The climate-smart agriculture (CSA) concept reflects an ambition to improve the integration of agriculture development and climate responsiveness. It aims to achieve food security and broader development goals under a changing climate and increasing food demand. CSA initiatives sustainably increase productivity, enhance resilience, and reduce/remove greenhouse gases (GHGs), and require planning to address tradeoffs and synergies between these three pillars: productivity, adaptation, and mitigation [1]. The priorities of different countries and stakeholders are reflected to achieve more efficient, effective, and equitable food systems that address challenges in environmental, social, and economic dimensions across productive landscapes. While the concept is new, and still evolving, many of the practices that make up CSA already exist worldwide and are used by farmers to cope with various production risks [2]. Mainstreaming CSA requires critical stocktaking of ongoing and promising practices for the future, and of institutional and financial enablers for CSA adoption. This country profile provides a snapshot of a developing baseline created to initiate discussion, both within countries and globally, about entry points for investing in CSA at scale.

Climate-Smart Agriculture in Colombia

Economic relevance of agriculture

Colombia is an emerging economy, with a population growth rate of 1.4% per year. Agriculture has traditionally been one of Colombia’s main economic activities. The agricultural (value added) GDP currently represents 6% of the national GDP, and the last five years were noted by the government as a critical growth period in the sector [3].

Colombian agriculture has the potential to continue growing and to feed the nation, but it needs to do so sustainably and by effectively managing the threats posed by climate change [4].

Land use

The rural Gini index, which measures inequality, grew from 0.74 to 0.88 [5]. Rural concentration of land and inequality have grown in the last decade. Colombia ranks 11th worldwide when looking at countries with the most unequal distribution land [6]. Patterns of land use could be improved to more sufficiently capture the agricultural potential of the country. For example, fertile valleys that are used for extensive livestock rearing would be more efficiently utilized for crops. It is estimated that livestock production occurs on roughly three times the land area than is optimally suited for this land use [5]. This inequality is closely linked to rural poverty (40% of the rural population), and is both a cause and a consequence of the internal armed conflict that has ravaged the country for more than half a century [7].

Agricultural production systems

In Colombia, 81% of farms cover less than 20 hectares. These small- and medium-scale producers represent two-thirds of the agricultural harvested area and just over half (52%) of the value of agricultural production. Smallholder farmers are involved mainly in the production of potato, maize, sugarcane, plantain, cassava, beans, tobacco, cocoa, coffee, vegetables, fruits, and other minor crops. Commercial crops produced by large agribusinesses include sugarcane, banana, flowers, palm oil, rice, cotton, sorghum, and soybean [4].

Agriculture exerts great pressure on water resources. In Colombia, 54% of national demand for water comes from agricultural land use (19,386 mm3), mainly in the Andean, Central, and Caribbean regions. Pastures require 27% of water available for agriculture, annual crops 14% (mainly rice and maize), and permanent crops 13% (mainly oil palm, export banana, sugarcane, and coffee) [10].

2 See Annex II.
3 See Annex III.
4 See Annex IV.
Agricultural greenhouse gas emissions

The main sectors that contributed to emissions of GHGs in 2004 were agriculture (68.5 Mt CO₂ equivalent representing 38%) and energy (65.9 Mt CO₂ equivalent representing 37%), followed by land-use change and forestry (15%) [11].

Methane emissions are derived mainly from livestock (19% of national GHG emissions, 47.5% of emissions from agriculture), while nitrous oxide emissions result from the use of nitrogen fertilizers (18% of national GHG emissions, 48.6% of emissions from agriculture). These patterns mirror general GHG emissions trends globally. Minor sources include rice (2%), manure management (1.7%), and burning of agricultural residues and savannas (0.1% each), despite strong regulations in some regions banning this practice [11].

Challenges for the agricultural sector

Colombia is characterized by significant temporal and spatial climatic variability with differential impacts on agriculture. Therefore, a comprehensive strategy for agricultural risk management is needed. Given that 40% of the rural population lives in poverty and 17% of national employment comes from agriculture [3], strengthening government support to agriculture and developing and implementing technologies appropriate to the socioeconomic condition of farmers is required to improve shared prosperity and agricultural productivity.

