Consortium (IRRC), and the Consortium for Unfavorable Rice Environments (CURE), the Asian Development Bank requested IRRI to head a project to develop and disseminate aerobic rice in South Asia. The work under this project in India, Pakistan, Bangladesh, and Nepal, complements geographically the work carried out in China, India, Laos, Thailand, and the Philippines under STAR. The achievements and work
plans of the STAR and ADB projects were discussed in a combined meeting in April 2006. Research priorities and strategies were discussed and jointly agreed upon, following a similar format as combined STAR-IRRC meetings in 2004 and 2005.

Why is the story significant?
The partnership and collaboration between STAR and the ADB project (and the two above-mentioned Consortia) ensures that no work gets unnecessarily duplicated, that resources are optimally utilized, and that results and ideas get shared in early stages of development. The ADB project could make a ‘flying start’ and benefit from STAR’s experiences. Now that the concept of aerobic rice was proven by STAR, they could now move on to second-generation issues, such as long-term sustainability and soil health issues.

What were the critical factors that led to the change?
It may take years to develop good partnerships, which depend on mutual trust and confidence. In the case of the STAR and ADB projects, collaboration among STAR, IRRC, and CURE partners paved the way for extension with the ADB project. Also critical is the attitude of donors who realize that partnerships add value to their own funded projects/Consortia and who do not want to claim sole ownership of results or achievements.

What were the constraints?
- Sharing of data and resources (such as finances among institutes)
- Agreeing ‘who does what’ (task division)

What are the future implications for action (e.g., future research), if any?
- Issues of yield sustainability and soil health under aerobic soil conditions.
- Effect on ecosystem services from the change from flooded to nonflooded aerobic rice.

The following CPWF Project 7 story (p.13) was chosen as a favourite because it is a good example of the tremendous potential to increase food production and water productivity in salt affected areas by the development and adoption of salt tolerant varieties of both rice and non-rice crops. Approximately 21m ha of agricultural land in Asia are salt-affected. Salinity problems undermine food security and livelihoods for an enormous number of poor people.

The development of salt tolerant varieties adapted to different environments is the outcome of a large, collaborative research effort. This includes the following: collection and preservation of germplasm from many diverse locations; screening of tens of thousands of lines for salt tolerance; physiological studies to understand the mechanisms of salt tolerance; genetic studies leading to the identification of molecular markers for the main genes responsible for salt tolerance; and traditional breeding to incorporate salt tolerance into locally adapted varieties with the desired quality (for eating preference and marketability).
ADOPTION OF SALT TOLERANT MODERN RICE VARIETIES IN THE WET SEASON AND NON-RICE CROPS IN THE DRY SEASON SIGNIFICANTLY ENHANCES FARMERS’ FOOD SECURITY AND INCOME IN ORISSA, INDIA

Classification: Technical

Name of Persons Reporting: Thelma Paris and Steve Zolvinski on behalf of Dr. Abdel Ismail (Principal investigator) and Dr. DP Singh, Dr. Sanjoy Saha, Dr. K.R. Mahata of Central Rice Research Institute (CRRI), Cuttack

Project / Theme / Basin: CPWF Project 7 / Theme 1 / Indus-Ganges Basin

Date when the change occurred: 2003-2006

Place where the change occurred: Kamilio and Chaulia villages, Ersama block, Jagatsinghpur, Orissa

The Story:

The villages where the work was done have problems of soil salinity due to ingress of seawater during high tides through surface channel, creeks and river during the wet season while the rice of shallow saline groundwater creates salinity problem during the dry season.

Although the average annual rainfall is around 1558 mm, the distribution of monsoon rain during the crop growing season is highly erratic. The problems of initial or terminal drought, submergence or water logging, flash flood and cyclonic disturbances are more frequent.

Farmers are poor, with small land holdings and food (rice) insecurity. The rice they produce is enough only for four to nine months. Thus they have to buy during the lean months. Farmers grow traditional varieties (TVs) namely Rashpunjar, Bhaluki, Bhundi which have low yields at 1.0 ton per ha. During the dry season, farmers grow varieties such as Khadagiri, Parijat, Lahat, etc which yields 2.5 to 3 tons/ha. However during the dry season, these varieties are susceptible to salinity and any increase in salinity level damage the crop severely.

The low productivity of summer rice is due to unavailability of suitable rice varieties and lack of technical knowledge about management of rice crop under this stress situation. Under the project CPWF Project 7, these severely stressed rice environments became the laboratory for farmer participatory experiments for saline tolerant rice varieties and crop diversification.

Why is the story significant?

- With the introduction of new varieties namely SR26B, Pankaj, and Lunishree, rice yields increased and additional/expanded dry season rice crop allowed farm households to grow enough rice for the year. Farmers said, “We no longer think about whether we will have enough to eat the next day”.
- Introduced varieties at least doubled the yields compared with the TVs. Farmers reported yields of varieties between 2.5 to 4 tons per ha compared to yields of TVs at 1.5 tons per ha.
- Sunflower, a crop which has tolerance to salinity, was introduced after rice. Farmers used to leave the fields fallow after rice. Now, farmers would like to double the area
planted to sunflower. They like the fact that sunflower can be pressed for cooking oil which saves them money from having to purchase an essential household commodity. The residue or “cake” from the pressing process can be used for livestock/fish feed and as cooking fuel.

What were the constraints?

- The new varieties are more susceptible to stem borer that damaged 10-20 percent of the crop, whereas TV are tolerant to pests. They also complain of grain shattering which was specific to Lunishree.
- Lack of access to pure seeds of the new varieties. Instead of 2kg from the project they want this to be increased to 5 kg.
- One constraint in increasing income out of sunflower is the lack of efficient seed extraction facilities and the high cost for pressing. Farmers would like to learn how to prepare seeds for pressing i.e. drying and storage.
- Lack of information about varieties and production practices as agricultural centres tend to work on other crops. The research team has introduced only KBSH1 which is grown in other areas of Orissa. Another constraint is a fungal disease.

What are the future implications for action (e.g., future research), if any?

- This project demonstrated the importance of conducting farmer/community participatory experiments to enable immediate feedback on technologies introduced. ‘Learning by doing’ enabled farmers to conduct experiments on their own by growing the new varieties using their level of management. Plant breeders should consider farmers’ criteria in varietal selection.
- Farmers, both men and women, should be involved in evaluating the popular varieties with Saltol gene.
- Expand sunflower production as a crop suitable for saline areas, after rice.
- Evaluate additional crops that grow well in these saline areas and which have high market value.

The next story (p. 15) from CPWF Project 10 was chosen as a favorite partnership story because it is an excellent example of the impact that can be achieved by identifying and truly involving the key stakeholders and end users–farmers, fishers, R&D organizations including top management, district and provincial extension, NGO, local government, government resource managers, government planning and development institutions.
THE VITAL ROLES OF NGOS, LOCAL GOVERNMENTS AND DEVELOPMENT AGENCIES IN A RESEARCH PROJECT ON COASTAL RESOURCES MANAGEMENT

Classification: Partnership

Name of Person Reporting: Dr. TP Tuong on behalf of PN10 team members

Project / Theme / Basin: CPWF Project 10, Themes 1 & 3 / Mekong, Indus-Ganges Basins

Date when the change occurred: 2002 to date

Place where the change occurred: Bac Lieu Province of Vietnam and the Southwest coastal sub districts (Batiaghata, Dumuria and Paikgacha) of Bangladesh

The Story:

Usually researches are carried out by research institutes and universities and are often divided by sectors, e.g. agriculture, aquaculture etc. The uptake of research results is often considered a separate step, to be carried out by development agencies. Interventions by different development agencies are often also carried out independently.

Sustainable natural resource management in the coastal zones, where fresh and saline water interface, must take into account diverse stakeholder interests (e.g. agriculture, aquaculture, capture fishery) and complex multi scale interactions among different resources (e.g. water, soil, land use).

Among CPWF Project 10 partners are institutions in charge of various resources important to coastal management (water, land use, agriculture, aquaculture, and fishery). They include research and development institutions, national, provincial and local governments, NGOs and farmers. The project creates a forum for these institutions to discuss their diverse views on the possible impact of proposed resource use interventions. Of particular importance is the collaboration/dialogues between institutions in charge of research in agriculture (BRRI in Bangladesh, CTU in Vietnam), research in aquaculture (BRFI in BD and RIA2 in Vietnam), land resource management (LGED in BD, IMRC in VN), and water management institutions (BWDB in BD, SIWRP in VN).

The inclusion of an NGO (Heed) in BD and local governments and extension services at district and provincial levels in Vietnam was pivotal to the speedy dissemination of on-farm technologies of the project. They participated in on-farm research, and organized field visits and farmer training, using existing farmer networks.

The planning and development institutions (BWDB, LGED in BD; SIWRP, IRMC, BL DARD) are both research partners and clients of the project. They supplied the project with important secondary data, gave feedbacks on research findings, and incorporated the appropriate research findings in their development activities/workplan. Top management employees of these national development and research agencies were involved in the national advisory committee (NAC) of the project.

Why is the story significant?

- The involvement of local government and NGO ensures demand-driven research and the relevance of research outputs. They also facilitate rapid uptake of technologies.
- In BD, research results encouraged BWDB to implement a project on Integrated...
Planning for Sustainable Water Management (IPSWAM) involving farmer groups in polder 30 at Batiaghata, Khulna. LGED extended its supports to determine water table elevation in Tala upazila of Satkhira district.

- Realizing the importance of and farmers’ interest in HYV, the Department of Agricultural Extension (DAE) and BWDB have taken up development interventions to reduce the flood depth in polders 22, 29 and 30 (in Khulna district) so that HYV can be grown in the wet (commonly known as aman) season.
- In Vietnam, the research findings were incorporated in the provincial land use and water management schemes.
- National agencies are sharing secondary data for developing resource management domains (RMD), hydraulic and salinity modeling.

What were the critical factors that led to the change?

- Built on partnership developed from previous projects.
- A clear understanding of roles and responsibilities of different organisations in each country and how they work/interact.
- A good ex ante analysis of uptake and impact pathway of the project findings.

What were the constraints?

- Infrastructural development requires time and resources; there is considerable time lag between planning and implementation.
- Adoption of new technologies by farmers takes a few years, therefore impacts of improved production systems may not be seen during the project period.

What are the future implications for actions (e.g., future research), if any?

- Improving coordination among the GOs, NGOs, and research and development agencies.
- Implementing an impact monitoring program and impact assessment when the project ends.

DEPLOYING GENOTYPES RESISTANT TO YELLOW RUST IN ERITREA

Classification: Technical

Person reporting The Story: M.E.H. Maatougui

Project / Theme / Basin: CPWF Project 2 / Theme 1 / Nile Basin

Date when the change occurred: 2006

Place where the change occurred: Highlands of Eritrea

The Story:

Yellow rust (*Puccinia striiformis*), alongside terminal drought, is a serious threat to wheat production in the highlands of Eritrea. Every year, outbreaks of the disease cause serious yield losses that can range from over 50% to total crop failure. Most cultivars in most wheat growing areas of the highland are highly susceptible to this disease, especially if rainfall is favorable. Although farmers are familiar with the disease, they are not aware that genetic resistance exists and can be the most reliable solution.
CPWF Project 2, for the past two years, has been exposing farmers to resistant material, introduced from ICARDA. New germplasm was planted in farmers’ initial trials (FIT) in four villages (Tera Emni, Weki, Wekerti and Tekonda) representative of 4 important sub districts of the highlands (Dubarwa, Serejeka, Dekamhare and Adi Keyh). Farmers selected for resistance against the disease, plus other agronomic characters such as earliness, plant height, spike length, spike density, grain size, and grain yield.

In 2006, twenty resistant genotypes with attractive agronomic attributes were selected by a total of 131 farmers (51 females and 80 males) from eight villages in four locations.

Farmers started to accept the existence of genetic resistance to rust and to consider the deployment of resistant germplasm. And they requested seeds of the selected genotypes. One kilogram of foundation seed was provided for multiplication for each of the 20 lines. These were distributed to farmers at the next cropping season (June-November, 2007).

Why is the story significant?
- Food insecurity is a major problem in Eritrea and officials of the Ministry of Agriculture are strongly pushing for a strategy to increase wheat production.
- The use of genetic resistance to rust is a long term, low-input intervention.
- Increased awareness of farmers on the use of resistant varieties.

What were the critical factors that led to the change?
- Farmers have seen and selected resistant, locally adapted and productive genotypes that can be used safely in their prevailing cropping conditions.
- Prices of wheat are always higher than those of barley, the dominant staple food in rural areas.
- Local demand for wheat is rising steadily as relief provisions are getting lower.

What were the constraints?
- Occurrence of the disease is natural and its severity is increasing causing recurrent crop failures.
- Local cultivars are all susceptible.
- No incentives were previously set to encourage wheat production.

What are the future implications for action?
- Identify cultivars with resistant genes and cross them with genotypes preferred by farmers.
- Organize seed multiplication of adopted genotypes in each village.
- Assist in setting up a pilot village based wheat seed enterprise.
NEW, HIGH YIELDING LENTIL VARIETY IDENTIFIED THROUGH COLLABORATION WITH FARMERS

Classification: Technical

Person reporting The Story: Salvatore Ceccarelli

Project / Theme / Basin: CPWF Project 2 / Theme 1 / Nile Basin

When the event happened: 2006

Location where it happened: Adi Logo, Wokerti and Tekonda (Eritrea)

The Story:
Lentil is an important cash crop in Eritrea but production is seriously limited by biotic stresses, the most important being fusarium wilt, rust and weeds. In 2005, a high-yielding lentil line (ILL 7978) that can contribute to sustainable farming in the highlands of Eritrea without drawing from the limited water available was identified. It yielded, under rainfed conditions and without additional inputs, nearly three times more than the local check. It was not affected by wilt and rust unlike the majority of the lines tested, and being small seeded, was the most preferred by farmers.

In 2006, the line was added as check in the initial participatory lentil trials planted in three villages - Adi Logo, Wokerti and Tekonda - under prevailing agronomic practices. At the same time the line was multiplied at ICARDA for distribution and for foundation seeds. Later that year, the line’s superiority was confirmed when it ranked first in Adi Logo and Tekonda and sixth in Wokerti. During farmers’ selection, the line received the highest or among the highest score by both men and women.

Twenty kilograms of foundation seeds were produced from the three trials and about 100kg are expected to be produced at ICARDA. The entire lot will be distributed to representative farmers of the village stakeholder committees for multiplication during the next cropping season. At least two fields in each of the three villages will be planted for demonstration and seed multiplication. The expected output of 10 quintals will benefit the village farming community.

Why is the story significant?
• The new cultivar was identified in a dry year (2005) and remained superior in 2006, when rainfall was higher. Therefore, it is likely that we identified a stable variety with higher water use efficiency.

• To meet local demand expensive imports from India and Canada have to be made, and these types of lentils are often large seeded and are not well appreciated by consumers. Price of local lentil ranged from USD2 to 2.5 per kilo in 2006.

What were the critical factors that led to the change?
• Local demand for domestic consumption of the crop.

• Testing of the line in farmers fields with farmers’ participation in evaluation and selection.

• High income opportunity; a 0.5 ha field of productive, wilt-resistant cultivar can easily produce 500 kg under rainfed conditions and without any external inputs, ensuring a higher income for the farmer.
What were the constraints?
- Unavailability of productive cultivars.
- Lack of organized seed production.

What are the future implications for action (e.g., future research), if any?
- Extend the work to more villages and provide farmers a larger number of wilt-resistant, early- to medium-maturity lentil lines.
- Help contact farmers of the village stakeholder committees to organize village based seed enterprises to multiply and distribute seed of the improved variety.
- Organize several large-scale demonstrations and field days in collaboration with contact farmers, local administrators, research leaders, extension agents, and NGOs.
- Participation of farmers in the selection process will ensure interest in seed multiplication, rapid adoption of varieties suitable to specific local conditions of different villages, and rapid impact.
- It is possible with the methodology used by the project to identify other crops which can use available water efficiently to produce good yields and boost farmers’ income.

FARMEr-TO-_FARMEr DISseMINAtION oF AlteRnAtIVe to SLASH And BURN AGRICUltURe (ROUND 2)

By: Aracely Castro, Oscar Poveda, Edwin García, Jellin Pavon, M. Ayarza and Idupulapati Rao (CIAT-Colombia; Nicaraguan Institute for Agricultural Technology (INTA); CIAT-Honduras; CORPOICA, Colombia)

Project / Theme / Basin: CPWF Project 15 / Theme 1 and 2 / Andes

Place where the change occurred: Somotillo, Department of Chinandega, northwest Nicaragua.

The Story:
Slash and burn (SB) is a traditional form of agriculture practiced by small-scale farmers in around 25% of tropical land area. Despite the short-term benefits obtained from using SB (i.e., source of firewood, source of nutrients for crop development, and reduction in incidence of pests and diseases), it is recognized as a non-sustainable, environmentally unfriendly practice that does not guarantee food security. Unfortunately, there are not many alternatives to SB agriculture, especially for small-scale farmers usually forced to produce on marginal soils on sloping lands in the tropics. In south west Honduras, in the early 1990s experts from FAO identified native farming practices and worked together

2 Production systems based on the practice of slash and burn are sustainable if fallow length is sufficient to allow the recovery of natural balances (e.g. biomass accumulation and soil fertility) between agricultural cycles. Higher pressure on forest lands due to increase on population, land use regulations and/or scarcity of suitable land are leading to shorter fallow periods that together with farming on steep slopes with poor investments in soil and water conservation, can drive to a rapid degradation of resources (i.e. deforestation, soil erosion, loss of productivity of agricultural land and decrease of biodiversity), reducing progressively the sustainability of these systems.

3 FAO-Lempira Sur Project, 1992-1999,
with farmers to develop a production system more suitable for that eco-region. The system is known as “Quesungual”, and is locally recognized as a suitable alternative to the SB traditional system (Wélchez and Cherrett, 2002).

Quesungual Slash and Mulch Agroforestry System (QSMAS) is a smallholder production system that makes use of a group of technologies for the sustainable management of water, soil and nutrient resources in drought-prone areas of hillside agroecosystems in the sub-humid tropics (Castro et al, 2008). It is based on planting annual crops with naturally regenerated trees and shrubs (FAO, 2005). QSMAS is being practiced by resource-poor smallholders in southwest Honduras to produce major staples (maize, bean, sorghum), where the system has been successfully adopted by over 7,000 resource-poor farmers on 6,000 ha. This is due to its biophysical and socioeconomic benefits at multiple scales ranging from farm level (increased crop-water productivity, food security) to landscape (better amount and quality of available water) (Ayarza and Wélchez, 2004).

One of the objectives of PN15 was to evaluate the potential suitability of QSMAS in other sub-humid tropical regions (TSBF/CIAT, 2003). In April 2005, small-scale farmers and technicians from Nicaragua visited the reference site in Honduras where QSMAS is practiced. The visitors saw the establishment of QSMAS plots and talked to local farmers about the benefits and costs of QSMAS compared to SB. The next month, two of the most involved Honduran farmers visited Nicaragua to provide training on the establishment of QSMAS validation plots. In 2006, the Nicaraguan Institute for Agricultural Technology (INTA, Spanish acronym) reported that farmers validating QSMAS were already practicing the system outside the validation plots. At the same time, other farmers in the region were also establishing QSMAS plots as a result of a farmer-to-farmer dissemination. In 2007, INTA announced that the institution was looking for additional resources in order to promote the system in other sub-humid regions of Nicaragua.

In August 2007, the 1st Regional Workshop of Farmers Practicing QSMAS was held in Somotillo with participation of farmers and technicians from Honduras and Nicaragua. Farmers shared their positive experiences together with a few valid concerns about the system. Among the many reflections, probably the most important (and the summary of this story) was expressed by a Nicaraguan farmer: “I know there is still much to be improved and learned but we already took the most important step--that is, not to use slash and burn” (García, 2007).

Why is the story significant?