Most of the country has limited access to extension services, especially farmers not associated with producers’ organizations. Increasing government investment in research, development and extension services, and strengthening local capacities are key facts to transform the family and small-scale agriculture to competitive and sustainable agriculture. Resulting in increased food production and a substantial improvement in income and quality of life for farmers.
Agriculture and climate change

Between 1998 and 2011, 90% of natural disasters in Colombia were related to climate. The El Niño-Southern Oscillation (ENSO) has had a marked impact on Colombia. The excessive rain associated with the most recent La Niña (2010 – 2011) caused agricultural production losses equivalent to 2.1% of the GDP in addition to casualties and property damage due to flooding. In 2008, El Niño reduced yields of 17 nationally important crops by an average of 5%. Climate change is expected to increase the intensity and frequency of these disasters [10]. According to the Second National Communication of Colombia to the United Nations Framework Convention on Climate Change (UNFCCC), key projected changes under the Special Report on Emissions Scenarios (SRES) A2 climate scenario (‘business as usual’) include:

- A 1.4°C increase in annual mean temperature by 2040.
- Large temperature increases in the agricultural departments of Norte de Santander, Risaralda, Huila, Tolima, and Sucre, possibly resulting in prolonged and more intense drought seasons and proliferation of pests.
- Reduction in average annual rainfall of 10% or more in the departments of Antioquia, Caldas, Cauca, Córdoba, Huila, Nariño, Putumayo, Quindío, Risaralda, Tolima, and Valle del Cauca, raising concerns as to water availability for agriculture in irrigated rice-producing departments, such as Tolima and Huila.

Climate change could impact all farmers, from large- to small-scale. Large-scale producers are often better placed to deal with emerging challenges due to their higher incomes, better access to land, and greater ability to invest in new technologies. However, neither large- nor small-scale farmers will be able to fully adapt without the support of critical CSA practices, such as improved pest and disease control and resistant crop varieties.

CSA technologies and practices

CSA technologies and practices present opportunities for addressing climate change challenges, as well as for economic growth and development of agriculture sectors. For this profile, practices are considered CSA if they maintain or achieve increases in productivity as well as at least one of the other objectives of CSA (adaptation and/or mitigation). Hundreds of technologies and approaches around the world fall under the heading of CSA [2].

In Colombia, farmers have been using a variety of CSA techniques for decades. These include: agroforestry in coffee, plantain, and cacao; intercropping and composting in short-cycle crops; silvopastoral systems, grass–legume associations, improved forages, best management practices for livestock and agriculture; conservation agriculture in maize, potato, and peas; organization of irrigation districts for rice and sugarcane systems; and genetic resource management for higher tolerance to heat, water stress, and pests and diseases in rice, coffee, maize, and sugarcane.

Despite a history of using CSA practices, the percentage of farmers currently implementing these practices is often quite low (Table 1). Low adoption is linked to the technologies being designed or transferred with a lack of farmers’ perceptions of risk and local socioeconomic conditions in mind. This is the case for many practices with high potential for mitigation, adaptation, and productivity, such as improved pastures and silvopastoral systems in livestock (GHG emissions reductions from enteric fermentation and manure management), efficient use of nitrogen fertilizers in rice and maize crops, or agroforestry in coffee, banana, fruits, and cocoa (emissions reductions from carbon sequestration). Green manure, conservation agriculture, and companion planting are also under-adopted, despite their potential for improving water retention in soils and soil organic matter, diversifying livelihoods, and bolstering incomes via participation in organic markets.

Low adoption of these practices is mainly linked with institutional and financial challenges that farmers and producers associations face. These challenges include lack of consistency between climate change policies and agricultural, food security, forestry, conservation and economic development policies, lack of funds to support producers in the transition to CSA practices (extension services, R&D, financial incentives, etc.) and socioeconomic issues (poverty, low incomes, lack of education, land tenure, etc.).

5 Coffee was not included in the study.
6 Projections based on RCP 4.5 emissions scenario [15] and downscaled data using the Delta Method [16].
The graph above displays the smartest CSA practices for each of the key production systems in Colombia. Both ongoing and potentially applicable practices are displayed, and practices of high interest for further investigation or scaling out are noted. Climate smartness is ranked from 1 (very low positive impact in category) to 5 (very high positive impact in category).

Table 1. Detailed smartness assessment for top ongoing CSA practices by production system as implemented in Colombia.7

The assessment of a practice’s climate smartness uses the average of the rankings for each of the six smartness categories: weather, water, carbon, nitrogen, energy, and knowledge. Smartness categories emphasize the integrated components related to achieving increased adaptation, mitigation, and productivity.

<table>
<thead>
<tr>
<th>CSA Practice</th>
<th>Climate Smartness</th>
<th>Adaptation</th>
<th>Mitigation</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato 4% harvested area</td>
<td></td>
<td>Greater water retention in the soil avoids crop loss during dry periods.</td>
<td>Higher carbon in soils, reduced nitrogen loss.</td>
<td>Enhanced yields reported in specific contexts.</td>
</tr>
<tr>
<td>Green manure (20% adoption)</td>
<td>Low adoption (30%)</td>
<td>Greater water retention in the soil avoids crop loss during dry periods.</td>
<td>Enhanced carbon in soil.</td>
<td>Organic inputs can enhance productivity.</td>
</tr>
<tr>
<td>Plantain 11% harvested area</td>
<td></td>
<td>Regulation of canopy temperature and increased soil moisture maintains yield during dry periods.</td>
<td>Increased carbon sequestration and carbon storage from greater tree density.</td>
<td>Diversified livelihoods, but no significant benefits reported.</td>
</tr>
<tr>
<td>Good agricultural practices (GAP)</td>
<td>Medium adoption (30 – 60%)</td>
<td>Greater yield stability despite climate variability.</td>
<td>Improved efficiency in fertilizer use reduces nitrogen emissions.</td>
<td>Enhanced yields reported.</td>
</tr>
</tbody>
</table>

7 See Annexes V and VI.
<table>
<thead>
<tr>
<th>Practice</th>
<th>Climate Smartness</th>
<th>Adaptation</th>
<th>Mitigation</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugarcane</td>
<td>Efficient management of water</td>
<td>Less water demand, especially in dry season.</td>
<td>No significant benefits.</td>
<td>Greater productivity and stability.</td>
</tr>
<tr>
<td></td>
<td>Pest- and disease-resistant varieties</td>
<td>Reduced yield loss due to pests and diseases in periods of abiotic stress.</td>
<td>Minor benefits from reduced chemical inputs.</td>
<td>Reduced yield loss.</td>
</tr>
<tr>
<td>Rice</td>
<td>Heat-tolerant varieties</td>
<td>Reduced yield loss due to sterility from high temperatures during flowering.</td>
<td>Improved emissions intensity due to productivity increases.</td>
<td>Reduced yield gap.</td>
</tr>
<tr>
<td></td>
<td>Efficient management of water used in irrigation districts (Tolima)</td>
<td>Lower water demand can reduce yield loss during dry seasons.</td>
<td>Alternate wetting and drying can reduce methane emissions by ~30%.</td>
<td>No significant benefits.</td>
</tr>
<tr>
<td>Maize</td>
<td>Efficient management of water</td>
<td>Greater yield stability despite climate variability.</td>
<td>Improved efficiency in fertilizer use reduces nitrogen emissions.</td>
<td>Enhanced yields reported.</td>
</tr>
<tr>
<td></td>
<td>Soil management</td>
<td>Greater yield stability despite climate variability.</td>
<td>No significant benefits.</td>
<td>Enhanced yields from improved varieties.</td>
</tr>
<tr>
<td>Coffee</td>
<td>Agroforestry</td>
<td>Reduced temperatures in coffee canopy, reduced pressure of rust and insect-borne yield losses.</td>
<td>Significant carbon sequestration and carbon storage in system.</td>
<td>Diversification in farm income can enhance livelihoods. No major productivity benefits, but shade can enhance coffee quality leading to higher income.</td>
</tr>
<tr>
<td></td>
<td>Pest- and disease-resistant varieties</td>
<td>Less yield loss during periods of significant climate variability.</td>
<td>Minor benefits from reduced chemical inputs.</td>
<td>Significantly less yield loss.</td>
</tr>
<tr>
<td>Livestock</td>
<td>Silvopastoral systems</td>
<td>Silvopastoral systems bolster resilience of livestock production systems to climate variability.</td>
<td>Significant above- and below-ground carbon sequestration, reduced nitrogen application.</td>
<td>In high potential areas, stocking rates of 2–3 heads per hectare (Colombia average is 0.5).</td>
</tr>
<tr>
<td></td>
<td>Grass – legume associations</td>
<td>Improved soil quality (physical/chemical) can contribute to increase in resilience.</td>
<td>Improved feed quality reduces emissions intensity, and nitrogen fixation reduces nitrogen fertilizer requirements.</td>
<td>Improved feed quality increases productivity and quality.</td>
</tr>
</tbody>
</table>
Case Study:
Silvopastoral systems for improved productivity, environmental conservation, and climate change mitigation in Colombia