PN15 experience from validation work in Nicaragua and Colombia suggests that farmers are conscious of the negative impacts caused by the use of SB system and that they are open to try new practices to replace it. Experience of Nicaraguan farmers indicates that changing from SB to QSMAS is not that difficult for farmers since they appreciate the multiple economic and environmental benefits from the system.
Was the change expected in the original project proposal?
No. The plan was to validate the system, but an early dissemination was a pleasant surprise.

Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?
INTA was already promoting technologies leading to more sustainable agriculture by promoting the use of crop residues as a part of a no-till system to replace SB and by managing natural resources at watershed level.

What are the next logical steps in carrying forward this most significant change?
One of the major conclusions of the regional workshop was that it is necessary to balance the management aspects (e.g., appropriate time and extent of slash and mulch) of trees in productive QSMAS plots. This will reduce shade and improve the supply of nutrients to the associated crop components. According to Honduran farmers, this improved management can provide additional yield benefits. Further work is needed to quantify the economic and environmental impacts of this farmer-to-farmer dissemination of QSMAS.

What were the success factors?
- INTA’s initiative to replace SB practice.
- Farmer-to-farmer exchange of knowledge and practices served as an effective tool to promote and disseminate QSMAS as an alternative to SB.
- The perception of farmers on the multiple benefits of QSMAS compared with SB.

What were the constraints that were overcome? What constraints still exist?
Practicing SB system by smallholders in sub-humid hillsides implies burning, soil losses due to erosion, yield decline over time leading to shifting cultivation. Introduction of QSMAS as an alternative helped overcome these constraints. For farmers to realize further benefits from QSMAS, there is need for intensification and diversification of the system with high value components (forage and fruit crop options). This will involve access for smallholders to credit and markets. Enabling policies are needed for payment of environmental services (PES).

Supporting documentation

Complementary documentation

THEME 2 WATER AND PEOPLE IN CATCHMENTS

THEME 2 CONCEPTUAL FRAMEWORK, ESPECIALLY THE CONCEPT OF REVERSE FLOWS

Classification: Technical

Person reporting the story: Nancy Johnson

Theme: Theme 2

Date when the change occurred: May 2003

Place where the change occurred: IFPRI, Washington DC

The Story:
The conceptual framework was a true collaborative effort between CIAT, IFPRI and ICRAF on behalf of Theme 2. The framework was successful in communicating not only the upstream-downstream relationships within catchments but also that these one-way flows can become two-way flows. The reverse flows can take many forms and people interpret them in a range of ways, from a direct financial flow such as Payment for Environmental Services, or an indirect flow of labor from lower to upper in search of income earning opportunities. The framework gets people thinking about the catchment as a system that is based upon, but more complex than, water flowing downstream.

Why is the story significant?
The framework and the concepts in it are being taken up and cited by others, mainly in workshops where it is presented.

What were the critical factors that led to the change?
Ability to bring several scientists who all had experience working on watershed issues in different contexts (one in Asia, one in Africa, one LAC) together for one day to focus just on the framework. Costs were low because it was an add-on to other trips for all concerned, but the payoffs were high.

What were the constraints?
None

What are the future implications for action (e.g., future research), if any? Framework will be published in an international journal very soon so its potential impact should grow.
PAYMENT OF ANALYTICAL SERVICES

Classification: Partnership

Name of Person Reporting: Theme 2 coordination

Date when the change occurred: June 2006

Place where the change occurred: Nairobi, Kenya

The Story:
Theme 2 hosted a project inception workshop for Payment for Environmental Services (PES) approaches to contribute to equitable and sustainable management of soil and water in upper catchments in Nairobi, Kenya from 27 to 28 June 2006. The workshop was assisted by Theme 2 project leaders, members of MSEC, MIS and AfNet (a consortium of soil scientists working in Asia, Latin América and Africa), and experts of PES in Australia, North América and Africa. They discussed how to integrate water and soil management thinking in the landscape scale, and how the technologies being developed by the projects have the potential to produce environmental services at the watershed level. As a consequence, several soil scientists became interested in the socio-economical concept of PES and how they will be able to apply it to their projects. The participants have also been motivated to write joint proposals for PES case studies.

Why is the story significant?
It is significant, because CPWF Theme 2 project leaders and the scientists of the soil research consortia got together to discuss and understand better how to tackle the problem of water and soil nutrient management in a landscape scale perspective. They are working together on how to integrate biophysical science with socio economic science in new ways.

What were the critical factors that led to the change?
The opportunity to get together to discuss new ideas and concepts.

What were the constraints?
For some soil scientists it has been difficult to understand what PES is all about. But they are working on it, and the project has an important component of capacity building that will fill this gap of knowledge.

What are the future implications for action (e.g., future research), if any?
Improved work in soil and water science.
DEEPER UNDERSTANDING OF WATER-POVERTY RELATIONSHIP

Classification: Technical

Name of Person Reporting: Nancy Johnson

Project / Theme / Basin: CPWF Project 20 / Theme 2 and Theme 5 / Andes Basin

Date when the change occurred: Summer 2005

Place where the change occurred: Fuquene watershed

The Story:
The prevailing perception in this watershed was that wealthy cattle farmers were contaminating the water in Lake Fuquene and hurting both the environment and the livelihood of the poor that depend on it. After using poverty analysis methodology that characterizes current poverty and explains changes in poverty over time, it became clear that dairy farms also had significant positive impacts on poverty alleviation: dairy farmers hire workers on good long terms contracts, from female heads of household for milking to more skilled people for administration. The results of the poverty analysis were later presented to the relevant communities.

Why is the story significant?
This was important because it has changed the way the other stakeholders viewed the dairy farmers. Appreciation of their role in poverty alleviation is one factor in shifting focus of interventions further upstream. It also affected the kinds of regulatory scenarios that might be considered welfare enhancing for the watershed.

What were the critical factors that led to the change?
Looking at poverty in a dynamic rather than a static way was critical to change. By looking at who was poor 20 years ago and who is poor now, changes in poverty status--and the causes behind them--was better understood.

What were the constraints?
We didn’t have as much participation of biophysical scientists as we would have liked.

What are the future implications for action (e.g., future research), if any?
Results were already used in design of subsequent work in the site, and have been presented and will be published in other places to share the lessons.

The following story (p. 26) on CPWF Project 20 was selected as a favorite because it is an example of the kind of cross-scale work that is so needed and that shows the possibilities of research linking with national policy.
LINKING THE LAKE AND THE PÁRAMO, AT MULTIPLE SCALES

Classification: Partnership
Name of Person Reporting: Nancy Johnson
Project / Theme / Basin: CPWF Project 20 / Theme 2 / Andes
Date when the change occurred: 2006
Place where the change occurred: Andes basin

The Story:
The main intervention we are doing in the two sites in Colombia is the conversatorio, which is a legal mechanism through which communities hold authorities accountable. Its success depends on the extent to which the community is united, technically prepared, and capable of interacting with representatives of the institutions. The project is adapting a process for preparation of local communities on all of these fronts in order to address watershed issues.

The process is led in each the sites by local NGOs, supported by a national NGO and the research organisations. In one watershed, the NGO was mainly focused on the lake at the bottom of the watershed, while in the other it was an NGO from the páramos of the uppermost area. Bringing these two together, through the support of the national NGO, has led to a strong collaboration and to new perspectives on the importance of linking upper and lower parts of watersheds. In addition to their links with each other, the wetland NGO now works in upper areas and the páramo NGO now has contacts with the irrigation districts of the lower part of its watershed.

At least in Fúquene, this is also reflected in changes in the way that communities perceive things. In a prioritization exercise to determine what topics would be addressed in the conversatorio, fisher communities gave priority to problems faced by upstream communities because they recognized that by working with those communities to solve their problems of unsustainable agricultural expansion, they would indirectly be solving their own problems of water contamination. This in spite of the fact that a fisheries biologist with whom they worked closely was pushing them to give priority to a downstream fish and water quality monitoring systems!

The realization that upstream issues were important also spurred the downstream NGO to try and influence policy makers to take action in upstream areas. One area is land use regulations in páramos. The NGO is supporting the idea of environmental service payments for adopting sustainable practices in appropriate areas. Another area is water treatment. None of the water treatment plants in the rural communities is working and this is a major source of pollution downstream.

In another site in Coello, Tolima, there was very little contact between the upper and the lower parts. Through this project and the intervention of CIAT’s rice project, a contact was made. Someone from the rice growers’ association participated in a watershed expedition that involved about 30 people from different parts of the watershed visiting it together. As a result they became aware of the threats to their water supply due to upstream land use practices, and are now active participants in the basin dialogues coordinated by the NGO.
Why is the story significant?
It shows new relationships and changes in attitudes that should continue beyond the life of the project.

What were the critical factors that led to the change?
Opportunity to focus on something beyond their original geographical and technical areas of expertise

What were the constraints?
The two local NGOs competed for time and attention with the national NGO. In some ways this brought them closer since but the national NGO does favor one over the other which is always a problem.

What are the future implications for action (e.g., future research), if any?
Presumably both will continue to use a watershed perspective within their work. One thing I wonder about is how the communities will feel about the linkages they discovered. For example, the fishers see that their problems will be solved upstream. But will they support drastic upstream solutions like banning all agriculture at the expense of upstream welfare? How the alliances among stakeholder groups play out over time will be interesting to watch.

MÚLTIPLE USE WATER SERVICES (MUS)

Classification: Technical

Name of Person Reporting: Barbara van Koppen

Project / Theme / Basin: PN28 / Theme 2 / Andes, Indus-Ganges, Limpopo, Mekong, Nile

Date when the change occurred: Since inception phase of the project

Place where the change occurred: Governments of Colombia, South Africa, Zimbabwe, and Thailand

The Story: Conventional water development is sector-based (either domestic or irrigation) but water users normally use schemes for multiple purposes and multi-faceted livelihoods.

CPWF Project 28 showed evidence of community-level cases of multiple use water services. It was clear that planning and design of water services for multiple needs of the poor can improve wellbeing. Women’s participation in planning also enhances institutional and financial sustainability of multiple use water services, and improves water efficiency and equity at low incremental cost.

The governments of Colombia, South Africa, Zimbabwe, and Thailand have taken up recommendations of CPWF Project 28 and have adapted a national policy towards planning and implementation of multiple water uses. The government of South Africa has drafted national guidelines for multiple water use services and is testing these in pilot projects with local governments. In Zimbabwe there is a proposed law incorporating MUS.

Dialogue with global water sector leaders in both domestic and productive sectors and with national and local partners has led to uptake or strengthening of multiple-use ap-
proaches (World Water Forum IV, WSP, IFAD, global NGOS, Winrock, GWP, ICID, Stockholm Water Week, Gates Foundation, etc).

Other impacts are implicit and not necessarily documented, but not less effective, such as:

- The allocation by WWF4 of a topic Session on MUS in a highly competitive process
- Joint policy briefs e.g. GWP reports how MUS is now more widely seen as IWRM.
- There are high-level discussions in Colombia (with Ines Restrepo) on water quantity norms for domestic schemes. However, changing laws can last longer than the duration of the project.
- In Nepal, high-level irrigation engineering officials said in meetings that they will “close their eyes” if an irrigation scheme is used for domestic purposes. This is an informal commitment that is not easy to document, but may be much more effective than a change in the Zimbabwean water law!
- The Thai government has embraced the multiple-use water tanks and other investments for homestead production by the Farmer Wisdom Network, (which is supported by the MUS project) for the national economic sufficiency policy. We are documenting this process, but, in general, governments do not like to be told by others what they have to do, so any documentation of change has to be much more subtle. In fact, our approach with ‘Learning Alliances’ is exactly to create ownership and fully adapt according to national stakeholders’ commitments
- The project has been invited to the Collaborative Council on (domestic) Water Supply—another key player taking up the concept, and IFAD is also showing more interest in the project.

Why is the story significant?

- Implementation of multiple-use water services approaches alleviates rural and peri-urban poverty.
- It highlights the extent of collaborative efforts pertaining to MUS. To date there are many written advocacy papers and joint publications on MUS approaches.

What were the critical factors that led to the change?

- Strategic partnership between domestic and productive water sectors to jointly identify obstacles to sector-based planning and untapped synergy of cross-sectoral collaboration.
- The common CPWF action-research framework shared among projects for cross-basin comparisons across eight countries.

What were the constraints?

Limited capacity and institutional space to implement participatory planning for identification of local-specific water needs, building ownership, and upscaling.

What are the future implications for action (e.g., future research), if any?

Further action research from local to global level to corroborate advocacy and develop upscalable participatory water planning and design approaches.
The Story:

One of the health issues in multiple use of water services is the provision of good quality water for drinking (Boelee et al. 2007). Even if the system is intended for domestic purposes, water at the point of use is often polluted during transport and storage (Scheelbeek 2005). Irrigation systems and surface water sources are usually not suitable for drinking but in many cases people have no alternative but to use it (Jeths 2006). In recent years point-of-use home water treatment has been promoted as a way of ensuring safe water consumption at the point where it is used. This is especially relevant for multiple use water services because then a relatively low water quality can be delivered via the central system and only the amount of water used for consumption has to be treated. Available technologies include various combinations of water storage and treatment at a wide range of cost.

In the Legebatu watershed near the town of Ginchi in Ethiopia, the main water source is a river that is polluted by people and livestock. In addition there are a few springs, equally contaminated, and one stand post near the church that is too far for most people. Colleagues from ILRI had developed a simple sand filter for clay pots and found that it was 90% effective in reducing pollution. Under the MUS project, 40 of these filtration pots were distributed among pre-selected households with small children. Students of Addis Ababa University monitored water quality in the main water sources and at household level before and after filtration. Results showed that most of the pollution of water sources was from human rather than livestock origin, indicating a need for sanitation (Million 2008). The 40 filtration pots were highly effective (95-98%) in reducing pollution from bacteria, parasites and turbidity (Guchi 2008). Most users were happy with the pots (Cousins 2007).

The Ethiopian Red Cross Society, though not involved in the project, decided to take up this technology and distribute 500 filtration pots. This organization was part of the personal network of the student who did the water quality analyses in the 40 households.

Was the change expected in the original project proposal?

No, the study that led to this change was added to the project later. Under CPWF Project 28, the MUS project, the earlier developed filtration pots were tested scientifically at household level in 40 families.

Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?

Yes, the original design of the sand filtration pot was done by Abiye Astatke in ILRI, who
also carried out the first survey of water sources in the area.

What are the next logical steps in carrying forward this most significant change?
Ensure that others in Ethiopia and beyond find out about this technique. This will be done by presentations at national meetings and by publishing internationally.

What were the success factors?
The technique was very appropriate, serving not only health purposes by providing safe drinking water, but also being of practical use by keeping the water cool and making it easy to take water out by using the hose. As opposed to other methods of home water treatment, these filtration pots are well adapted to the local context and can be made with locally available materials and local expertise. The MUS project made sure the efficacy of the filtration pots was tested in a scientific way. Local players were involved and networks with national players built.

What were the constraints that were overcome? What constraints still exist?
The original design was adapted to make it more user-friendly. A main constraint is lack of understanding about maintenance of the filtration pots and poor sanitary behavior.

Relevant project outputs and references
Boelee, E., Leta, S., Guchi, E., Million, B., Cousins, C. 2008. 'Mitigating poor water quality by point-of-use treatment in Ethiopia'. Abstract submitted to Ecohealth Forum 2008; Theme 'Ecosystems and environmental pollution'; Sub theme 'Not enough to drink: water scarcity and quality'.
Guchi, E. 2007. 'Evaluating the efficiency of slow sand filtration in clay pots in removing coliform bacteria and turbidity from drinking water at household level and assessment of the contamination level at the point-of-use at home in the central highlands of Ethiopia' MSc thesis Applied Microbiology, Addis Ababa University.
IWMI, IRC, GWP. 2006. 'Taking a multiple-use approach to meeting the water needs of poor communities brings multiple benefits'. IWMI Water Policy Briefing 18. 6pp. Contents and text developed by Carriger, S., Boelee, E., van Koppen, B. IWMI

This is an associated output, related to but not part of the MUS project (i.e. not funded by us).
Million, B. 2008. ‘Assessment of the contamination level of water at collection points and determination of the major sources of contaminants in the central highlands of Ethiopia (Yubdo Legebatu PA). MSc thesis in preparatio, Applied Microbiology, A.A. University.
Renwick M et al. 2007. ‘Multiple Use Water Services for the poor: Assessing the state of knowledge’, Final report to the Bill and Melinda Gates Foundation. Winrock International

The following CPWF Project 24 story was selected as a favourite by the management team member responsible for gender, institutions and participation because it shows how proponents negotiated and struggled to seek solutions to earlier problems in order to effect change. It demonstrates an iterative approach in action.

THE LONG ROAD FOR PARTICIPATORY TECHNOLOGY DEVELOPMENT (PTD) IN IRAN

Classification: Technical and Partnership
Name of person reporting: Juergen Anthofer, Seyed Babak Moosavi, Yagyoub Norouzi & Francis Turkelboom
Project / Theme / Basin: CPWF Project 24 / Theme 2 / Karkheh River Basin
Date when the change occurred: Sep 2004 until now
Place where the change occurred: Iran

The Story:
Introduction of participatory technology development (PTD) approaches for land and water management was one of the main goals of the project since its onset. In preparatory discussions, this need was felt because, despite excellent research expertise available in Iran, integrated solutions which directly benefit farmers are often lacking. At first, training courses about participatory approaches were organized (‘Participatory diagnosis’, ‘Building on local innovations’, ‘PTD’). While this created a lot of interest and enthusiasm, it appeared to be difficult for many researchers to apply these new approaches without intensive backstopping and institutional support. Involved research institutes were testing their own technologies on-farm, but identified local innovations were hardly considered in the trials. Moreover, the trials were fully researcher-designed, and interaction between farmers and researchers were largely restricted to those farmers hosting the trials. Furthermore, the Extension Department and other stakeholders were not involved. Thus, it was felt that a more institutional approach was needed.

In mid 2006, a special project activity on PTD was launched to increase farmer par-
ticipation and to enhance inter-institutional linkages. The PTD approach was meant to overcome the above shortcomings through intensified farmer participation and increased inter-disciplinary collaboration during the trials. A new research partner, the Rural Research Centre (RRC) was invited to lead the PTD activity, with assistance of ICARDA. This was a timely move, as RRC had recently received the national mandate to stimulate the use of participatory approaches in Iran. The PTD team has been building linkages between the different Iranian agricultural research institutes, and has been collaborating with extension and a local NGO, CENESTA. Links with other ICARDA-managed projects have also been established: some activities of the water productivity project (CPWF Project 8) and the participatory plant breeding project have been incorporated into the PTD framework.

A one-week planning workshop was conducted at RRC, using problem and objective trees and transforming the results to a project planning matrix for the whole project period. Monitoring criteria were developed and a national and two provincial PTD teams for the two project sites were formed, comprising of RRC staff and additional experts from different disciplines. To begin with, existing ‘best bet’ options were introduced in four PTD pilot villages and explained by a team of researchers and extension staff. The teams were supported by farmers who had hosted experiments of these technologies in the previous year to share their experience with the other farmers. During long discussions with farmers, it was explained that farmers were not asked to participate to work for the project, but that they were invited to participate based on their own interest and benefit. Hence, all financial and material incentives were reduced to the absolute minimum. After clarifying the approach, farmers chose those technologies they were interested in. A few weeks later, follow-up meetings were conducted in the villages to explain the field layout and the procedure of implementation. Trials were simplified to make monitoring by farmers possible. The provincial PTD teams are now following up the trials and have intensive contacts with farmers collecting their views. Technologies which are now being tested are: 1) wheat or barley inoculated with Azotobacter and 2) wheat varieties (with PPB ICARDA and CENESTA). Existing researcher-managed on-farm trials on chickpea varieties and supplementary irrigation (by CPWF Project 8) will be included in next season’s farmer-to-farmer cross visits and modified towards a more farmer-managed setup. For all these experiments, water use efficiency will be proposed as one of the criteria to participatory evaluate the technologies in this water-scarce environment. This will enable us to compare all the tested interventions on basis of water use efficiency.