Silvopastoral systems (SPS) have been implemented as a measure to increase the environmental and economic sustainability of cattle ranching (see Table 1 for adaptation, mitigation, and productivity benefits of SPS). The World Bank, the Colombian Cattle Ranching Federation (FEDEGAN), the Center for Research on Sustainable Farming Systems (CIPAV), The Fund for Environmental Action and Childhood (Fondo Acción), and The Nature Conservancy (TNC) came together for a CSA initiative aiming to convert 48,000 hectares of open pasture to SPS. The project started in 2010 in Colombia with financing from the Global Environment Facility (GEF), and in 2014 it was extended with an additional financing from UK-DECC. Regions for implementation were selected given their proximity to critical biodiversity hotspots: the watersheds of the Cesar and Lower Magdalena rivers, the coffee ecoregion in the Cauca watershed, the Orinoco piedmont, and La Guajira, among others. The initiative seeks to gather more evidence on the potential of SPS to help reduce deforestation caused by cattle ranching and to create an enabling environment for scaling out SPS throughout the country. Such an effort could be an entry point for South-South cooperation with countries that share the same agro-ecological and climatic conditions in livestock production systems. This initiative is also supported by the Colombian government and the Ministries of Environment and Sustainable Development and Agriculture and Rural Development [17].
Institutions and policies for CSA

For two decades, Colombia has been formally engaged in international policies on climate change, starting with its entry into the UNFCCC in 1994. It has since ratified the Kyoto Protocol, presented two UNFCCC national communications, and integrated climate change strategies into the current national development plan.

The four key aspects of Colombia’s National Climate Change Strategy [18] are:

- The Climate Change National Adaptation Plan (PNACC)
- The Colombian Low-Carbon Development Strategy (CLCDS)
- The National Strategy for REDD+.
- Financial protection in the case of disasters

These strategies will be further articulated through the National System of Climate Change (SISCLIMA), and are expected to be integrated within the system by the end of 2014 [19].

The 2011 Institutional Strategy to Articulate Climate Change Policies and Actions in Colombia – CONPES® 3700 Document created an entirely new institutional framework that gives authority for climate change policy to the National Planning Department (DNP) [20]. DNP, receiving direction from the President, formulates long-term public policies and has significant political power to coordinate all ministries linked to climate change strategies. These include the Ministries of Environment and Sustainable Development (MADS), Agriculture and Rural Development (MADR), Finance and Public Credit, Home Affairs, Mines and Energy, Transport, Foreign Affairs, and Health and Social Protection. These main institutions have strengths in different pillars of CSA (see institutions graphic), and with increasing levels of cooperation between them these strengths can be used synergistically.