In an additional step, the provincial PTD teams plan to work on community related issues in the four PTD villages. Starting in April 2007, the teams will develop venn-diagrams to identify local institutions and stakeholders, which are important for agricultural development and natural resources management. Furthermore, water and nutrient resources and their flows will be mapped jointly with gender specific user groups in the communities. These activities are expected to provide the basis for guidelines towards better utilization of water and other natural resources on the community level, and will be one of the building blocks for the watershed management plans.

Why is the story significant?

It shows that institutional collaboration is important to overcome constraints to the introduction of participatory approaches. It is hoped that this activity will lead to a more increased demand-driven, inter-disciplinary research agenda for the dry mountains of Iran.
What were the critical factors that led to the change?
- Realization that training workshops had hardly changed the work approach of the researchers.
- Realization that farmers had not perceived ownership over the researcher-designed field trials.
- Involvement of one Iranian project partner with the national mandate for PTD.
- Collaboration with Extension, CENESTA and other ICARDA projects.
- The full-time involvement of an ICARDA staff on this work.

What were the constraints?
- Researchers in Iran are used to work mainly within their discipline and direct interaction with farmers is rather limited.
- The fear of many researchers not to produce sufficient data for publications. Presentations and discussions with researchers by ICARDA and the PTD teams were important to clarify ways how PTD could be incorporated in the regular research agenda.
- Farmers are used to receive incentives for cooperation and do normally not perceive researchers’ experiments as their own.

What are the future implications for action (e.g., future research), if any?
- The next step is a follow-up workshop on PTD with special emphasis on participatory experimentation, monitoring and evaluation and on community approaches.
- The PTD teams will go through participatory community assessments of the four pilot villages.
- Field days and farmer cross-visits, not only to explain technologies, but also to facilitate a critical discussion between farmers, extension staff and researchers of various disciplines about possible options.
- Change from complex researcher-managed trials to adaptive simplified trials which are increasingly managed by the farmers.

MAINESTREAMING CAPACITY BUILDING IN FOOD AND WATER RESEARCH IN THE LIMPOPO BASIN

Classification: Technical

Name of person reporting the story: Bekithemba Gumbo, Washington Nyabeze and David Love

Project / Theme / Basin: CPWF Project 17 / Theme 2 / Limpopo

Date when the change occurred: throughout the duration of the project

Place where the change occurred: Integral to all field sites in Mozambique (Chókwê), South Africa (Olifants B72A) and Zimbabwe (Mzingwane).

The Story:
Too often capacity building is seen as add-on to research; a follow-up activity in which the main researchers are uninvolved or uninterested. As an alternative, WaterNet’s approach is to integrate capacity building into research activities from planning stage onwards. WaterNet’s mission is to strengthen regional capacity in integrated water resources management through education, training, research and outreach by drawing from the com-
plementary strengths of its 52 member institutions. CPWF Project 17, from its inception, has integrated WaterNet’s capacity building programmes in Southern Africa in its own work.

Key research in CPWF Project 17 is undertaken by six Ph.D. fellows, registered at WaterNet member institutions and supervised by scientists from member universities and CGIAR centres within the project. Each PhD fellow is linked to Masters’ students who undertake their dissertation projects within the project. Many of these students come from the WaterNet regional masters programme in Integrated Water Resources Management core hosted by the Universities of Dar-es-Salaam and Zimbabwe, supported by four other regional universities hosting the specialisation modules of the programme. Others come from programmes at other WaterNet member institutions, namely Eduardo Mondlane University, Mozambique, and the University of the Witwatersrand, South Africa. They are supervised by PhD fellows and scientists from these universities and CGIAR centres in CPWF Project 17. To date, 15 Masters students have graduated and 11 are currently working on their dissertations.

A particular benefit is the development of trans-disciplinary scientific teams for the supervision of students and the guiding of community training. This is made possible by the broad nature of the project partnership, backed up by the wider WaterNet membership. The involvement of scientists in the supervision of research and capacity building projects at different scales, from farmer’s fields to river basins, helps develop core capacity with an appreciation of the challenges and linkages at the different scales within the basin.

Why is the story significant?

WaterNet’s core mission is capacity building. By building partnerships with CGIAR centres (through the CPWF) this capacity building effort benefits as follows:

- Capacity building is aided by access to senior scientists. Many universities in southern Africa are facing chronic shortages of senior academic staff, so the involvement of CGIAR scientists in supervision of masters and PhD students benefits these departments. In practical terms, it means (i) a sharing of the supervision load for university departments which are short-staffed and (ii) input is made available to students from more senior staff. Beyond this immediate practical consideration, all participating departments (students and supervisors) are enriched by the interactions with CGIAR scientists who come with a different approach and often from different backgrounds. This enrichment works in both directions.

- Capacity building contributes to integrated water and food research. Linkages between WaterNet-member NARES institutes and CGIAR centres are also promoted, as well as linkages between WaterNet and key government departments.

- A better understanding of capacity building needs in Integrated Water Resources Management is being developed.
The following are examples of this type of partnership in supervision:

<table>
<thead>
<tr>
<th>Student</th>
<th>University</th>
<th>CGIAR scientists who are co-supervisors</th>
<th>Difference made (value added)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walter Mupangwa</td>
<td>University of the Free State, South Africa</td>
<td>Steve Twomlow, ICRISAT</td>
<td>Expertise in soil/water management techniques</td>
</tr>
<tr>
<td>Manuel Magombeyi</td>
<td>University of the Witwatersrand</td>
<td>Dominique Rollin, IWMI (Replaced by Christian Cheron) Sylvie Morardet, IWM</td>
<td>Expertise in agronomy and socio-economics</td>
</tr>
<tr>
<td>Brenda Chibulu</td>
<td>University of Zimbabwe</td>
<td>Steve Twomlow, ICRISAT</td>
<td>Expertise in soil/water management techniques</td>
</tr>
<tr>
<td>Clever Dhliwayo</td>
<td>University of Zimbabwe</td>
<td>Steve Twomlow, ICRISAT</td>
<td>Expertise in soil/water management techniques</td>
</tr>
<tr>
<td>Jean-Marc Mwenge Kahinda</td>
<td>University of Zimbabwe</td>
<td>John Dimes, ICRISAT</td>
<td>Modelling expertise which student did not have access to</td>
</tr>
<tr>
<td>Osten Ntsheme</td>
<td>University of Zimbabwe</td>
<td>Dominique Rollin, IWMI</td>
<td>Expertise in agronomy</td>
</tr>
<tr>
<td>Lucky Nyalungu</td>
<td>University of Limpopo, South Africa</td>
<td>Dominique Rollin, IWMI</td>
<td>Expertise in agronomy</td>
</tr>
</tbody>
</table>

What were the critical factors that led to the change?
CPWF Project 17 brought together a large number of partners that had previously not worked together. The capacity building strategy was developed in order to (i) roll out the capacity building component, (ii) direct that effort towards integrated food, land and water research capacities, (iii) ensure the collaboration of NARES and CGIAR centres in the capacity building effort and (iv) assist in data collection.

What were the constraints?
Different organisational and disciplinary cultures can be a constraining factor to collaboration between scientists in the co-supervision/mentorship of juniors. At a strategic level, it is not always easy to merge capacity building objectives and research objectives, and degree project and overall research project time lines are not fully compatible. Furthermore, impact of capacity building on livelihood require more time than the normal time scale of conventional project planning.
What are the future implications for action (e.g., future research), if any?
The capacity building strategy and partnership is being further developed to improve communication and co-supervision between project partners. Efforts under consideration for the future include:

- Mentoring of students in writing scientific articles.
- Ensuring all PhD students are linked every year with a number of MSc students.
- Involving researchers in training on editing and reviewing scientific articles.
- Engagement of senior specialists in synthesis activities.
- Repackaging research outputs to inform a broader stakeholder platform i.e. beyond the scientists.

ALLUVIAL AQUIFERS FOR HIGH VALUE CROP PRODUCTION IN THE SEMI-ARID REGIONS (ROUND 2)

By: David Love, Bongani Ncube

Project / Theme / Basin: CPWF Project 17 / Theme 2 / Limpopo Basin

Date when the change occurred: This is work which started at the beginning of the last field season (October 2007) and is ongoing.

Place where the change occurred: Malala and Tshelanyemba, Mzingwane Catchment, northern Limpopo Basin, Zimbabwe.

The Story:
CPWF Project 17 teamed up with a non-governmental organisation and a private company to develop and improve the production of high value crops using water from alluvial aquifers at two sites in the Mzingwane Catchment, northern Limpopo Basin, Zimbabwe. The two sites are at Malala in the Beitbridge District, and Tshelanyemba in the Matobo District. An alluvial aquifer can be described as an unconfined groundwater unit that is hosted in horizontally discontinuous layers of sand, silt and clay, deposited by a river in a river channel, banks or flood plain. The alluvial aquifers are recharged by rivers. Groundwater flow in alluvial aquifers is an extension of surface flow. The alluvial aquifers of the Mzingwane Catchment are the most extensive of any tributaries in the Limpopo Basin and these aquifers, coupled with good alluvial soils, provide great potential for agricultural development (A036, P37)

The Lower Mzingwane alluvial aquifer has been used for decades for commercial irrigation. However, downstream of the commercial farms are extremely poor communal lands, whose smallholder farmers rely on rainfed crop production and livestock-rearing for their livelihoods (P36). A hydrogeological research programme was undertaken in the Malala area by an MSc student and a PhD fellow from the project, using geophysical methods and analyses of geological boundary conditions. This research resulted in the delineation and characterisation of the Malala alluvial aquifer as a high potential site for water supply (D27). Work is in progress to establish the additional area which could be irrigated from the alluvial aquifers, as well as the downstream implications (C04). This would be along the river reaches within the communal lands, as opposed to commercial farm land.

CPWF Project 17 is now working with a private company that operates a juice factory

6These codes refer to knowledge outputs of CPWF Project 17 which are listed at the end of the story.
to (i) determine if the Malala area is suitable for citrus outgrowing and (ii) intensify the exploration programme to identify other suitable sites in the area.

At Tshelanyemba, local farmers have been trained and supported by the NGO Dabane Trust to access water from alluvial aquifers of the Tshawane River for horticultural production. The production system involves drawing water from the riverbed using simple pumps that can be easily operated even by women farmers. CPWF Project 17 has set up two programmes to support these farmers: (i) additional extension, notably in pest management, to improve yields and (ii) farmer exchange visits. The first visit was to take the farmers to Murehwa in rural northern Zimbabwe, where local farmers have grouped together to market their horticultural produce to supermarkets in the capital city, Harare. CPWF Project 17 and Dabane Trust are working to link farmers to local markets where they can sell their produce and earn money that will improve their livelihoods.

Why is the story significant?
This work brings together primary hydrogeological research, capacity building through student training, capacity building of farmers in horticultural production from alluvial aquifers and linking farmers to markets. It represents both an interesting area of hydrogeological science and a very practical manner of improving rural livelihoods.

What were the critical factors that led to the change?
This is an opportunity that has arisen partly by design - the work on alluvial aquifers and smallholder agricultural production was part of the project proposal - and partly by coincidence with the interest of the juice factory. The study of alluvial aquifers provided the juice factory with information that could help it target their site selection for their growers.

What were the constraints?
Work became severely constrained by the current ban on NGO activities in rural Zimbabwe during mid-2008. The current political climate makes the stage of the Tshelanyemba work impossible: field visits by farmers from Tshelanyemba, an opposition stronghold, to Murehwa, a government stronghold, is impossible. The first visit was cancelled at the last minute. Further scientific work has not been possible as the principal partner in this work (the University of Zimbabwe’s Mineral Resources Centre) no longer has staff to continue the work (one full-time and two part-time lecturers in post, out of an establishment of twenty-one lecturers).

What are the future implications for action (e.g., future research), if any?
Implementation of the Malala programme will continue and be written up as (i) a policy brief and (ii) a scientific article (P57). Regrettably the current political climate in Zimbabwe and the staff shortage at the University of Zimbabwe make it very difficult to resume fieldwork or practical development with the juice factory, but should there be improvements before the end of the project, the work will be revived.
Supplementary Material: PN17 Knowledge outputs cited

Supplementary Material: Illustrations

Use of geophysics in groundwater exploration: Lower apparent resistivity indicates saturated sand; at Malala the depth of saturated sand (i.e. aquifer) becomes significantly greater downstream of a dolerite dyke.

Dolerite dyke crossing the Mzingwane River: The higher competence (resistance to erosion) of the dolerite compared to the country rock leads to deep erosion on each side of the dyke and thus deeper sands to host the aquifer.

MSc student carrying out geophysical research. At the Malala site, MSc student Taurai Masvopo carried out tens of resistivity surveys to establish the depth of the sand.

Hand pump to access water form an alluvial aquifer. These are very easy to use, as shown by the children. This pump is at a Dabane Trust supported garden at Tshelanyemba.

Please note that if you wish to use any of the photos you should contact us first as for some of them the copyright is held by Dabane and their permission would be required for further use.
EVALUATION OF LOW HEAD DRIP IRRIGATION KITS AND THEIR DISTRIBUTION BY NGO PROGRAMS

Classification: Technical

Name of Person Reporting: Bekithemba Gumbo / Washington Nyabeze / David Love

Project / Theme / Basin: CPWF Project 17 / Theme 2 / Limpopo

Date when the change occurred: Study covered 2004-5 and 2005-6

Place where the change occurred: Mzingwane Catchment, Zimbabwe

The Story:

The studies featured in this story are part of CPWF Project 17’s wide-scale purpose to address water resource management at the catchment and basin scales. This project, focusing on two studies on low head drip irrigation, is among the various graduate student studies of agricultural practices, water, and nutrient use.

The first study was an on-farm comparative investigation of water efficiencies and crop productivity at Zhulube irrigation scheme, upper Mzingwane Subcatchment, Zimbabwe, and showed water saving of more than 50 percent under drip compared to surface irrigation, but no significant differences in vegetable yield or labour.

The second study was a survey of 114 households in Mzingwane Catchment, Zimbabwe, which were beneficiaries of drip kit distribution by NGOs (under other projects). It was determined that only two percent of the beneficiaries had used the kit to produce the expected five harvests over two years, owing to problems related to water shortage, access to water and also pests and diseases. About 51% of the respondents had produced at least three harvests and 86% produced at least two harvests. Due to water shortages during the dry season 61% of crops produced with the drip kit occurred during the wet season. This suggests that most households use the drip kits as a means of supplemental irrigation. Conflicts between beneficiaries and water point committees or other water users developed in some areas especially during the dry season.

Why is the story significant?

The results show that although drip kit distribution programs in the study area have achieved some of their objectives and save around 50% on water use, drip kits are under-performing due primarily to poor access to water. Many of the poorest farmers share water resources with other irrigators and with other, higher priority uses, such as livestock watering and domestic use. It is therefore not suitable to offer drip kits to the poorest of the community without improving their access to water at the same time. Poor monitoring and lack of back up, such as spares, was also a problem. This could reflect the manner in which the distribution programmes were carried out by many of the implementing agencies, seeing drip kit distribution as a relief effort and not as a development programme.

What were the critical factors that led to the change?

This research effort was designed to evaluate drip kit distribution and usage, in order to improve (i) drip kit usage by farmers and (ii) drip kit distribution by NGOs. It forms part of Project 17’s Output 1 (Constraints and Opportunities of Current Agricultural Practice).
What were the constraints?
Poor access to water, insufficient materials (spares), and problems with pests and diseases

What are the future implications for action (e.g., future research), if any?
A protocol for sustainable drip kit distribution programs for use by NGOs has been developed. This protocol has been adopted by a number of NGOs in Zimbabwe. Additionally, two of the project partners are extending these studies to regions outside the Limpopo Basin (under another project).

NEGOTIATING WATERSHED MANAGEMENT ALTERNATIVES

Classification: Technical and partnership

Name of Person Reporting: F. Bousquet

Project / Theme / Basin: CPWF Project 25 / Theme 2 / Mekong

Date when the change occurred: 2005/2006 to date

Place where the change occurred: North Thailand, Mae Salaep watershed

The Story:
A companion modelling process was run in this watershed. During the third cycle of this process people had exchanges about water management. A workshop based on the use of models was organised in July 2005.

A game session highlighted the problem of unequal access to water. Three well-off farmers (including the TAO representative) urged to plug their pipes into the two creeks of the game board, and prevented other players from putting new pipes in the upstream sections. Therefore only three out of twelve players had access to irrigation water. This first game session was followed by a short debriefing for players to exchange their views on the water problem and to identify possible solutions. The TAO representative then summarized the situation by saying that there were two problems: the lack of water, and the plots located above the streams.

The TAO representative suggested building a large reservoir above the village, a project which he already presented to the Irrigation Department, and was rejected. The other participants looked skeptical about this suggestion as it would benefit only a minority of farmers, but none of them openly expressed any disagreement. When the facilitator asked for other suggestions, a leader suggested to build small weirs on several creeks and to share the water within small user groups of three to four households. The facilitator made the participants vote by a show of hands: all (including the TAO representative) participants agreed on this second suggestion, except a participant whose plots were located above the streams. There were further discussions among the participants and they decided to test this scenario and associated water allocation rules in the game.

When the participants presented their suggestion to the TAO President, she did not really reply to the suggestion and explained that villagers should remember that they have no land titles and be aware that they might be relocated from the highlands one day, so they
should wait for water management plan at the national level before taking any decision. After her intervention, the players decided to test their preferred scenario anyway during the afternoon gaming session.

Two small weirs were added across the two creeks of the gaming board. The TAO representative dominated the discussions and suggested that if such infrastructures were built, water should be allocated proportionally to the size of farmers’ plantations, i.e. a water sharing rule favouring the well-off farmers. No one contested this suggestion at first.

But three weeks later, when new sessions of participatory simulations among smaller and homogeneous groups were conducted, villagers had continued to discuss among them and agreed on another way to share the water if the small weirs were built. They suggested to allocate the same amount of water to each beneficiary of the weir, with the possibility to lend temporary water rights to other members in case of excess. The TAO representative tried again to make his point (saying that “poor villagers are not ready for irrigation”) and never really agreed with the majority.

Three months later, the TAO representative was about to present a project to the TAO council which looked much more like his initial suggestion - a single reservoir above the village - than the agreed upon collective option of small weirs negotiated during the companion modeling exchange. But this was shelved and ten months later the TAO representative and the leader had finally collaborated to design a new project merging ideas from both options, and still favouring the powerless people who do not have access to water.

Why is the story significant?
Because it illustrates how the companion modelling methodology helped mediation among different actors and lead to concrete agreements.

What were the critical factors that led to the change?
The model (presented as a role-playing game and a computer simulation) put people in a virtual world in which they can act and talk without concrete consequences.

What were the constraints?
The distribution of power.

What are the future implications for action (e.g., future research), if any?
Follow-up of the process to see if the common project is actually implemented and how it is concretely managed.
MAKING OF A WATERSHED MANAGEMENT COMMITTEE (ROUND 2)

Name of the Person Reporting: Tayan Raj Gurung/Aita Kumar Bhujyel/Gyembo Dorji

Project / Theme / Basin: CPWF Project 25 / Theme 2 / Mekong

Date when change occurred: Study period 2003-2008

Place where the change occurred: Lingmuteychu watershed, Punakha, Bhutan

The Story:
For all the rice farming communities, the conflict over irrigation water is not new. Similarly in small and remote Bhutanese villages located at over 2300 masl, a relentless conflict about sharing irrigation water has been going on for generations and has caused social tension between communities. Limbukha and Dompola are two villages in the upper catchment of Lingmuteychu watershed. Every year during rice transplanting season, conflict flares.

Water rights are governed by traditional rules associated to feudal systems, inheritable and attached to wetland. Four categories of irrigators exist: Thruelpa (original tax payer); Cheep and Chatro (share from inheritance); and, Langchu (who do not have access to water and depend on surplus). The release of water for Dompola village, located in the lower catchment, is controlled by Limbukha village. The rigidity of age old rules and their maintenance by the legal system has favoured some section of society while the majority suffers from lack of irrigation water. The issue was highlighted by the diagnostic study done in 1997 by Renewable Natural Resource Research Center in Wangdiphodrang.

In May 2003 researchers introduced the Companion Modeling approach to examine water sharing arrangement between the two villages. The study managed to bring the two conflicting communities together to discuss and collectively develop solutions. Participating farmers requested that the role-playing game they played in May be played again in the presence of government officials and representatives of five downstream villages. This happened in December. As a result the seven communities requested that a third workshop be organized, which took place in April 2005, attended by three members from each of the seven villages in the Lingmuteychu watershed.

Why is the story significant?
What started as a localized issue between two villages in 2003 gradually developed into an initiative involving all the communities in the watershed. The process built a collective sense of responsibility for water management and sharing and was closely observed by development agencies. The three role-playing games were remarkable in the history of Lingmateychu watershed and can be considered as a breakthrough in the mediation process of developing efficient water sharing systems. The two noteworthy proposals of the workshop were: (i) Limbukha will release irrigation water five days earlier than previously; and, (ii) to constitute a management committee at watershed level to promote and oversee the watershed management activities.

The process helped people to realize the importance of common understanding, mediation and co-management. Subsequently, the watershed management committee was formed from an elected representative from each of the seven villages to manage water based on agreed by-laws. This committee is first of its kind in Bhutan. The committee has secured grant from the Small Grant Program of GEF/UNDP to implement the watershed management activities.
What were the critical factors that led to the change?
The principle factor can be attributed to the process of collective learning that led community members to propose, agree and institute a committee to collectively manage water. The policy and institutional support was one of the prominent factor that facilitated the process.

The legitimacy of the problem, which was a bottleneck to development and social networks, was another driver of change.

What were the constraints?
Declining water source, excessive use by upstream communities, administrative hurdles in improving the irrigation systems, and no legal procedures to resolve conflict in water sharing.

What are the future implications for action (e.g., future research), if any?
Through the formation of the water management committee, irrigation water in the watershed has become a collective or communal resource. This implies that all farmers have equal rights and so will start demanding equal access, which may not be practical for operational reasons. Therefore it will be useful to study how the management committee can manage already declining water resource.

The functioning of the management committee is another area for study, to help ensure that it does not become yet another hurdle to in an already tense water sharing system.
THEME 3 AQUATIC ECOSYSTEM AND FISHERIES

USING AN IMPACT PATHWAYS APPROACH TO IDENTIFY PRIORITY INTERVENTIONS AT CENTER, DISCIPLINE AND CP LEVELS

Classification: Management and Coordination
Name of Person Reporting: Malcolm Beveridge (Theme 3 Management Team)
Project / Theme / Basin: Theme 3
Date when the change occurred: September 2006
Place where the change occurred: Throughout all areas of work related to aquaculture

The Story:
The WorldFish Center promotes the use of aquaculture to tackle poverty. Specifically, it uses aquaculture to directly and indirectly make substantial contributions to the development of sustainable, resilient livelihoods, create employment and stimulate economic growth and improve the nutrition of many millions of poor people. However, while aquaculture has fulfilled its promise in many parts of Asia, in sub-Saharan Africa its successes, like those of attempts to increase agricultural output, were mixed. As a result of our experiences working with the Challenge Program on Water and Food, we decided that using an Impact Pathways approach to identify priority interventions could prove useful in showing where we should focus our research efforts and on how we build partnerships to scale up and out impacts from research projects.

The Problem tree for aquaculture asserts that the key problem is that aquaculture cannot substantially help poor people escape from poverty, and employs an IP approach to tease out the causal links. By stating the reverse, for example, by asserting that aquaculture substantially helps poor people escape from poverty, and by mapping the causal links, we can identify the types of broad, high impact interventions required to effect the uptake of aquaculture as a cost-effective means of addressing poverty. The Problem Tree helped identify four key thematic areas:

• **Aquaculture as an engine for rural economic development.** Poor people often have the resources and skills to use aquaculture to help lift themselves out of poverty. However, there can also be barriers to the adoption of aquaculture by the poor, including poor education and health, access to resources and input and output markets, technological knowledge and management skills, a poor enabling environment and political and social constraints.

• **Development and dissemination of sustainable aquaculture technologies.** Aquaculture is still in its infancy. Many emergent new technologies promote better use of resources and reduced demands on environmental services, increased productivity and production, and result in cheaper products. Efforts are needed to ensure greater access to these technologies, especially quality seed and feeds, constraints to aquaculture fulfilling its potential to help people escape from poverty, that we believe are as much the result of inefficient and ineffective private/public sector interactions as technological impediments.
Protection and enhancement of environmental quality. Aquaculture must be implemented in as environmentally sound a manner as possible. Adoption of aquaculture technologies can lead to better use of resources, such as increased water productivity, recycling of on-farm materials. However, over-expansion of aquaculture makes unsustainable demands on environmental goods and services, with the poor proving to be most vulnerable. To substantially contribute to reducing poverty, aquaculture must be incorporated into watershed and coastal management plans. Greater understanding of the risks associated with intensification (disease, self-pollution), translocation of species and genetically improved strains, in adoption of cage aquaculture and in exploitation of environments vulnerable to climate change, is needed.

Development of human and institutional capacity. The successful and sustained adoption of aquaculture to impact on poverty reduction requires development of capacity among policy makers and national research and extension institutions and staff. This empowerment requires identification of skills needs, training requirements and professional development support, opportunities to strengthen the capacity of institutions to deliver training and continuing professional development through a range of models, including distance learning, and identification of opportunities for scientific mentorship among institutions (e.g. networks).

Why is the story significant?
We believe that this type of analysis clearly presents a comprehensive view of the intervention logic, explains how project activities and outputs will contribute to a sequence of outcomes and impacts and facilitates constructive discussion among project team leaders. The importance of most significant change stories, in helping clarify and communicate the research for development processes out of which impact emerges, also became clear (see Douthwaite et al. 2003, http://impactpathways.pbwiki.com). For me, as a member of the CPWF Theme 3 Management Team, it also helped ensure that the right priority research areas had been identified and that complementary issues were being pursued within our Center.

What were the critical factors that led to the change?
It was my engagement with the CPWF some six months after joining the WorldFish Center that opened my eyes to this exciting way of analyzing problems that went far beyond the more widely used logistical framework approach in trying to ensure development impact. The CPWF International Forum on Water and Food in Vientiane later that year provided further opportunities to develop my thinking and to work with others to use the impact pathway and most significant change story approach to achieving development impact.

What were the constraints?
Lack of time.

What are the future implications for actions (e.g., future research), if any?
Within the Center, we intend to use models as a starting point for discussions with staff and partners at a regional level, allowing further refinement and crystallisation of priority interventions. A process of strategising is then needed to decide specifically in which arenas WorldFish might lead, where it might partner and where it will merely champion actions.
This following story on CPWF Project 10 was selected as a favourite because the project has demonstrated its capacity to trigger various changes at a wide range of scales:

- **At farm level:** improved rice and shrimp farmers’ livelihood (especially increased income)

- **At local management level:** increased awareness of the value of brackish water for food production (in this case, shrimp) and thus the need to include brackish water in the management of water resources in coastal areas; strong partnership involving local institutions (especially NGOs): contribution to the production and dissemination of research outputs

- **At national planning level:** understanding of the need to shift from a rice-based production system to a diversified production system in order to enhance the productivity and the ecological and social sustainability of the coastal area; reciprocal benefits of project partnership especially integration of research findings in national planning

- **At scientific level:** potential for producing International Public Goods on the management of fresh and saline water interface for the production of rice and shrimp in coastal areas

INRM RESEARCH SUPPORTS LIVELIHOOD IN FRESH – SALINE WATER INTERFACE ENVIRONMENTS

Classification: Technical

Name of Person Reporting: TP Tuong on behalf of CPWF Project 10 members

Project / Theme / Basin: Project 10 / Themes 1 and 3 / Mekong and Indus-Ganges

Date when the change occurred: 2001 to date

Place where the change occurred: Bac Lieu Province, Mekong Delta, Vietnam

The Story:
Prior to 2000, with the aim of boosting rice production for export, the Vietnamese government invested in water management infrastructure, namely embankments and sluices, to protect Bac Lieu Province from salinity intrusion. The intervention adversely affected the livelihood of people in the west of the protected area who needed brackish water to raise shrimp.

In 2001, demand of aqua-products for export increased significantly, and conflicts between shrimp culture and rice culture became serious due to different water quality requirement; saline water for shrimp and fresh water for rice. A DFID-funded project analyzed the pros and cons of the salinity control measures and the land use policy that favored rice intensification. The project proposed a land zoning scheme and the associated sluice operation procedures that would accommodate both rice intensification in the eastern part and shrimp culture in the western part of the area, and the shrimp (dry season) / rice (rainy season) systems in the transitional area. Change in water quality due to sluice operation predicted by hydraulic and salinity model were analyzed to identify the most suitable option.
From 2002 to 2003, the local government adapted the land use zoning in the revised land use plan. Sluice operation procedures were adopted and a water quality monitoring network was established. Farmers adjusted their production systems according to the zoning.

CPWF Project 10 work, which began in 2004, involved refining the hydraulic and salinity models which they used to compare different water development scenarios (e.g. excavation of new canals and dredging old ones) proposed by the local government and to find the impact of sluice operations of the surrounding province on Bac Lieu and vice versa. It also improved production systems in each of the land use zones by implementing agricultural and aquaculture experiments with farmers, which have very much stabilized due to the preliminary land zoning.

The local water management offices now have the capacity to manage the water quality network and to refine the sluice operations through data monitoring to ensure suitable water quality for different zones. Farmers have adapted newly improved production systems and farming technologies to reduce production risks and increase income (e.g. maintaining *Scirpus littoralis* Schrad. in the shrimp fields to regulate pond temperature, reducing shrimp diseases and getting extra income; multiculture with shrimp and crab instead of shrimp monoculture; planting upland crops after two rice crops instead of three in fresh water zones; using new rice varieties, etc).

Why is the story significant?
- National planners accepted the diversification in production systems instead of monoculture with rice as the most dominant crop.
- The local government accepted the concept that brackish water is also a resource instead of always labelling it a “constraint to production”.
- The project helped boost farm income and improve farmers’ livelihoods.
- The hydraulic model helped Bac Lieu and surrounding provinces to understand the interaction among water management systems in their own territory. Based on the suggestion from the project, MARD has established the river basin organisation to coordinate water management in neighboring provinces.
- The impacts of research were multi-scale: from regional (land use and water management) to field level (farming technologies).
- The concept and methodology can be applicable in other coastal zones.

What were the critical factors that led to the change?
- Built on the success of previous projects.
- A multi scale approach to resource management and quantification of upstream–downstream interactions among different zones.
- Participatory research with farmers and on farm tests facilitated the dissemination of technologies.
- Good communication with local government and development institutions.

What were the constraints?
- There were a lot of data requirement for hydraulic and salinity modeling; in many cases governments do not invest systematically nor do they sustain data acquisition.
- Local governments have limited human resource capacity for technology transfer, e.g. hydraulic and salinity model, and GIS applications.
Limited resources and time for testing the improved production systems with farmers given that research projects are often time bound and do not include extension and development costs.

What are the future implications for actions (e.g., future research), if any?
- Continue the tests of improved production systems with farmers.
- Include other water quality components (e.g., acidity) in the water model and use it as decision support tools for production planning.
- Expand the study on land use zoning and water management to the surrounding provinces that are sharing the same water control system with Bac Lieu.

SIGNIFICANT RISE IN FISH PRODUCTION FROM THE FLOODPLAINS IS BOOSTING FARMERS’ INCOME

Classification: Technical

Person reporting the story: Dr. Benoy Barman

Project / Theme / Basin: CPWF Project 35 / Theme 3 / Indus-Ganges Basin

When the event happened: 2006 - present

Location where it happened: Beel Mail at Mohanpur, Rajshahi in Bangladesh

The story:
- Pen culture was developed at Mohanpur, Rajshahi by fixing bamboo fencing (*bana*) around 100ha of floodplains to contain stocked fish. The area under pen culture was established at the beginning of the rainy season (June-July).
- 3387 kg of fingerlings were stocked in the area including: catla 550 kg; bighead 1567kg; rohu 523 kg; mrigal 294 kg; and common carp 453 kg. Regular harvests of fish have been taking place since October 2006, and will continue until January 2007.
- The development of pen culture in the area has led to increases in fish yield with implications for fish consumption and improved livelihoods for local people. Fishers have been empowered and their rights have been improved.

Why is the story significant?
- Productivity of both the stocked fish as well as the non-stocked fish in the floodplains increased significantly from 103.7kg/ha in 2005 to 242.1kg/ha the following year.
- By January 2007, total fish harvested was 24,213 kg, which consisted of 18,416kg of stocked fish and 5797 kg of non-stocked fish.
- Total income generated from selling fish in 2006 is almost three times higher as compared to the previous year; and total amount of fish consumption by the beneficiaries increased from 1800 to 3326 kg.
- With permission from the community directly involved with the project, poor people from the surrounding villages are able to benefit from the CPWF Project 35’s pen culture using local gears to harvest small fish.
- Total fish consumption amongst project beneficiaries has doubled since the project began.
What were the critical factors that led to the change?

- Successful management of water levels by stakeholders to maintain optimum levels for fish production
- Stakeholders (beneficiaries) worked together to ensure the security of the fish.
- Harvesting was carried out by eight groups of beneficiaries using a well-planned method, using 16 non-motorized boats, which has increased the overall harvest.
- During low water level periods, villagers are still able to harvest fish by using small scale fishing gears (push net, polo and harpoon).
- Contribution and support from DoF officials in improving the system has increased the confidence of villagers in their ability to manage the system.

What are the future implications for action (e.g., future research), if any?

- The local DoF officials gained confidence from the success they have achieved in managing such a large body of water in a complex socio-economic system. Their knowledge and understanding of what research is and its value has increased. They have also developed skills in conflict resolution. Capacity in understanding the relevance of this type of research to development and the role of livelihoods issues has also been improved.
- The increased confidence of DoF officials will ensure the sustainability of the project and the eventual scaling out of the project beyond the project site.
- The approach used in Mohanpur has the potential to be disseminated widely in Bangladesh and beyond, increasing benefits for poor and landless fishers.

ADOPTION OF NOVEL WATER MANAGEMENT AND HIGH YIELDING VARIETIES (HYV) OF RICE IN THE COASTAL SALINE ENVIRONMENTS

Classification: Technical

Name of Person Reporting: Dr. M. Mondal and Project 10 members in Bangladesh

Project / Theme / Basin: PN10 / Themes 1 and 3 / Mekong and Indo-Gangetic Basins

Date when the change occurred: 2003 to date

Place where the change occurred: Polder #30 of Batiaghata upazila in Khulna district, Bangladesh

The Story:

About one million ha of coastal saline soils have been monocropped with low-yielding (about 2.5 ton/ha/yr) traditional rice during the wet season (aman season) from July to December. Most of these lands remain fallow in the dry season from January to June (boro season) because the lack of enough good quality irrigation water as river water becomes saline after January.

The DFID-IRRI project PETTRA tested growing HYV rice during aman and a novel water management that allows cultivation of HYV boro rice with irrigation from non saline river water during November to January and water stored in field channels from February to April. PN10 further developed and refined the said technologies, selected suitable HYVs for each season, while investigating technologies to produce ‘more rice with less water’ during boro season. It also provided training on coastal water management and HYV rice production, seed production and preservation to male and female farmers of Polder 30.
About 30% farmers grew HYV rice in *aman* season and 10% farmers of polder 30 adopted *aman-boro* cropping pattern in 2006. These farmers increased yearly rice production by three- to four-fold more than the traditional practice.

Why is the story significant?
- Food production increased and food security improved among resource-poor farmers.
- There was a rise in farm income and farmer’s livelihood, especially among resource-poor farmers who were trained in seed production and produced and marketed seeds of HYVs.
- The project demonstrated that water productivity in the coastal zone can be increased (increasing production without further diversion of fresh water).
- The concept and methodology can be applicable in other coastal zones.

What were the critical factors that led to the change?
- Built on the work of previous projects.
- Quantitative understanding of the dynamic of soil and water quality.
- Participatory research with farmers facilitated the dissemination of technologies.
- Providing seed production and storage training to male and female farmers, making HYV seeds available in the area.
- An NGO organized the training of women farmers on production and preservation of quality rice seeds.
- Good communication with local government and development institutions and the Department of Agricultural Extension.

What were the constraints?
- Storage capacity of the canals is limited, which means that only a limited area can be used for *boro* rice.
- Availability of HYV rice seed.
- Poor drainage facilities and management resulted to a high water depth in the field, which affected the yield of the short-stature HYV during the *aman* season.

What are the future implications for actions (e.g., future research), if any?
- Development of on-farm infrastructure for appropriate utilization of water and land resources of the coastal region.
- Research is needed to forecast availability of fresh/non-saline river water under conditions affected by climate change and salt-water intrusion in coastal aquifers.
- Training on water management and improved rice production is needed for farmers and extension providers.
- Development of HYV with short duration and submergence tolerance for the *aman* season and cold-tolerant varieties for the *boro* season.
- Studies comparing *boro* rice and non-rice crop cultivation in the dry season.
THEME 4 INTEGRATED BASIN WATER MANAGEMENT SYSTEM

The CPWF Project 42 story, below, is a favourite because it highlights the importance of capacity building in addressing groundwater overexploitation, as well as the role of knowledge sharing in enabling people to better understand a common problem.

INTERDISCIPLINARY CAPACITY BUILDING CUM KNOWLEDGE SHARING WITHIN GROUNDWATER GOVERNANCE IN ASIA

Classification: Partnership

Name of Person Reporting: Karen Villholth

Project / Theme / Basin: Project 42 / Theme 4 & 5 / Yellow River and Indus-Ganges

Date when the change occurred: October 2006 to March 2007

Place where the change occurred: India, China, Bangladesh, Pakistan and Nepal

The Story:
Groundwater overexploitation, degradation and its associated socio-economic impacts are widespread phenomena in many parts of the world today, including Asia. The need to address this problem is increasingly recognized at many different levels of society. At the same time it is clear that devising lasting solutions requires substantial efforts and capacity, often beyond the capability of existing systems.

One of the key constraints to proper groundwater management, and to water management in general, is the lack of inter-disciplinary capacity within existing structures for developing, utilizing, allocating and safeguarding water resources. Typically, the development of groundwater is within the hands of technical staff, with little knowledge of environmental and socio-economic impacts. Allocation of groundwater, either through formal licensing, or through indirect methods may be controlled by politicians, legal advisors, with the help of economists or simply driven by open market mechanisms. Safeguarding of the resources and the associated health and livelihood benefits (in the lack of pro-active and institutionalized controlling mechanisms), is driven by environmentalists, self-driven activists, and NGOs with support from international donors and local to global media.

However, in order to make a change on the ground level and move towards more informed and sustainable groundwater management, the various parties need to come together to embrace the problem complex in an integrated manner and devise solutions built on a comprehensive understanding of the driving mechanisms and potential combination of interventions that may work under given circumstances.

Another striking feature of present day groundwater problems is that they are prevalent in developing as well as developed countries. There is no blueprint or master plan for guiding less advanced nations, simply because the problems are complex, partly unique to the settings, and continuously evolving.

However, it is also clear that similarity of issues across national borders and within larger international river basins may foster incentives for collaboration, knowledge sharing and continued dialogue on possible management approaches.
On this background, successful approaches to groundwater management will have to emerge from practical experiences on the ground, in a ‘live laboratory’ subjected to different trial-and-error efforts, assuming that the business-as-usual or ‘laissez-faire’ model does not work.

In order to support these self-learning mechanisms of developing sustainable groundwater management, the International Water Management Institute in collaboration with a vast number of associated partners in the Indo-Gangetic and Yellow River Basins as well as from nations outside the South and South East Asia region is developing and implementing an innovative and unique concept of inter-disciplinary capacity building cum knowledge sharing, action research, policy dialogue and awareness raising through media coverage within groundwater governance.