In the productivity pillar, institutions such as the Colombian Agricultural Institute (ICA), the Colombian Corporation of Agricultural Research (CORPOICA), various non-governmental organizations (NGOs), and some producers associations support national research on agriculture. MADR also has policies that focus on generating employment and income for the rural population.

Adaptation policies are led by DNP, with the support of MADS at the national level and Autonomous Regional Corporations (CAR) at the local level. Colombia, along with Brazil, is considered a pioneer in the region for the development of National Adaptation Plans (NAPs). In addition to governmental efforts, it is important to note the role of sectoral research organizations in adaptation. These include the National Center for Coffee Research (CENICAFÉ), which generates technologies for the welfare of the Colombian coffee growers, the National Center for Sugar Cane Research (CENICAÑA), which leads R&D initiatives for the sugar industry, and the National Center for Oil Palm Research (CENIPALMA), which conducts R&D for oil palm plantations. Additionally, CORPOICA is leading the MAP project (Models of Adaptation and Agro-climatic Prevention), which focuses on strengthening local capacity to increase the adoption of CSA practices and the generation of agro-climatic early warning systems.

Mitigation policies are led by MADS. Colombia has shown great interest in contributing to the global reduction of GHG emissions through the implementation of Nationally Appropriate Mitigation Actions (NAMAs). The NAMAs portfolio is currently being drawn up for agriculture, energy, housing, industry, mining, oil, transport, and waste. These policies are intended to allow economic development without compromising the environment [21].

Improving agricultural production has been a consistently important priority for Colombia, and climate change mitigation and adaptation also rank high in public priorities and receive political and social support. The agriculture sector is becoming increasingly involved in implementation of these measures. MADS, DNP and MADR are now broadening their agenda to link environmental initiatives with agriculture, and have reorganized to improve their coordination of international finance.

8 CONPES: National Council for Social and Economic Policy, which was created by Act 19 of 1958.
At the local level, MADS has created sectoral and geographic Regional Nodes on Climate Change (RNC C) to implement national climate change strategies. These nodes participate in interdisciplinary working groups made up of public and private institutions across local, departmental, regional, and national levels that implement actions to reduce vulnerability and increase regional capacity to respond to current and projected climate risks [22].

A strong example of a Colombian government initiative enabling CSA action is the landmark alliance between MADR and the International Center for Tropical Agriculture (CIAT), with farmers’ participation through producers associations and other research institutions. Its objective is to improve the capacity of the agricultural sector to respond to climatic phenomena. This program is the first initiative in Colombia that simultaneously promotes the three pillars of CSA: adaptation, mitigation, and productivity. This is a clear example of how the identification of suitable adaptation and mitigation options can be enhanced by the development of and access to Integrated Decision Support Systems that compile and analyze climatic agronomic and economic information.

As mentioned in the land use section, Colombia currently has a pattern of land use distribution that limits reaching the agricultural land potential. Government initiated development of instruments and institutions aimed at the regulation of appropriate land use according to suitability and its environmental functions, would enable CSA and improve the effectiveness of resources management.

Financing CSA

National finance

Funding for agriculture from within Colombia includes support from the government (MADR, MADS), the financial sector (the Fund for Agricultural Financing (FINAGRO), the Agricultural Bank (BANAGRARIO), the Business Development Bank (BANCOLDEX), and credit institutions, cooperatives, NGOs, and the informal sector, such as family, friends or individuals who lend money. Credit requests in agriculture relate to investment in production systems (57%), working capital (28%), and interest payments (15%). Farmers with land ownership titles or durable assets have better access to financing, especially through the formal financial sector risks [21].

Insurance is still minimal, with only 1% of cultivated area insured (compared to 50% in Argentina, for example) [23]. In recent years, however, progress has been made to cover the costs of climate-related losses and the sector has high potential for growth.

9 RNCC are coordinated by Autonomous Regional Corporations (CAR), and implement adaptation and mitigation policies, such as the CONPES 3700 Document.