The program consisted of a five-week intensive residential training course for 24 junior fellows and media participants. The first four weeks covered basic theory of groundwater hydrogeology, chemistry and environmental science, socio-economic aspects, policy and institutional aspects and communication/awareness/media/knowledge sharing topics. The last week was devoted to case studies of groundwater governance in various parts of the world, involving 9 senior professionals from groundwater research and management from the region. After the course, Fellows were exposed to the realities of groundwater use and management in their own countries through applied action research in the field (Junior and Media Fellows) or in third part countries, e.g. the USA and Australia, through intensive study tours (Senior Fellows). The whole program culminated with a summary workshop where all the participants, including the project researchers and resource persons, share and discuss research outcomes, program evaluation and policy recommendations.

The program enabled the participants to gain a broader, integrated understanding of the issues and equipped them with concrete tools to assess groundwater conditions and discuss or evaluate various policy options and approaches to groundwater governance in the Asian context.

Some specific outputs:
- About 20 scientific papers on contemporary conditions for groundwater use and management in the five basin countries, papers that will be published in international scientific publication outlets.
- A CD with all the course material.
- A film on groundwater conditions in Nepal.
- Partnerships were forged among the participants to develop various joint projects. One research project has already been granted to one of the participants in Pakistan.

Why is the story significant? It established an innovative and unique concept for inter-disciplinary capacity building based on traditional learning methods as well as new, interactive, action research methodologies and knowledge sharing.

What were the critical factors that led to the change?
High profile of the program through wide distribution of program brochures, application material and a web page with continuously updated information:
- Stringent planning and management of the program.
- A pre-developed network of relevant institutions and partners within the region.
- An expressed demand for such a training/research program.
- Recruitment of/collaboration between key program members with widely different disciplinary backgrounds related to groundwater.
What were the constraints? Cumbersome procedures for ensuring relevant visa formalities for the participants of the program.

What are the future implications for action (e.g., future research), if any?
- A strong platform has been established for setting up inter-disciplinary research teams and alliances among organisations for developing groundwater governance related research and mechanisms.
- The research findings of the program provide a solid basis for the future direction of research on groundwater related problem areas within the two focal basins.

FROM COLOSSAL ANARCHY TO SUSTAINABLE MANAGEMENT: IMPROVING GROUNDWATER GOVERNANCE IN ASIA (ROUND 2)

By: Bharat R Sharma

Project/ Theme/ Basin: CPWF Project 42 / Theme 4 / Indus-Ganges and Yellow River

Date when the change occurred: October 2007 to March 2008

Place where the change occurred: India, China, Bangladesh, Nepal and Pakistan

The Story:
The Indo-Gangetic basin and the Yellow River basin, though blessed with a vast network of dams, canals and strong irrigation bureaucracy, have lost the historical supremacy of their surface irrigation systems to the more informal, demand-based and equitable groundwater irrigation. Most canal commands in the region are shrinking with the groundwater taking over the critical role of irrigation provisioning for vastly followed rice-wheat cropping system. This runaway success with groundwater has also caused serious problems of over-exploitation and declining water tables, failed wells and excessive energy use, deterioration in water quality and several small farmers opting out of irrigated agriculture. The groundwater professionals, mainly with hydrological expertise, in these countries have limited capacities to understand this phenomenon and put in place suitable governance and management mechanisms.

CPWF Project 42 on Groundwater Governance in Asia was based on the hypothesis that understanding sustainable groundwater management in the developing world requires blending three distinct perspectives: (a) the resource perspective; (b) the user perspective; and (3) the institutional perspective. Unfortunately, the existing groundwater professionals and policy planners have very limited integrated understanding with no experience of putting such innovative practices into implementable policy frameworks.

In order to make a change on the ground level, and move towards more informed and sustainable groundwater management, the various stakeholders need to come together to embrace the complex problem in an integrated manner and devise solutions built on a comprehensive understanding of the driving mechanisms, and the potential combination of interventions that are likely to succeed under the given hydrological and socio-economic conditions.
Another feature of the groundwater problems is that they are prevalent in both developing and developed countries - but with one striking difference. Whereas the mature groundwater economies in South Australia, different states of the USA (Kansas, Texas, etc.) and Spain have put in place adequate regulatory mechanisms for sustainable development, sharing, marketing and utilisation of the groundwater resources, the countries in the developing world are still grappling with the situation and need to learn from each others’ experiences and specific constraints.

With this background, successful approaches to groundwater governance and management will have to emerge from practical experiences on the ground, in a ‘live laboratory’ subject to local realities, and with a strong notion that business-as-usual situation shall not work but further add to colossal anarchy.

In order to improve the capacity of the key groundwater professionals and policy planners in these basin countries, and also to develop an international toolkit for effective groundwater governance, the International Water Management Institute in collaboration with a vast number of partners in the Indo-Gangetic and Yellow River basins (IIIs, universities, research organizations, groundwater boards, NGOs, planning commissions), and from other developed countries (USA, Australia, Denmark) has developed and implemented a unique concept of inter-disciplinary capacity building cum knowledge sharing, action research, policy dialogue and awareness raising through media coverage within the groundwater governance.

The second phase of the Groundwater Governance in Asia program consisted of five-week intensive residential training program for 35 junior professional and media fellows. The first four weeks extensively covered basic theory of groundwater hydro-geology, chemistry and environmental sciences, agricultural use of groundwater, socio-economic aspects, research methods and policy and institutional aspects and communication/awareness/media and knowledge sharing topics and guidelines for developing good writing pieces. Ten senior professionals from these countries joined the program during the fifth week and the whole group was exposed to case studies of good groundwater governance in various parts of the world, participatory groundwater management, and innovative governance policies in developed world and groundwater governance simulation games. On completion of the theoretical exposition, the Fellows were exposed to cross-cutting research under live field conditions in their home countries. The cross-cutting research was conducted at seven sites in the two basins and appropriate research topics were formulated for detailed investigations comprising primary and secondary data collection, stakeholder interviews, literature reviews and analysis and collation of the data and information. The Senior Fellows undertook a comprehensive study trip to South Australia for a detailed study of the groundwater governance and possible adaptation in the home countries. Each group and each Fellow was required to develop a good scientific paper on all its experiences and field work. The whole program culminated with a week long summary-cum-synthesis workshop at Kathmandu, Nepal where all the participants, project partners, resource persons and special invitees shared and discussed the research outcomes, program evaluation and the specific policy recommendations. Each participant was presented with a certificate for successful participation in the program and the meritorious participants were specially recognized.

A concurrent and comprehensive evaluation of the program indicated that the program helped participants to gain a broader, integrated understanding of the issues and equipped
them with concrete tools and policy options to assess and manage groundwater conditions and help the organizations formulate suitable policies for better groundwater governance in the basin countries of the Indus-Ganges and the Yellow River basins. The program also started a catalytic process for a paradigm shift in thinking and management of the resource. Some of the specific outputs from the project include the following:

- An international Toolkit for Groundwater Governance (A detailed Compendium of all the lectures text and power point presentations, field visits, and simulation games developed during the program).
- A set of eight comprehensive action research reports/papers from the eight sites across Indo-Gangetic and Yellow River basins. Supported by further research by IWMI Project partners and other peers, the synthesized work shall be published under a Special International Publication through a leading publisher.
- A set of 10 individual research papers by the Senior Fellows and supported by in-house research reports and partners in the University of South Australia. A special publication on Groundwater Governance in Asia with contributions on learning experiences from Australia is under compilation and has in-principle consent for publication by a leading international publisher.
- Partnerships were forged between several national groundwater governance organizations, research institutes, universities and planning agencies in the basin countries of the two basins. Lessons learnt through the program are being integrated into the national water policies and groundwater management programs.

Was the change expected in the original project proposal?
Yes, the original proposal expected to bring about positive changes in governance through direct and long term engagement of key professionals of the national groundwater agencies.

Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?
This capacity building and action research program was unique and one objective was to initiate a qualitative change in the perception of the policy makers and aid in the decision making process in programs.

What are the next logical steps in carrying forward this most significant change?
The next steps are to develop and make available project outputs which shall be most relevant for maintaining the momentum of the change process. The project shall also work through the established partnerships to carry forward the change process. Since the major change agents were direct project partners, the change process is more likely to be direct and sustainable.

What were the success factors?
The main success factors included:

- Direct involvement of the key players in the project.
- Long full time engagement (15 weeks) of the groundwater professionals in the program activities to change the mindset and exposure to improved appreciation of the new knowledge.
- Preparation of project outputs by direct involvement of the project partners and forging new alliances for better knowledge management.
What were the constraints overcome? What constraints still exist?
The major constraint was to ensure long term direct and full time involvement of the key groundwater professionals from the five countries and this was resolved through presentation of a world class innovative program. A second constraint related to massive logistical issues in organization of the large program was resolved through involvement of all the International Water Management Institute regional offices and forging formal MoUs with lead project partners for the support and this worked quite well. The constraint which still remains is the continuation and sustaining the interest of the Project partners once the program comes to a close.

The following story was chosen for its reflections on impact and networking. It shows the ability to build researchers’ capacity to target the right policy circles, demonstrating that networks are indeed influential vehicles that potentially bring about change.

THE OPPORTUNISTIC PRESENTATION THAT MAY CHANGE URBAN AGRICULTURE IN GHANA

Classification: Partnership

Name of Person Reporting: Philip Amoah

Project / Theme / Basin: CPWF Projects 38 & 51 / Theme 4 / Volta Basin

Date when the change occurred: March 2006

Place where the change occurred: Accra, Ghana

The Story:
The Accra Metropolitan Assembly (AMA) has a bylaw on the ‘Growing and Safety of Crops’ which states that: “No crops shall be watered or irrigated by the effluent of a drain which is fed by water from a street drainage. Any person who contravenes these bylaw commits an offence, and is liable on summary conviction to a fine not exceeding 100,000 Cedis, or in default of the payment of the fine, to a term of imprisonment not exceeding three months, or both.” (Local Government Bulletin 1, 1995: 190)

AMA has no systematic way and insufficient resources to enforce the bylaw. In the first place, the bylaw is largely impractical as AMA doesn’t provide alternative irrigation water sources. AMA also did not consider the benefits that can be gained from making the bylaw partial. Part of the problem is AMA’s inability to properly manage wastewater in the city.

During the Akosombo Impact Pathways Workshop CPWF Projects 38 and 51 identified the Ministry of Food and Agriculture (MoFA) from their impact pathway maps as the most important stakeholder in terms of scaling out/up\(^8\) of the project outputs and policy formulation.

\(^8\)Scaling out is the horizontal spread of knowledge and technologies from farmer to farmer, NGO to NGO, within the same stakeholder groups. Scaling up is the vertical spread between institutional levels that provides political support to adoption.
Shortly after the Impact Pathways workshop, MoFA organized its own multi-stakeholder and policy workshop on urban agriculture (UA). CPWF Projects 38 and 51 seized the opportunity to present to the Ministry ways to minimize health risks without outright banning wastewater use for agriculture as well as potential benefits of using wastewater.

Why is the story significant?
It is significant in that the project realized the importance of lobbying for political support from the network mapping done in the Akosombo Impact Pathways Workshop, and this led to the presentation they made to the MoFA.

The presentation was well received to the extent that the greater part of the meeting afterward was spent discussing the presentation. A declaration for political support for urban, and periurban, agriculture was made by the Ministry and they concluded that the projects’ outputs should be used by the Ministry and the Metropolitan Assembly in the formulation of more appropriate policies on UA in the future.

Although policy changes take time, as they do in Ghana, the work done by the CPWF Project helped catalyzed a number of developments. For one, CPWF complemented the work of the International Water Management Institute (IWMI) and the Resources Centres on Urban Agriculture and Food Security in policy change on wastewater use. Through the efforts of these institutions, and the knowledge gained from the CPWF work, urban and periurban irrigated agriculture has been recognized in the city planning of Accra and became part of ‘informal irrigation’ in the national irrigation policy awaiting cabinet approval. Informal irrigation in this policy shares the same status and support as formal irrigation.

Another recent success is that WHO and FAO have given funds to continue the current work with stronger focus on the WHO wastewater use guidelines. This project aims at implementing the guidelines where MoFA will be a key partner.

What were the critical factors that led to the change?
Knowledge sharing - you do not have always to invite stakeholders to your project meetings, you can use their forums.

What were the constraints?
None

What are the future implications for action (e.g., future research), if any?
The Importance of stakeholders in project planning and implementation will be taken more into account. Recently the project did this with the help of the Knowledge Sharing in Research Project of IWMI-CPWF. They organized five open fora for their target groups of farmers and food caterers to seek feedback on the project outputs, and what steps are needed to make them as useful as possible. This feedback from stakeholders was then also used to prepare dissemination materials, such as a participatory video on safe practices made with the catering community. The project plans to use the same process in farmer training.
INTEGRATING LIVESTOCK, WATER AND LAND MANAGEMENT ENABLES INCREASED WATER PRODUCTIVITY IN UGANDA (ROUND 2)

By: Jane Gitau, Denis Mpairwe and Don Peden

Project / Theme / Basin: CPWF Project 37 / Theme 4 / Nile

Date when the change occurred: 2008, but the process started earlier.

Place where the change occurred: Nakasongola District in Uganda’s cattle corridor

The actors: At the beginning, participants were the Department of Animal Science (Makerere University, Kampala, Uganda), the International Livestock Research Institute (ILRI), and 18 farmers, of whom five took the project seriously. The others were sceptical. Now, all of the above are active and the Nakasongola District and local government demonstrate support by taking their visitors to the project site. Other actors include sub-county chiefs, the Ugandan media and newly interested scientists. UNEP-GEF and SIDA-SAREC have expressed interest in scaling up the resource outcomes and supporting future graduate student research.

The Story:

Large areas of Uganda’s ‘cattle corridor’, lying within the Nile River basin, are primarily suited to livestock-based livelihoods, but land and water degradation has reduced agricultural water productivity to almost nil. Overgrazing aggravated by charcoal production led to loss of vegetative cover, high rates of soil erosion and rapid siltation of ‘valley tanks’, a local version of water harvesting that sustains animal drinking requirements. Efforts to restore pasture through reseeding have consistently failed because termites destroyed the newly planted pasture grasses, especially in the dry seasons. Investors, government and local farmers had lost hope of rehabilitating the grazing lands. Many farmers abandoned their land due to lost productivity.

Students from Makerere University’s Department of Animal Science with support from the CPWF and ILRI took a systems approach to the problem of rehabilitating the land and water resources. Stephen Mugerwa and Department Head, Denis Mpairwe, discovered that corralling cattle at night in a degraded area for about two weeks resulted in the application of manure to the degraded land. Subsequent reseeding was successful. This was the trigger that enabled the team to produce more animal feed while reducing run-off, erosion and siltation of the valley tanks. Integrating livestock, land and water management was essential. By protecting the riparian vegetation, the valley tanks maintain higher water quality and are less susceptible to siltation.

Stakeholders are now hopeful that by integrating livestock, land and water management, their livelihoods will improve, primarily through better access to quality water and enhanced feed production. They are working together as a community to bring about these changes. The technical solution to the termite problem opened up opportunity for a more systems-oriented set of solutions to improve livelihoods while protecting the environment from desertification and water degradation.
Success achieved (the changes):

- Vegetative loss from overgrazing and charcoal production appeared to be correlated with increased termite activity, especially in the dry seasons. Water productivity was very low and there was complete loss of pasture grasses over large areas (see photos, p.62). Low infiltration and high run-off rates characterized the compacted bare soil. The research team developed a technology to enable re-establishment of vegetation cover. The key to solving this problem was use of cattle manure immediately prior to reseeding, through night corralling of cattle. Potential impact is evident – there is an increase in vegetative cover, higher quality water in the valley tanks, and reduced soil erosion.

- Farmers mobilized to solve their common land and water degradation problems and the consequent loss of livelihoods. They now better understand the interacting livestock, land, water and termite issues and are working together to develop and protect water and pasture resources. They want more knowledge on how to improve their livelihoods and have shown willingness to contribute in cash and kind to conserve the water they now have. They want to remain settled in one place and have promised to stay on now that they have water.

- The farmers quickly adopted the technology because they are convinced that it is feasible, affordable and delivers benefits.

- Seventy-five farmers are now involved at three sites. Water, for livestock and people from 75 households, is becoming more secure and its communities are prepared to protect their water resources.

- Nakasongola District administrative officials were mobilized. They have seen the impact of the farmers’ collective efforts to solve their own problems with little resources. The farmers own the project and the District employed one of the project’s MSc students to help scale up project outputs. This student is the original researcher on the project and this ensures continuity and sustainability if we engage this community more.

- Although the project sites make up only tiny part of the Nile River basin, they represent one of the most severely degraded agricultural systems in the upper part of the basin. This CPWF research holds promise of contributing to improved water productivity, reversal of desertification and improved livelihoods.

Questions:

1. Was the change expected in the project proposal? No, but there was a general agreement by ILRI, the Ugandan National Agricultural Research Organization and Makerere University that increasing water productivity was important and possible in the cattle corridor.

2. Does the change build strongly on earlier research for development investments or breakthroughs? If so, what kind, and by whom? Globally, there is a long history of research in range management that outlines principles and generated technologies to improve pastures for grazing animals. There has also been substantial research on various aspects of water harvesting of which the valley tank is one example. What is new is that the entry point for this research and the resultant outcomes in Nakasongola, Uganda, explicitly emerged from a systematic effort to apply principles of livestock water productivity to a highly desertified region of the Nile River Basin and to use this knowledge to improve water productivity and livelihoods through integrated land, water and livestock management.
3. **What are the next logical steps in carrying forward this most significant change?** There will be need to follow up locally in Nakasongola to encourage further development of policy, institutional arrangements and financing to catalyze the up-scaling. More effort will be needed to perfect community management of the valley tanks, to determine sustainable grazing levels and to allocate available water and pasture to livestock keepers. There is also need for a systematic research activity focused on termite biology. While the results to date speak for themselves, we do not know exactly what has changed in terms of termite ecology and biology. Did the termites really change their diets? Was there a shift in the species composition of termites? Was some other factor influencing termite morbidity and mortality? The project plans to hold a mini-workshop later in 2008 to explore options for out-scaling project results to other areas in Uganda’s cattle corridor.

4. **What were the success factors?** Initially, the vision of the Makerere University research team was the key. Much credit is due to Professors Gabriel Kiwuwa, Denis Mpairwe and David Mutetika who all were thinking ‘outside the box’ and integrated water sciences into the traditional Animal Science curriculum. Initial failure of the reseeding experiments generated “I told you so” responses from many sceptical farmers and other local stakeholders. However, perseverance by the Makerere team paid off. Another key was taking a systems approach to understanding the interactions between upslope grazing and land management and the downslope valley tanks that led to recognition of the need for a suite of interventions dealing with land, water and livestock management.

5. **What were the constraints that were overcome? What constraints still exist?** As mentioned, scepticism by some stakeholders was overcome. Initially, the students had not experienced or understood the need to take an integrated and systems approach on which their research outputs and implications were interdependent. The learning experience at the university was important. The Nile Livestock Water Productivity project was in some ways too complex given the level of funding and the daunting task of developing a network across diverse countries of the basin. Consequently, some aspects of project management and financing suffered, but the researchers’ perseverance and vision prevailed and the project was did facilitate informal cross country sharing of information. Perhaps the biggest constraint that has been overcome at the local level, but remains strong elsewhere, is getting past the mindset of professionals who work in agricultural water research and management that livestock have little relevance to investments in and the development of agricultural water resources. Similarly, there remains need for livestock R&D professionals to take a broader view of water management issues and take into consideration much more than just animal drinking water requirements. Project experience indicates that this is widespread phenomenon.
Supporting documentation:

1. Accompanying photos:

Typical degraded grazing land near Nakasonola, Uganda, with high levels of run-off and near zero water productivity. Termites consume any pasture vegetation that grows. In its present condition, this land cannot support livestock production.

Sediments from degraded upslope grazing lands fill water harvesting ponds know as valley tanks. Water quality is low and the storage capacity of reservoir rapidly declines due to infilling with sediments.

Corralling livestock to deposit manure apparently results as a biological control measure whereby termites shift their diets from pasture vegetation to manure enabling restoration of pasture and thus much higher livestock water productivity.

Maintaining high levels of riparian and upslope pasture vegetative cover provides a filtering effect that reduces sedimentation and contamination of valley tanks.

Attempts to fence degraded pasture to prevent animals from grazing and thus to allow restoration of vegetation cover failed. Termites quickly consumed the fence posts as seen this photo and Photo 6.

Termites quickly consume fence posts but fencing adjacent to manured and re-seeded pastures was not damaged suggesting that the “biological control” effect of manure prevented termite damage to both newly seeded grasses and to fence posts.
2. Four papers submitted to the CPWF Second International Forum on Water and Food.

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of upper catchment management and water cover plants on the quality and quantity of water for improved livestock water productivity</td>
<td>Z. Emmanuel, D. Mpairwe, J. Kyambande, M. Iwadra, D. Mutetika, G.I Kiwuwa, S. Mugerwa and D. Peden</td>
</tr>
<tr>
<td>Interventions for rehabilitation of degraded rangelands: The role of cattle manure and reseeding on pasture establishment</td>
<td>S. Mugerwa, D. Mpairwe, E.N. Sabiiti, D. Mutetika and D. Peden</td>
</tr>
<tr>
<td>Options to improve livestock-water productivity (LWP) in the Cattle Corridor within the White Nile sub-basin in Uganda</td>
<td>D. Mpairwe, D. Mutetikka, G. Kiwuwa, S. Mugerwa, B. Owoyesigire, E. Zziwa, D. Peden</td>
</tr>
<tr>
<td>Socio-economic factors affecting livestock-water productivity in rainfed pastoral production systems</td>
<td>Owoyesigire Brian, Denis Mpairwe, Bashasa Bernard, David Mutetika, Gabriel Kiwuwa, and Don Peden</td>
</tr>
</tbody>
</table>

Contacts:

Dr. Denis Mpairwe, Head, Department of Animal Science, Makerere University
(d_mpairwe@yahoo.co.uk)

Jane Gitau, ILRI (J.gitau@cgiar.org)

Don Peden, ILRI (d.peden@cgiar.org)

Note: In order to meet the deadline, Don is submitting this document to the CPWF based on notes derived from the visit of Jane and Denis to Nakasongola in May 2008. Time did not permit a thorough review by all parties.
RESEARCH UPTAKE DURING THE LIFETIME OF THE SMALL RESERVOIRS PROJECT (ROUND 2)

By: Marc Andreini, Tonya Schuetz

Project / Theme / Basin: CPWF Project 46 / Themes 4 and 2 / Volta, Limpopo, São Francisco basins

Date when the change occurred: Continuous and on-going since Dec. 2006

Place where the change occurred: Primarily in the Volta Basin, Ghana

The Story:
Local organizations, mostly next users and partly end users, institutionalized and applied some of the research findings and developed tools on various levels. Four tools were taken up at the Kwame Nkrumah University of Science and Technology (KNUST) by some lecturers at the Engineering Department. These four tools provide answers to the following questions:

- Where does the water flow?
- Where best to put a dam to block it for storage?
- How much water is available?
- Where best to allocate the available water?
- Environmental influences of small reservoirs?

The application and operationalization of the tools were taught in a new Masters course on Integrated Water Resources Management. The first batch of students was given training and hands-on experience in the application of the tools. A training manual was developed and used for teaching. When the set of tools were shared with the White Volta Basin Board, respective members (KNUST, EPA, MoFA and UDS) declared that they want to use the tools for future planning of small reservoirs and decision making processes. Specifically:

- The Upper East District of the Ministry of Food and Agriculture (MoFA) is currently piloting and using the maintenance chart and a communications pathways tool to encourage discussions and dialogue between the Agricultural Extension Agents, farmers and water users.
- The MoFA Monitoring Officers have included tools in their monitoring to learn what is useful and what needs to be adjusted.
- The University of Development Studies (UDS), Tamale wants to include the tools in their teaching curricula, in particular in their irrigation engineering course.

This use is part a result of the technical support and capacity building activities carried out by the Small Reservoirs Project, e.g. students’ support, trainings for stakeholders on the operationalization of the tools, feedback workshops with stakeholders, and fieldwork with the end users.

Four students from KNUST, who were trained during a workshop, funded by the SRP and Knowledge Sharing component, are currently doing their MSc research on the small reservoirs. They are working to provide information to enhance water management decision making within a number of organizations including the Ministry of Food and Agriculture, Ghana Institute, Department of Agriculture, the District Assemblies and Water Users Associations.
KNUST will be undertaking a bathymetric survey on some mid-sized reservoirs for the water supply expansion work of the Ghana Water Company Limited in Kumasi in the Ashanti Region of Ghana in February 2009, and some of the tools developed by the SRP will be applied.

Was the change expected in the original project proposal?
Yes and no. The dissemination was expected, but not so early; not before the Tool Kit was shared with the partners.

Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?
Yes. The whole Small Reservoirs Project idea evolved out of the GLOWA Volta Project (www.glowa-volta.de) and the hydrological parts build on Jens Liebe’s Masters thesis.

INTEGRATION OF WATER RELATED EXTERNALITIES INTO SOIL SCIENCE RESEARCH AND POST-GRADUATE TRAINING (ROUND 2)

By: Francis N. Gichuki

Project / Theme / Basin: Theme 4 and 2

Date when the change occurred: July / August 2007

Place where the change occurred: Burkina Faso and Kenya

The Story:
Soil management change in a given location has both on-site and off-site impacts. Yet most soil scientists have mainly focused on on-site effects in their quest to improve in situ land productivity. There is a growing recognition of the need to take a holistic approach to soil management by addressing off-site impacts through better management of water-related externalities. The introduction of innovative mechanisms for managing externalities such as Payment for Environmental Services offers opportunities for cooperation of the stakeholders generating and receiving the externalities. Hence the need to capture soil scientists’ knowledge base and apply it to tap this potential.

The main actors involved in the change are soil science researchers within the TSBF-CIAT research program, CPWF Project 5 researchers, and lecturers and post-graduate students of the University of Nairobi.

The above team of researchers is now integrating both positive and negative water-related externalities in their analysis of soil management issues. The improved understanding of their issues and ability to use analytical tools and methods to carry out ex-ante impact of changes in soil management has enabled the change in knowledge and attitudes that underpins this change.

The project organized a training course on the use of SWAT model. The model evaluates soil loss, on-site soil productivity and water related externalities – sedimentation,
Nitrogen and Phosphorous loading of various water bodies, both surface and groundwater, associated with changes in soil management.

Why is the story significant?
The story is significant because in most cases off-site impacts are not clearly understood and therefore not taken into consideration in soil and agricultural production improvements. In most cases this has constrained the relationships between upstream and downstream communities. Getting the stakeholders generating the externalities and those affected by it to work together will facilitate the identification of win-win strategies for reducing agricultural non-point source pollution.

Was the change expected in the original project proposal?
Not specifically.

Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?
Yes, it builds on a wide range of tools and methods and new insights that have emerged from several CPWF projects. For example the innovative Savannah and Sahalian Eco-farming concepts developed by CPWF Project 5.

What are the next logical steps in carrying forward this most significant change?
Applying the tools, methods and insights into planning agricultural and soil management interventions that will reduce agricultural non-point source pollution in ways that are acceptable to both upstream and downstream communities.

What were the success factors?
Willingness and ability of the key actors to change and embrace integrated and holistic approaches to soil and agricultural production management.

What were the constraints that were overcome?
Awareness of the issues and potential contribution of this approach. Skills, tools and methods.

What constraints still exist?
Institutionalization of these innovative approach, tools and methods.
THEME 5: THE GLOBAL AND NATIONAL FOOD AND WATER SYSTEM

The next story was chosen as a favourite because of the clear creation of an International Public Good—the database of African Water Treaties—that is influencing or at least being considered in the creation of national policies.

THE WORLD’S LARGEST COLLECTION OF AFRICAN WATER TREATIES

<table>
<thead>
<tr>
<th>Classification:</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Person Reporting:</td>
<td>Mark Giordano</td>
</tr>
<tr>
<td>Project / Theme / Basin:</td>
<td>CPWF Project 47 / Theme 5 / African basins including Limpopo, Nile and Volta</td>
</tr>
<tr>
<td>Date when the change occurred:</td>
<td>Completed June, 2005</td>
</tr>
<tr>
<td>Place where the change occurred:</td>
<td>Coordinated from Colombo but assembled from real and virtual archives around the world. Housed for global access at IWMI Headquarters in Colombo, Sri Lanka.</td>
</tr>
</tbody>
</table>

The Story:
Africa is a land of transboundary river basins. With the exception of island states, every African country has a territory in at least one transboundary river basin. Transboundary basins cover 62 percent of Africa’s total land area, and virtually every basin greater than 50,000 km2 crosses at least one national boundary. Because of the transboundary nature of most of the continent’s waters, most African water management is also, by definition, transboundary water management.

Why is the story significant?
While transboundary basins are important to Africa, the African experience in transboundary water management is also unique in many aspects due in part to the role and legacy of colonialism and the continuing influence of donors. Developing a firm understanding of Africa’s past transboundary governance experience - how and why it has changed and varied across the continent - is critical if leaders are to have the best chance of managing the future of these critical basins.

The database has been influential in a few ways. The Council on Foreign Relations, one of the most prominent foreign policy think tanks in the US, used the results to draw conclusions on their policy brief on transboundary waters in Africa. From that, the Asia Society (another foreign policy organisation) sought ideas from the project in setting up a water program. The South African government commissioned a study on the extent of their transboundary water agreements, and the database (and related papers) was used to supply quite a bit of the information. Same for the institutional section of a UNEP book on the Hydropolitics of Africa. A World Bank employee used one of the related papers for something they were doing on transboundary waters. Two of the papers based on the database have provided input to the IUCN book SHARE, a guide for negotiators and others involved in creating transboundary water law.

The database and related journal articles and book chapters are clearly being used and have changed thinking on the extent, nature and driving forces behind transboundary water law and its content in Africa. The extent to which they have been used is pretty impressive given the very short time frame; none of the papers have been in print for more than a year.
What were the critical factors that led to the change?
CPWF Project 47 provided the opportunity and resources to create what is believed to be the largest and most comprehensive collection of African transboundary agreements in existence. The collection significantly increased the known volume of African transboundary law and includes more than 150 agreements, treaties, protocols and amendments spanning over 140 years and involving more than 20 African basins. A catalog of the treaty collection is available on-line at www.africanwaterlaws.org. A general analysis of its content has been published in Natural Resources Journal.

What were the constraints?
One major obstacle to developing such an understanding has been the lack of a complete, or even near complete, collection of African transboundary water law.

What are the future implications for action (e.g., future research), if any?
The treaty collection serves as an International Public Good available to all. It has already sparked a series of additional research projects related to the management of African transboundary waters. These include analysis of the inter-relationship between international policy and basin level agreements, the drivers of transboundary water law formation in Africa and lessons for African leaders and donors, and the impact of transboundary agreements on dam construction in Africa.

Moving beyond Africa, the development of the treaty collection has led to a cooperative venture with an Advanced Research Institute already working in the field to update and improve a global collection of similar documents. Completion of this collection, and expected methodological improvements in agreement analysis, will provide the global public goods needed as the foundation needed to fill a range of critical knowledge gaps. Key research topics already identified to fill some of these gaps include mechanisms for the management of flow variability, both "natural" and as a result of climate change; methods for cost, benefit and risk sharing to improve management outcomes in transboundary waters; and how consideration of environmental services can better be included within transboundary agreements, especially in developing country contexts.

WORLD'S LARGEST DATABASE ON AFRICAN TRANSBOUNDARY WATER LAW IS CHANGING THINKING ON HOW INTERNATIONAL ARTERS ARE MANAGED (ROUND 2)

By: Mark Giordano

Project / Theme / Basin: CPWF Project 47 / Theme 5 / Limpopo, Nile and Volta

Date when the change occurred: Project component completed in 2005, change ongoing

Place where the change occurred: Impacts from project generated insights affecting thinking on transboundary water management in Africa and globally.

The Story:
Africa is a land of transboundary waters. With the exception of island states, every African country has territory in at least one transboundary river basin. Transboundary basins cover 62 percent of Africa's total land area, and virtually every basin greater
than 50,000 km² crosses at least one national boundary. Because of the transboundary nature of most of the continent’s waters, most African water management is also, by definition, transboundary water management. The importance of transboundary waters and transboundary water management institutions to Africa has not gone unnoticed in policy and research.

Despite its importance, systematic information on the development, nature, and extent of transboundary water law in Africa has been missing. This knowledge gap severely limits the ability of current and future decision-makers to employ a vital tool for developing and improving African transboundary water law in the future—an understanding of its past. One major obstacle to developing such an understanding has been the lack of a complete or near complete collection of African transboundary water law.

The development of a collection of African transboundary water law, carried out initially under the auspices of the CPWF, helped remedy this knowledge gap. The collection, believed to be the largest and most comprehensive in existence, significantly increased the known volume of African transboundary law and includes more than 150 agreements, treaties, protocols and amendments spanning over 140 years and involving more than 20 African basins.

While the treaty collection is of interest to scholars of water law, its real value lies in the insights it can give when applied to questions of water policy, and the resulting impact on agriculture, development and peace. Water policy decisions are rarely made with direct citation to a particular database or journal article, and are rather often the by-product of current thinking on water policy. There is already evidence that the results are moving, as hoped, down the project’s desired impact pathways and have already influenced thinking on transboundary water management in Africa and elsewhere. The treaty collection and related analyses have been cited by influential actors in international water policy such as the World Bank and the United Nations. Since both these institutions are active in transboundary institutional and policy development in Africa, it would seem quite likely that the database and related publications have influenced international water policy decisions there. Citation by the African Ministers’ Council on Water, UN, and World Bank documents related to Africa, and at least one African water affairs ministry, suggests there is interest as well within African countries in using findings related to the database to improve water policy. Examples of the decisions that the database and related analyses are likely to have influenced are the orientation of funding allocated to the water sector in Africa (i.e., international lending policy in transboundary basins) and transboundary institutional development in particular basins, for example the Volta. Beyond Africa, they have served as input to solutions to water sharing problems between Israel and Jordan and have been referenced by the Council on Foreign Relations and the Asia Society.

The insights from project-based studies are also making their way into the academic literature and, despite recent completion, have already been cited in the refereed work of others, taking the original data and research to new levels.

Was the change expected in the original project proposal?
No. The basic work was originally done as background to a CPWF project. Once collected, opportunities for its analysis and the value of turning the specific project output into a global public good became apparent.
Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?
The change built strongly on previous work of others who had shown the value to water management of assembling and analyzing collections of international water law.

What are the next logical steps in carrying forward this most significant change?
In the long term, the largest impact of the project is likely not to be the research results produced by the project members from the data. Rather it will be the additional insights produced by others who apply the database for their own unique purposes, purposes the project developers could not have envisioned on their own. It is likely that the website has been informally accessed to do rapid analyses to aid in decision-making. To this end, and in the spirit of the CPWF, a catalogue of the database has been made freely available to anyone with internet access at www.africanwaterlaw.org. In addition, project members are now working with an advanced research institute to place and maintain the entire database, including a searchable collection of the actual documents, as part of the well known Transboundary Freshwater Disputes Database. The result, expected to be completed this year, will be the largest collection of transboundary water agreements in existence and freely available to all.

What were the success factors?
Project members who saw the opportunity which could be developed from the CPWF project and partnerships between a CGIAR center (IWMI), universities, and students who could carry the work beyond what was envisioned and funded in the initial project.

What were the constraints that were overcome? What constraints still exist?
The initial constraint was to find funds and people to move the product beyond what was envisioned in the initial product. This has been done through partnerships between IWMI and Advanced Research Institutes (ARIs). The challenge will be to continue finding funds to take full advantage of what has been done with African law and what is in process for a global collection.

Websites and Documents directly related to the work
The African Transboundary Water Law Page is available online at www.africanwaterlaw.org

Transboundary Freshwater Disputes Database. Available on-line at www.transboundarywaters.orst.edu

Supporting Documentation:
 IMPORTANCE OF COMPLEMENTARY POLICIES IN FARM-LEVEL CLIMATE CHANGE ADAPTATION STRATEGIES

Classification: Technical

Name of Person Reporting: Temesgen Deressa, Glwadys Aymone Gbetibouoe, Puja Jawahar, Claudia Ringler

Project / Theme / Basin: CPWF Project 53 / Theme 5 / Nile and Limpopo

Date when the change occurred: October, 2006 - preliminary results

Place where the change occurred: Looking at preliminary survey results, Washington DC

The Story:
Based on two large-scale household surveys implemented in parts of South Africa and Ethiopia, it was perceived that majority of farmers in the Limpopo (90% South Africa) and the Nile Basin (60% Ethiopia) are aware of long-term changes in precipitation and temperature. In response to higher temperatures and decreased rainfall, farmers have developed different adaptation strategies to mitigate some of the negative impacts of climate change. They range from irrigating more, changing crop varieties or crops, shifting planting dates, to stopping farming as an activity and instead investing in livestock. Farmers adopt different adaptation strategies in response to changes in rainfall and temperature changes. While adoption of a new crop variety is the main strategy used to adapt to rising temperatures, water harvesting schemes and increasing irrigation is the primary adaptation strategy to decreased precipitation.

However, about 40% of farmers do not change farming practices. Why aren’t there more farmers adapting? The preliminary results of the survey suggest that there are two distinct constraints to adaptation in the case study sites: In the Limpopo Basin, lack of credit was the main factor that was cited by almost half the farmers. Other reasons included lack of access to water (18%), no property rights (9.5%), and lack of market access (4.3%). It is striking that only 1.7% of respondents cited lack of information as a constraint to adapting in South Africa/Limpopo.

We find a very different picture in Ethiopia, where a majority of farmers cited lack of information and knowledge as the primary factor preventing them from adapting to long-term changes in temperature and rainfall (20%). Like in South Africa, access to credit and money (20%) is also an impediment to adaptation. These results suggest that although climate change adaptation strategies need to focus on the provision of improved access to water, and enhanced crop varieties, in order to be effective, policies must also address market imperfections such as access to information, credit and markets in order to help small-scale subsistence farmers to adapt to climate change.
Why is the story significant?
Little is known on farmer perceptions of climate change in rural Africa and even less on their barriers to adaptation to climate change.

What were the critical factors that led to the change?
We are reporting information based on new research findings - a significant advance made by the project.

What were the constraints?
None

What are the future implications for action (e.g., future research), if any?
More research on policies to complement climate change adaptation strategies.

ENHANCING SOCIAL SCIENCE RESEARCH CAPACITY IN THE LIMPOPO AND VOLTA RIVER BASINS

Classification: Partnership
Name of Person Reporting: Amy Sullivan
Project / Theme / Basin: CPWF Project 47 / Theme 5 / Limpopo and Volta
Date when the change occurred: Ongoing since June 2005
Place where the change occurred: Among select students in the Limpopo and Volta Basins

The Story:
During the planning phases of CPWF Project 47 (African Models of Transboundary Governance), project partners, including NARES representatives, identified local capacity for high quality social science research as an existing need. Thus, we built a significant capacity strengthening component into the project plan and devoted the necessary resources to see it through. Twenty promising students from across the basins were screened, selected, trained, and funded to do field research on local aspects of water governance. Our work was monitored by project staff who augmented classroom learning with practical training in the field.

Why is the story significant?
This story is significant because the project has invested in strengthening the capacity of local researchers to undertake institutional research in the future. It filled a need that was identified by national partners as a worthwhile investment. With local capacity for designing and undertaking this kind of research, there should be less need for continually employing ‘outside experts’ to assess local systems.

What were the critical factors that led to the change?
Identification by national partners of this gap drove the change. Willingness of project planners to devote resources to this initiative was obviously critical as well.
What were the constraints?
Among the constraints were identifying students with a background and interest in becoming stronger social science researchers. Once the students were assembled, their diverse educational and subject matter training proved a bit challenging for trainers.

What are the future implications for action (e.g., future research), if any?
Future implications are the existence of an interested cadre of young researchers well versed on issues of water governance who are well placed to contribute to their countries’ research agenda and development.
BASIN FOCAL PROJECTS (BFP)

The BFPs define ‘blueprints’ for each of the CPWF basins. They translate the global goals of the CPWF into specific research objectives for each basin, while maintaining coherence of the program through common methodologies. Through basin analysis of hydrology and poverty, coupled with more detailed analysis of livelihood support systems, each basin research project defines specific problems of water and agriculture, the people it affects, and the areas over which they occur. Further analysis identifies potential opportunities for impact through research from both existing and future projects. An essential part of the BFP effort is to identify the pathways to impact from projects, in collaboration with the institutions that will deliver it.

IMPROVEMENT OF STRATEGIC PLANNING OF WATER RESOURCE MANAGEMENT IN BASINS

Classification: Technical

Name of Person Reporting: Simon Cook

Project / Theme / Basin: Basin Focal Project

Date when the change occurred: 2006. Ongoing

Place where the change occurred: Mekong, Karkheh, Sao Francisco and Volta basins

The Story:

Sao Francisco:
- A realization by the Water Resources Secretariat (ANA) of the linkage between rural poverty within the basin and agricultural water use.
- Irrigation water pricing policies that reflect the need for environmental flows below the Sobredinho Dam.

Volta:
- A realization of the depth of poverty and benefits derived from agricultural water use in northern Ghana.
- A realization of the underdevelopment and poor integration of irrigated agriculture in agricultural development.
- Quantification of water available.

Mekong:
- Estimates of exploitable limits for agricultural water in the upper Mekong Basin included in water allocation negotiations.
- Local governance bodies in NE Thailand, Vietnam, Laos and Cambodia access critical information on sensitivity to loss of water.

Karkheh:
- Clarification of the effect of government food price support on land use change.

Why is the story significant?

Prior to this, policies and instruments applied by government ministries and International River Basin Organizations lacked accurate data that coupled water management with land use impacts. Before the BFPs were initiated, the CPWF and other investors had little factual basis on which to estimate the effects of investment.
What were the critical factors that led to the change?
- Conceptualising the linkages between water, agriculture and livelihood support.
- Quantifying these linkages with data from the basins.

What were the constraints?
Lack of information; insufficient time for in-depth stakeholder engagement.

What are the future implications for action (e.g., future research), if any?
Use these estimates to target and promote best-bet innovations within basins.

THE IMPACT OF THE IMPACT PATHWAYS AND THE SCALING WORKSHOPS ORGANIZED IN THE BASIN ON PROJECTS OF THE VOLTA BASIN

Classification: Technical and Partnership
Name of Person Reporting: Winston Andah and Boru Douthwaite
Project /Basin: BFP-Impact Project / Volta Basin
Date when the change occurred: January and October 2006
Place where the change occurred: Volta Basin

The Story:
The Volta Impact Pathway Workshop was organized at Akosombo, Ghana, in January 2006 for eight projects in the basin. It was attended by two project leaders/principle investigators of each project. The projects were introduced to concepts like ‘problem trees’, ‘objective trees’, project timelines and visions, and network maps and matrices. The ‘Most Significant Change’ concept was also introduced at this workshop. In October of the same year, the Volta Scaling Workshop was organized in Accra, Ghana, with the following objectives: (1) Sharing and peer-review of project progress and impact pathways to date; (2) Identification of next steps to achieve scaling at the project, basin and global scale; and (3) Development of project and basin level action plans to achieve scaling out and scaling up.

Why is the story significant?
- Inspired by the knowledge gained at the workshop, CPWF Project 40 has developed a methodology for ‘Influence Network Mapping’.
- CPWF Projects 38/51 had understood the relative importance of Ministry of Food and Agriculture (MOFA) and Accra Metropolitan Assembly (AMA) in the network mapping and that had helped them realize the importance of lobbying for political support.
- CPWF Project 34 had successfully organized a Capacity Building Needs Consultation Workshop with primary stakeholders for clarification and crystallization of project outputs. The project attributed this success from their project problem tree and objective trees developed from the impact pathway study.
- It was the first time the projects of the basin were together to peer review each other and this led to identifying synergies not only amongst the projects but also in the scaling processes.
What were the critical factors that led to the change?

- Practical exercises at the workshop that linked the various concepts with their projects.
- Energy and commitment of the participants.

What were the constraints?
Not all the project leaders were able to attend.

ADOPTION AND CO-DEVELOPMENT OF PARTICIPATORY IMPACT PATHWAYS ANALYSIS BY THE INTERNATIONAL POTATO CENTER (ROUND 2)

Name of Person Reporting: Boru Douthwaite and Graham Thiele

Project / Theme / Basin: BFP-Impact Project

Date when the change occurred: November 2006 to present

Place where the change occurred: In the Andean Change Project working in Peru, Bolivia, Ecuador and Colombia

The Story:
In 2004 and 2005, before the BFP-Impact Project began, Boru Douthwaite (now leader of BFP-Impact Project) worked with Rodrigo Paz in Bolivia to develop a methodological guide for pro-poor impact evaluation which included the use of impact pathways, based on his previous work in Nigeria (Douthwaite et al, 2003). In June 2003, Douthwaite first met Graham Thiele of the International Potato Center (CIP), who later became involved in a sister project in Bolivia, where he met with Thiele on several occasions. The British Government (DFID) funded both researcher’s projects, and subsequently funded Andean Change, which is an alliance of organizations seeking to promote learning in the Andean Region on the use of participatory approaches, their impact, and the policies required to steer innovation so that it benefits the poor. Thiele leads this project.

In November 2006, when Andean Change began, Douthwaite and Thiele exchanged ideas for a workshop that would share methodologies for use in impact evaluation, including participatory impact pathways analysis (PIPA) and ‘most significant change’ stories. In March 2007, the first Andean Change Impact Workshop was held at CIP HQ in Peru. Sophie Alvarez, a co-developer of PIPA working at CIAT, went as a facilitator. Alvarez introduced to Andean Change tools and facilitation techniques developed during CPWF impact pathways workshops. Impact pathways were constructed for four mature interventions involving participatory approaches. At issue during this workshop was whether impact pathways should be developed for the interventions as a whole, or for the participatory approaches used.

In May 2007, Paz helped organize a workshop in Bolivia with specialists from the organization PROINPA, in part to develop impact pathways for two participatory approaches being looked at by Andean Change. In November 2007, Alvarez returned to CIP to help facilitate a writeshop to produce a first draft of guidelines for ex post impact assessment of participatory methodologies. In the following months Andean Change develop generic impact pathways for several participatory methodologies.
In February 2008, Andean Change had its second impact workshop at CIP. Jonathan Wadsworth, leader of the CGIAR Change Process, attended as the DFID officer in charge of the project. Staff from seven organizations attended. According to Thiele, much broader agreement was reached over how PIPA should be used in the project, reflecting the result of what had been a collective learning, reflection and adaptation process, which had built a feeling of ownership in PIPA.

An important unexpected result of our collaboration is that Thiele was invited to participate in the writing of a paper called ‘Strategic Guidance for Ex-Post Impact Assessment of Agricultural Research’, commissioned by the Standing Panel on Impact Assessment (SPIA) of the CGIAR’s Science Council early in 2007. Thiele was interested in PIPA and so asked Douthwaite to join and write a section on PIPA. As a result, PIPA gets a mention, and forms part of a good practice guideline: As a precursor to epIA [ex post impact assessment], OM [Outcome Mapping] and PIPA show promise for monitoring, evaluating and documenting progress along impact pathways to provide a solid foundation for high quality and plausible epIA, especially for shorter term adaptive research projects. They complement and do not substitute for epIA. (p. 30, Walker et al., 2008). Hence, the CPWF’s approach to M&E has been given an official stamp of approval.

As a result of the work, Thiele is now working to promote PIPA as standard practice in CIP through the Impact Enhancement Division beginning with Andean Change. Thiele works with Miguel Saravia in CONDESAN, which receives money from the CPWF. Thiele and Saravia now want to explore how their adaptation of PIPA can feedback to the CPWF and enrich impact evaluation in the program.

Why is the story significant?

The story is significant because it shows:

- The importance of previous work and relationships in initiating change processes.
- That change was not bound by the CPWF Impact Project. PIPA has antecedents before this project started and is now expanding beyond the CPWF.
- That co-development of ideas, and the co-ownership of them, is an effective scaling strategy because others then use and champion them, as is the case Thiele becoming a proponent of PIPA in CIP. Co-developing and sharing ownership (outside of the CPWF) led to an opportunity to influence what is seen as ‘good practice’ in impact assessment in the CGIAR which in turn means that the CPWF’s approach to impact pathways analysis has been given a stamp of approval from SPIA.

Was the change expected in the original project proposal?

Yes and no. Working with CIP was never in the CPWF Impact Project plan. The funding for the work came from Andean Change and DFID (DFID is also a major donor to the CPWF). However the intention to influence the SPIA towards adopting a positive attitude to the CPWF’s impact work has always been an objective of the project. The route though was certainly not expected.

Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?

Yes, as mentioned in the story PIPA grew out of previous work on innovation histories (CIAT and IRRI) and impact pathways evaluation (IITA). PIPA itself borrows heavily from
Program Theory Evaluation. The relationships that underpinned the change process were formed before the CPWF project.

What are the next logical steps in carrying forward this most significant change?
Continue to do the basics right: work with CIP and other interested partners to meet their needs and co-develop ideas with them. Continue to improve the documentation base for PIPA. Develop a university course in PIPA.

What were the success factors?
Previous working relationships, previous published research, co-development of ideas, working together, constructive conflict, flexibility to work across projects, an excellent team.

What were the constraints that were overcome? What constraints still exist?
There have been differences in opinion and understanding, but surmounting these has at times led to breakthroughs. The ‘centre’ of impact pathways – the outcomes logic model – resulted from an e-mail dialogue between Thiele and Douthwaite.

Supporting documentation / references

RESEARCH TO ESTIMATE FLOW IN UNGAUGED CATCHMENTS PROVIDES VITAL INFORMATION TO IMPROVE WATER MANAGEMENT (ROUND 2)

Project/Basin: CPWF Project 57, Karkheh Basin Focal Project
Name of Person Reporting: Ilyas Masih (IWMI)
When the event happened: November 2007
Location: Iran

The story:
Stream flow data are a prerequisite for water resources planning and management such as assessments of water availability for irrigation and other sectors, examining the ecological health of a river system, assessment of flood and drought risks, design of dams and hydropower plants, and as input to climate models. However, in many cases, observed stream flow data are not available or are insufficient in terms of quality and quantity. This deficiency is especially problematic when trying to understand, or mitigate, localized interventions that have basin scale implications. Hydrologists have responded to this challenge by developing various predictive tools, commonly referred to as regionalization methods. However, despite considerable progress, the prediction of stream flow for ungauged catchments still remains a major issue (Sivapalan et al., 2003).
In the CPWF’s Karkheh benchmark basin in Iran, stream flow data were not available for many catchments. Although there were about 50 stream flow gauging stations installed across the basin in the 1950s and 1960s by the Ministry of Energy, only half are continuously monitored and the rest have been abandoned. The immediate need for stream flow data in the Karkheh Basin Focal Project was for the quantification of the river water balance for the Karkheh River and its major tributaries. To calculate the river water balance requires data on inflow and outflow at the start and end of the river reach as well as water entering the river reach through tributary rivers, abstractions and changes in storage, etc. The time series of the stream flow data of the many tributary rivers was not available and thus was a major constraint in solving the river water balance equation.

To overcome the data gaps, the project team tried several existing regionalization methodologies. However, in part because of the particular conditions in the Karkheh none produced acceptable results. In response, a new methodology was developed for application in basins such as the Karkheh with both limited data and high heterogeneity between catchments (Masih et al., 2008 a & b). This method involves the regionalization of a conceptual rainfall-runoff model (the HBV model) based on the catchment similarity defined on the basis similarity in the flow duration curve. The results for the Karkheh are in fact strong and the methodology, which is relatively simple and has low data input requirements, is also highly applicable in other basins in Iran and worldwide.

In 2007, the findings of the work were shared in Iran, with Iranian collaborators including the Ministry of Energy, the Soil Conservation and Watershed Management Research Institute and the Center of Excellence for Infrastructure Engineering and Management. The project team was asked to share the methodology and relevant material. Beyond Iran, the work has been shared in international scientific forums and, while only recently completed, is receiving positive feedback for application elsewhere (Masih et al., 2008 b, c & d).

Why is the story significant?
The methodology developed under Karkheh basin focal project was used to estimate water balance of selected catchments. This work has proven very useful in improving the understanding of the hydrology of the Karkheh basin and has helped to achieve immediate project objectives. The method has received good recognition from the direct users (i.e., Ministry of Energy Iran, SCWMRI, Iran) and scientific community both inside and outside of Iran and has added new knowledge in the field of estimating ungauged stream flows. The particular significance of this work for the broader scientific community is that the methodology is easy to replicate in other river basins, like the Karkheh basin of Iran, facing decline in stream flow monitoring networks and with a limited number of gauged catchments. The method also has the advantage of capitalizing on the existing knowledge of regionalization of the Flow Duration Curve and thus can be used for the catchments having no stream flow data at all. This work, though in its early stage of recognition and use, is seen as a potentially good contribution to knowledge of the model regionalization for the predictions in the ungauged basins.

Was the change expected in the original project proposal?
No, this study was later added to the project.
Does the change build strongly on earlier research or development investments or breakthroughs? If so, what kind, and by whom?
Not directly, although it uses the existing concepts of using similarity as the basis of regionalization.

What are the next logical steps in carrying forward this most significant change?
To share this work within Iran and worldwide. This is being done by presentations at relevant national and international forums, and by publishing internationally.

What were the success factors?
The approach can work well in data-scarce basins especially in those, like Karkheh, facing the problem of declining stream flow gauging network and can also work well in basins where no or very limited stream flow data is available because it can capitalize on the existing knowledge of regionalization of the flow duration curve (e.g., Castellarin et al., 2004). Flow duration curves are very useful for comparing the hydrological response of the catchments. Their shape is an indicator of catchment response to rainfall and also depicts the storage characteristics of the catchments and influence of topography, vegetative cover and land use.

What were the constraints that were overcome? What constraints still exist?
Since shape of the flow duration curve is representative of the climatic and physiographic characteristics of the catchments, it helped in overcoming some of the constraints related to heterogeneity of the catchments which are usually not well accounted for in other regionalization methods, particularly in data scarce environments. However, it is also well recognized from the concept of the uniqueness of the area that each catchment has unique hydrological behavior and therefore cannot depict exact hydrological similarity to other catchments. Thus the additional information (wherever available) will help better define hydrological similarity between the catchments, resulting in better predictions of the ungauged stream flows.

Relevant references and project outputs

Masih, I., Uhlenbrook, S., Ahmad, M.D., Maskey, S. 2008 d. Regionalization of a conceptual rainfall-runoff model based on similarity of the flow duration curve: a case study from Karkheh river basin, Iran. Presentation at the Boussinesq Center Workshop on Hydrologic science for an ever changing world: search for new hydrologic concepts, theories, models and practices, held on June 23-25, 2008, at Delft University of Technology, the Netherlands. Available online at: http://www.boussinesqcenter.nl/act_masterclass_newtheorie.htm

SMALL GRANTS PROGRAM

The CPWF ‘Small Grants Program’ was conceived for projects that would enhance the adoption of promising interventions for better agricultural water productivity. The emphasis was to develop innovative ways to follow through research on water productivity to achieve developmental impact, bridging the gap between research and development. The assumption is that there exist innovative strategies for managing agricultural water that may influence or inspire the creation of policy for improving agricultural water productivity. In August 2005, a call for small grants projects were made, with a budget of from $40,000 to $70,000 per project. As of April 2007 there were 14 small grant projects in operation.

CREATING AN OASIS IN THE DESERT

Classification: Technical and Partnership
Project/ Basin: Small Grants Project 505 / Andes
Name of Person Reporting: Ross Borja and Stephen Sherwood
When the event happened: 19 July 2006
Location: Lavanderos, Ambuqui, Valle de Chota, Ecuador

The story:
They used to be impoverished and downtrodden farmers, but now Alfonso and Olga Juma regularly receive visitors from all over the world. They have become an inspiration for others - and it all started the day they decided to capture water.

Alfonso and Olga could not produce enough to feed their family on their one-hectare farm. The region where they lived was semi-arid, with about 600mm of intense rainfall during three months, followed by nine months of drought. Alfonso migrated to the city to earn money as a menial labourer, while Olga took care of their children. He considered looking for work in the US or Spain.

After visiting farmers who made innovations with water harvesting and micro-irrigation under similar conditions, Alfonso proposed to two neighbours that they tap a water source high up in the mountainside, some two kilometres from their farms. A year later, on 19 July 2006, some 35 representatives from a ‘Community of Practice’ composed of seven projects supported by the McKnight Foundation in Bolivia, Peru, and Ecuador, as well as visitors from the US and Europe, participated in a field day at Alfonso and Olga’s farm to learn about their experience. The participants arrived in a bus that climbed through the barren, desert landscape of the Chota Valley, crossing river beds and meandering up a dusty road through the sand, rock and cactus laden landscape. The bus stopped at what, over the last year, had become a green oasis: Alfonso and Olga’s farm.

Alfonso began his story by pointing to the surrounding barren hillside and a neighbour’s dry, sun-baked fields. “A year ago, our farm was just like that. I was so poor,” he confided, “that I was embarrassed when my children looked at me.” He went on to explain how his neighbours and he worked endless weekends, and they invested about $600 in hoses and
assorted materials. Most recently, they had dug storage ponds of about 10,000 litres each that they lined with clay. Now, they were experimenting with micro-irrigation. “We’ve learned that by using tubes [rather than open canals] you can [effectively] double and even quadruple your rainfall.” Alfonso went on to explain how they had transformed their farm and lives.

“One I had water, I could grow that small plot of alfalfa. With the alfalfa, I could have cuy [guinea pig]. The cuy produced manure for my soil. We still have a long way to go, but with just the cuyes, we have already paid back our $200 investment in materials. When I started we had no cuy. Today we have 300 cuyes, that are worth about $5 each or $1,500 in all. That is much more than I used to earn in the city. Now I can stay home with my family. With the manure, I’ve planted 75 mango and avocado trees. My farm has become an oasis. Every year it will grow greener and greener. My farm used to be barren of plants. My biggest problem today is that I’ve run out of land to plant.

“I never dreamed that people from so many countries would come to visit us. I used to be ashamed when my children looked at me…it has just changed my kids’ lives, and it has changed mine. I no longer feel embarrassed to be a father.”

Recently Alfonso and Olga planted mango and avocado trees. They can now survive the growing dry periods between rainfalls, perhaps an effect of climate change. Further, they have extended their wet season so that they now can produce throughout the year. They have more than doubled their family income, which means Alfonso no longer needs to migrate to look for work, meaning he can stay at home with his family.

Water harvesting is a very new concept for many Andean farmers, particularly those who grew up in areas where water was once plentiful. Due to the effects of resource degradation, increased demands for water, and climate change, rural families like Alfonso and Olga’s are facing new challenges. They must quickly innovate if they are to survive.

This CPWF project has supported learning on how to enable such change. The potential that increased access to water for improving farm production was well established. Nevertheless, we were less clear on the specific social learning and water harvesting practices that could enable rural innovation in this area. Previously, the investigators had worked with groups of farmer innovators to address soil fertility and pest management concerns. As a result, we had gained new appreciation for ‘peoples’ science’, i.e., innovations that spontaneously emerge from local socio-environmental contexts, as viable opportunities for development. Nevertheless, we are yet to apply such approaches to water harvesting and micro-irrigation. Another question is: what role should ‘outsiders’ (i.e., development practitioners, researchers, and their institutes) play in promoting - rather than squashing - local learning and initiative on more intensive and sustainable water management for improving farm production and livelihoods?

Our project hypothesized that farmers who faced similar challenges spontaneously innovated in ways that could be mutually useful. Further, we believed that the diversity of social and environmental contexts in rural areas produced to an equally rich diversity of novelties – i.e., opportunities or ‘seeds of change’ that could catalyze transitions towards new ways of managing water for food and economy.
In our search for how to enable such catalysis, we consulted an established group of farmer-innovators and invested project resources in their ideas. The project financed initial encounters in the form of cross-visits among farmers who were facing similar challenges with water scarcity. The goal of those exchanges was to identify novelties that could represent a catalytic force of change. The project then financed visioning workshops in localities, during which participants discussed field trips and produced ‘dream maps’ of the future. We then collectively supported the implementation of those dreams, which involved the creation of revolving investment funds and mingas (Kichwa for ‘group work parties’) during which participants worked together to install and test different innovations on different farms, e.g., catchment designs, materials for tanks, and filtering and distribution means. This usually involved a training visit from a farmer who had generated a relevant novelty elsewhere, as well as backstopping from a technical expert who planted generative and challenging questions along the way. The project then supported follow-up visits across farms to document and discuss further innovations, such as the utilization of water and biological resources as a means to “capturing energy and wealth”. This included project participants as well as a growing array of interested parties from other organisations and areas.

The project has utilized photography, mapping, and economic studies to capture outcomes. Most recently, the project has financed the integration of endogenous approaches to water innovation with the Farmer Field School (FFS) methodology; a means to help farmers fill knowledge gaps associated with water-farmer interactions and thereby improve abilities to manage water more purposefully. Presently, we are testing learning exercises and will be implementing pilot FFS in the project areas, as well as with new partner agencies in Bolivia, Peru, and Ecuador.

Why is the story significant?
The story is significant because we have learned several key lessons from it:

- Informal social processes of learning and exchange among farmers can be a powerful catalytic source of change.
- Farmers often have the material and biological resources at hand for mobilizing substantial change. As such, overcoming present barriers often depends on knowledge-based or conceptual development.
- Strategic combining of water with biological resources enabled intensification of an on-farm energy sink, which in turn provided a means to improved nutrition and income. We called this interactive process a ‘greening’ of the farm.

What were the critical factors that led to the change?

- Broadening encounters: informal visits and exchanges with farmers who had transformed their farms under similar conditions provided inspiration and a new vision of what is possible.
- Leveraging biology: Alfonso and Olga combined water with biology (alfalfa, cuy, manures and green manures and trees) as means of harvesting sunlight and converting it to other forms of energy on their farm, effectively creating an ‘energy sink’ and greening effect.
- Self-financing: while the project supported exchanges, Alfonso and his neighbours mobilized their own material and human resources. The relatively quick return on water and biological resources was substantial, enabling them to pay back their investment in a relatively short period of time.
What were the constraints?

- Most people living in arid to semi-arid conditions do not have access to a water source throughout the year. For them, it is essential to harvest rainwater during the wet season and store it. This is particularly true in marginalized areas, where population is growing and the resource base is being degraded.
- Even though farmers often can pay back water harvesting and micro-irrigation investments, access to fair credit can help accelerate transformations. It may be useful to explore farmer-generated and -managed credit systems as a means to catalyzing further innovations with water.
- Highly innovative families, such as that of Alfonso and Olga, are often social outliers. Their examples do not automatically lead to diffusion of broader change. Linking them with broader processes of change would likely demand unique attention.

Recommendations (if any) for future research

- Now that farmers such as Alfonso and Olga have largely exploited their ideas, we need to help them deepen their experience in ways that can lead to further innovation with water and biological resources for improving their livelihoods. How can this be facilitated and encouraged, particularly across large populations of marginalized farmers?
- It would be useful to explore more thoroughly the key events and processes behind such success stories, what we sometimes call the 'positive deviants' (borrowing from a health/nutrition approach), perhaps through deeper social and economic analysis. What can be achieved through linking up positive deviants into unique networks of innovators? How can the positive deviants contribute to enabling re-directions of present water management regimes across broader social groupings?
KNOWLEDGE SHARING AND COMMUNICATION STRATEGY
IN AGRICULTURAL WATER INNOVATION SYSTEMS

Classification: Technical

Name of Person Reporting: Kenneth Masuki and Mary Shetto

Project/Basin: Small Grants Project 503 Enhancing adoption of High Potential Interventions for increasing Agricultural Water Productivity / Nile Basin

Date when the change occurred: March 2006 to date

Place where the change occurred: Makanya Catchment in Same District, Tanzania

The Story:
Small Grants Project 503 is enhancing adoption of innovations to wider communities in the Makanya catchment with the aim of scaling up novel innovations in the Nile Basin. Past studies indicated that one of the constraints to adoption of Water and Moisture Systems Innovations (WMSIs) has been limited knowledge of innovations and their benefits.

Historically, upland farmers in Makanya Catchment have been growing bananas in mixture with coffee. Banana was mostly used as a food crop. For a long time now farmers are experiencing marketing problems with coffee, so these fields were not well attended. Recent drought rendered production to be almost negligible. Farmers were left with no alternative cash crops and production of vegetables was also not well organised.

A knowledge sharing and communication strategy was developed in collaboration with partner institutions, farmers, district authorities and the Civil Society Organisation to promote WMSIs. Analysis of the current knowledge, attitudes and practices (KAP) of different partners were carried out as a basis for overcoming barriers to adoption and provision of enabling environment to enhance adoption of WMSIs.

Knowledge sharing and learning was carried out through focus group discussions, dialogue, participation of farmers in Agricultural Show Nanenane (40 farmers), and exchange visits in areas where WMSIs are successfully practiced, i.e. Lushoto (10 farmers) and Babati (15 farmers).

Farmers were encouraged to grow high value crops in the terraces so that they increase return to land and labour. Farmers were not given free seeds. However, during exchange visits (out of their own initiatives) some farmers brought back banana suckers from Lushoto. Farmers requested improved banana seedlings so that they can expand their fields. The two partners CSOs we are collaborating with (ALERT AND SAIPRO), have shown interest to help a small group of farmers obtain banana seedlings from the Selian Agricultural Research Institute and they in turn can reproduce and distribute seedlings to neighbouring farmers. We also have planned to conduct limited demonstration on Conservation Tillage with seven farmers groups using farmer field school approach in season starting March. This is in response to farmers’ request to practice CA as they learned from fellow farmers in Babati district. This will be done in collaboration with the District Extension Team and Village Extension officer. The district will support farmers with basic inputs required for establishing these demo plots in terms of seeds, pesticides and implements (rippers).
Within project activities to promote WMSIs we are encouraging farmers to link, for example, terracing with planting of high value crops like vegetables so that to give farmers alternative cash crop in order to improve their incomes. Exchange visits can help achieve this and visits were arranged in areas where farmers have succeeded to link WMSI with markets. After preliminary discussions farmers showed interest to try these innovations and when they got opportunity to witness fellow farmers benefiting from WMSIs where bananas and other vegetables are produced with limited supplemental irrigation, a lot of enthusiasm to improve their banana fields was generated.

In the lowlands, we are taking advantage of the fact that farmers are already producing lablab (Dolichos spp.) which is also a cash crop. Lablab is also a recommended legume for Conservation Agriculture as we saw in Babati when we visited with farmers. Therefore, using lablab as a cover crop will held us introduce CA while using a crop of their choice which is already grown in the area. Therefore, our interventions are mostly in providing implements and inputs to establish demonstration plots.

Farmers are not setting trials as such, but are improving soil and water management practices using different innovations like terracing, contouring and CA to produce crops that can increase production of crops as well as livestock since along the contours they also plant fodder tree.

Preliminary observations indicate that in less than six months there has been rapid adoption of WMSIs such as terraces and contours in the five villages whereby more than 144 farmers have constructed 1118 terraces. Production of high-value crops, such as bananas, tomatoes, and onions, will increase productivity of scarce water resources. Land area covered and cost-benefit analysis will be carried out as part of the ongoing monitoring and documentation process.

Why is the story significant?
- Farmers have shown enthusiasm to adopt technologies that have been there for more than 50 years as a result of participatory processes in knowledge sharing and learning.
- WMSIs is contributing to rainfed agriculture as a measure to address challenges posed by climate change and has the potential to benefit about 10,000 farm families in the Makanya Catchment.

Among the key lessons learned are:
- Adoption of water system innovations depends much on a combination of different promotion methods.
- Farmers always learn by seeing and doing – experiential learning.
- Interactive methods, complemented by other methods and media of communication like exchange visits, audio-visual and printed materials, are more effective than non-interactive methods.
- Linking farmers with marketing institutions is the key to motivating farmers to invest in WMSIs.
What were the critical factors that led to the change?

- Involvement of farmers and other partner institutions in planning the knowledge sharing and communication strategy brought a sense of ownership amongst stakeholders.
- Targeting of village, ward and district leaders as champions of promoting the technologies.
- Recognition of gender participation in enhancing adoption of WMSIs.
- Various forms of information sharing and learning through discussions, and provision of a ‘basket of choices’, in terms of technologies to be adopted by farmers.
- Promotion of high value, crop-based enterprises added value to the adoption of WMSI and encouraged farmers to invest in these innovations.
- Partnership with CSOs who are assisting farmers to link with markets and to procure resources.
- Presence of researchers in the knowledge sharing and learning processes enabled them to address problems associated with ‘lack-of-fit’ with farmers in the field such as choice of innovations according to soil types and farmers resources.

What were the constraints?

- Absence of farmers organisations in agricultural marketing.
- Poor infrastructure such as water storage facilities and roads.

What are the future implications for action (e.g., future research), if any?

- Increasing capacity for farmer-to-farmer knowledge sharing and learning.
- Increasing capacity of researchers in knowledge sharing and communication strategy development.
- Changing mind-sets of researchers towards promotion of research products through knowledge sharing and communication.

WATER AND SOIL MANAGEMENT LED TO FOOD SECURITY

Classification: Technical

Name of Person Reporting: Josephine Kizza

Project: Small Grants Project 513 Food Security in Southern Uganda

Date when change occurred: 2006 - 2007

Place where the change occurred: Masaka and Rakai districts – Southern Uganda

The Story:

Subsistence farmers formed three cohesive groups of thirty members each with functional leadership. They trained in soil and water conservation with a prime aim of attaining food security using integrated water management approach as a key element.

We provided practical demonstration in water harvest, soil moisture retention and soil erosion reduction efforts. We also helped established communal plant nurseries for each group. We provided on-farm advice, responding to individual needs and addressing the interests of even the most timid participants. We also introduced the use of polythene to line water storage pits fed from surface run off, covered with wood logs and soil spread over to allow growing of vegetables with shallow roots.
Why is the story significant?
- The story is significant because it shows how we can link environmental awareness with economic development. Participants have adopted integrated organic farming practices that are ecologically friendly and further embraced agro-forest practices as part of efforts to improve the depleted soils.
- The project helped 90 families meet their basic needs and combat chronic food shortages.
- Water harvest and improved soil moisture retention was introduced to solve the increasingly unpredictable rainy seasons.
- The holistic approach is enabling subsistence farmers to conserve the soil and trees and maximize the use of natural precipitation.
- Replication of technologies by the neighbouring communities was made possible.

What were the critical factors that led to the change?
- Training of participants in organic farming and subsequent adoption.
- Farmers’ control over planting materials.
- Promotion of fruit trees that are linked directly to household food and income needs.
- Skills of group leaders.
- Water harvest and control of soil erosion.

What were the constraints?
- Training of non-literates alongside those who can write.
- Continued reliance to firewood as a source of energy.
- Lack of animal manure, a key component in compost making.
- Participants not used to sharing of experiences and innovations.

What are the future implications for action (e.g., future research), if any?
Assess the effects of tapping surface run-off water to neighbouring communities downstream.

REDUCING PEST INCIDENCE AND WATER USAGE IN COTTON WITH LADIES FINGER AS A TRAP CROP

Classification: Technical

Name of Person Reporting: Bharat Dayal

Project / Theme / Basin: Small Grants Project 508 Selecting and scaling up water-efficient farming and groundwater recharge systems among 3,000 small scale farmers, Rajasthan / Themes 1 and 2 / Indo-Gangetic Basin

Date when the change occurred: July-September 2006

Place where the change occurred: Village Gunti, District Alwar, Rajasthan, India

The Story:
Decreasing yields over the years has discouraged Mangeram, a farmer from the village of Gunti. He was growing cotton in his field which had a high incidence of sucking pests like aphids, red cotton bug and pink boll worm, led to decrease of crop yield. He tried to solve the problem by increasing pesticide application, but it just made things worse. He then
assumed that land fertility was the problem but soil testing showed that all the nutrients needed were available in the right quantities. He was desperate for a solution.

Moreover, he has been applying excessive water because he thought that the yellowing of leaves and apical buds was due to water stress. It was actually due to pest attack and this was explained to him in his interaction with Small Grant 508 scientists.

Now Mangera is one of 50 progressive farmers in the district. His land is a model field under the CPWF project. A crop combination of cotton and ladies finger was recommended to the farmer, with the cotton field surrounded by two rows of ladies finger. This model was designed to reduce water usage and at the same time increase productivity.

A similar neighbouring plot of cotton grown conventionally was taken as the control. The logic was that since the pests which attack cotton and ladies’ finger are the same, the introduction of a trap crop will reduce the attack of sucking pests. The farmer used two irrigations in the model plot, whereas the control plot had three irrigations. The model and the control fields were then put under CESA observations taken weekly for different indicators and significant changes were observed with respect to the number of fruiting bodies. There was increased dropping of fruiting bodies in the control plot which was the result of excess water and fertilizer application. Thus, the control plot had reduced yield compared to the model plot.

Why is the story significant?
The story is significant because the research has shown how to increase productivity with less water and pesticides. This one example has the potential to influence entire villages of farmers and boost their yields.

What were the critical factors that led to the change?
- The farmer was convinced of the benefits of mixed cropping and its reduced risk. He was doubtful at first if the model could work as he argued that if pesticides could not stop pest attacks the introduction of a trap crop would be of little help over the years. He participated in the trial when he realized that the ladies finger could serve as a security crop in case the main crop fails, and that it can be used both for domestic and commercial purposes.
- Farmers’ acceptance of the need to use water judiciously in the wake of depleting ground water tables.
- Farmers’ active participation in meetings and orientations with agricultural researchers.
- Farmers’ confidence in the project.

What were the constraints?
- Farmers has been discouraged by previous interventions by government and non-government organisations who started water- and soil-management related work but never followed them up.
- Normal resistance to change in rural areas.
- The project initially being mistaken as a government scheme with lots of free inputs
- Farmer-led research is rare in India and poses a challenge to the project.
- Farmers believe in results when they see them, and it is difficult to convince farmers to participate based on projected results.
- Top down approach is normally followed in India where policies made by the State are imposed on the community. A project where farmers are completely involved in the
research and takes responsibility for it requires that the farmers have to change their habits and in rural areas this takes time, energy and a lot of motivation.

What are the future implications for action (e.g., future research), if any?
- Reduced pest attacks will lead to reduced pesticide use, resulting in better quality cotton and better profits for the farmers.
- The model has been accepted by a number of farmers who will adopt it next year.
- Reduced production risks - farmers have seen that two crops can be grown from the same land at the same time.
- Improved food and water security.
- Within one year, this research has convinced the farmers of the need to save water and this will be scaled up to many more farmers in the operational area. Through this model, farmers can realize that they can efficiently use their land while saving water and preserving soil health, while at the same time ensuring their livelihood.

AGRO-BIODIVERSITY, RAINWATER HARVESTING AND COMMUNITY EMPOWERMENT (ROUND 2)

By: Adam J. Rankin

Project / Basin: Small Grants Project 510 Associated cropping and enhanced rainwater harvesting to improve food security and sustainable livelihoods of peasant farmer associations (Santander - Colombia), Andean system of basins

Location where it happened: Soto Province, Department of Santander, Colombia

Period of Time: 2001 - present

The Story:
Monoculture production systems have gravely affected food security and caused environmental impacts and loss of cultural identity in peasant farming communities. Farmer exchange meetings were organized to relive the history of the landscape and the changes in food production patterns (‘collective food banquets’). Farmers identified niches of traditional seeds in their communities and recovered associated knowledge, such as that related to inter-cropping and cultural use.

Among the activities initiated were:
- Consolidation of a Campesino School of Agroecology with the participation of men, women and youth (50 localities - eight rural municipalities, Soto Province) - monthly itinerant meetings where seed-exchange, soil and water conservation and collective food offerings are central issues.
- Community-to-community exchanges at regional and national levels: participation of farmer associations, indigenous and afro-descendent communities, emphasis in cultural identity, popular knowledge and food autonomy.
- Seed banks established: vegetable plots, traditional hen raising, inter-cropping (beans, cassava, maize, fruits, vegetables, medicinal plants, etc.).
- Development of food processing and social marketing initiatives: wine, milk products, handicrafts, etc.
- Dissemination of testimonial results through alternative community media.
Launch of a water campaign in rural area of municipality of Lebrija affected by contamination and extensive desertification. Women’s association and farmers begin to enact their collective right to water. Particular attention was given to rainwater harvesting and gender empowerment. Links were made to national campaigns and networks on food security, biodiversity and water issues.

Why is the story significant?
Recognising the potential of diverse sustainable agriculture has shown to be a viable alternative to the environmental degradation caused by mono-crop (slash and burn) production. A collective awareness of the historical transformation of the landscape and its people, has motivated local farmers to recover traditional seed varieties as food-crops and re-adopt crop association and agroecological farming practices.

The story also highlights the importance of constructing participatory solutions to secure sustainable water access in rural areas, motivating the local communities to enact their collective right to water. Particular attention has been given to gender equality, and a Women’s Peasant Association is a leading partner in decision-making and implementation.

What were the critical factors that led to the change?
We have demonstrated innovative educational and social organisation strategies which encourage active farmer participation and capacity building. Our experience has shown that scale is not necessarily an obstacle to technology transfer. Community-to-community partnerships have been an innovative method to share technical skills and operational structures, where the communities are self-empowered (workdays, knowledge exchange and material resources).

Women and youth have been more exposed to the impacts of water contamination and scarcity in rural areas, as the majority of households lack access to basic sanitation and safe drinking water. This has been a strong driving-force to motivate the water campaign; women have gained communication skills and political-standing in their communities, and have contributed to dynamic, self-dependent and unified process.

The farmer associations have experienced at first-hand a set of guiding practices to enhance and conserve water within agro-ecosystems, and have seen genuine improvements in food security, family nutrition and community well-being. Priority has been given to promoting agro-ecological and rainwater harvesting practices that permit both soil conservation and efficient water use (low-tillage intervention, plant-soil cover, organic fertilisation, infiltration ditches and terraces).

To disseminate experiences and testimonial results, we have been developing different community media resources such as radio programs and magazines on the issues of agroecology, food security and water conservation. Priority has been given to communication tools that are produced by and destined for the people of the region, with the objective of promoting a better dialogue between urban and rural society.

What were the constraints?
The process of community and institutional dialogue is still deficient, although it was possible to visualise integral policies and social mandates to improve water and food security.
Fundamentally what is needed are genuine forms of co-operation and political will to implement plans to tackle water and food insecurity. The empowerment of women and farmer associations play an essential role in this process.

The rural youth population are increasingly vulnerable to a series of interrelated threats that include the socio-economic crisis of rural families, influence of urban-life and mass-media, government abandonment of rural education and the countries ongoing political conflict.

What are the future implications for action?

We propose to continue developing strategies to counter the barriers which limit the integration of community participation and gender equity in water management within the region. Influencing policy and decision makers, as well as establishing local users rights, are key to establishing sustainable community development.

The methodology of the Campesino School of Agroecology emphasizes farmer-to-farmer dialogue within the local community and across rural municipalities. This needs to be extended to facilitate collective learning, social organisation and dissemination of appropriate technologies and sustainable agricultural practices on a basin-scale.

It is important to continue the process of systematisation of community results related to the benefits of traditional seed recovery and its impact on improved water and food security. It is also interesting to study the benefits related to agro-ecological production practices, in terms of: reduced evaporation, improved nutrient uptake, mineral enrichment and biological activity of soils, increased water infiltration and erosion prevention, impact of plant-soil and tree cover, etc.