International finance

The technical and financial international support for climate change initiatives has come from several sources including bilateral programs, non-profit organizations, and multilateral institutions. These resources have thus far been used to finance activities along the four lines of the National Climate Change Strategy, including the analytic process to define a low-carbon development strategy, capacity building in various sectors, and the monitoring, reporting, and verification (MRV) of mitigation and adaptation [18]. Agriculture represents a small part of funded initiatives.

For CSA-related activities, Colombia accesses international bilateral public finance channels, such as the UK-DECC, UN Agency Programs, such as REDD, and various carbon markets. In private philanthropy, the Gordon and Betty Moore Foundation finances the project ‘Institutional, technical, and scientific capacity to support REDD+ projects,’ led by the National Institute of Hydrology, Meteorology and Environmental Studies (IDEAM).

Potential finance

Agriculture currently depends heavily on government support. However, public support for agriculture in Colombia is among the most unequally allocated in Latin America, and smallholders are often left without sufficient financial resources. One way to reduce this imbalance would be to focus CSA projects on smallholders.

Payments for ecosystem services (PES) are a further opportunity for financing agricultural activities that promote conservation. Efforts in this sense have already been made in the country, but such initiatives need to be scaled out and translated into institutionalized financial schemes that can guarantee sustainability, possibly guided by the Costa Rican model.

Outlook

Colombia is making headway with respect to its climate change strategy, a process that will involve the transition to a new institutional structure, the design of early NAMAs, the implementation of local REDD+ initiatives, and the strengthening of conservation programs and CSA initiatives in the agriculture sector.

Through MADS, the environmental sector in Colombia has gained the confidence of international investors and supporters by consistently putting forward coordinated and rigorous initiatives, an important step towards generating strategies to scale out CSA.

Funds for Agriculture and Climate Change

AF Adaptation Fund BANAGRARIO Agricultural Bank
BANCOLDEX Business Development Bank BMGF Bill & Melinda Gates Foundation CDCF Community
Development Carbon Fund CICF Conservation
International Carbon Fund CTF Clean Technology Fund
DCF Danish Carbon Fund FAO Food and Agriculture
Organization of the United Nations FCPF Forest Carbon
Partnership Facility FINAGRO Fund for Agricultural
Financing FONTAGRO Regional Fund For Agricultural
Technology GCF Green Climate Fund GORDON & BETTY
MOORE Foundation IDB Inter-American Development
Bank IKI Germany’s International Climate Initiative LDCF
Least Developed Countries Fund NCDMF The Netherlands
Clean Development Mechanism Facility NDF Nordic
Development Fund NP Natural Patrimony - National fund
for Biodiversity and Conservation NORAD Norway’s
International Climate and Forest Initiative SCCF Special
Climate Change Fund SDF Special Development Fund
UK-DECC UK Department of Energy & Climate Change
UNDP United Nations Development Programme UNEP
United Nations Environment Programme UN-REDD United
Nations Programme for Reducing Emissions from
Deforestation and Forest Degredation USAID U.S. Agency
for International Development WB The World Bank

11 See Annex VII.
Works Cited

[15] Collins M; Knutti R; Arblaster J; Dufresne J-L; Fichefet T; Friedlingstein P; Gao X; Gutowski WJ; Johns T; Krinner G; Shongwe M; Tebaldi C; Weaver AJ; Wehner M. 2013. Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF; Qin D; Plattner G-K; Tignor M; Allen SK; Boschung J; Nauels A; Xia Y; Bex V; Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1029–1136. doi:10.1017/CBO9781107415324.024.

For further information and online versions of the annexes, visit:
http://dapa.ciat.cgiar.org/CSA-profiles/

Annex I: Acronyms
Annex II: Economic relevance of agriculture in Colombia
Annex III: Land-use change in Colombia
Annex IV: Top production system methodology
Annex V: Climate smartness methodology
Annex VI: Detailed smartness assessment for ongoing CSA practices in Colombia
Annex VII: Use of international climate-smart funding in Colombia

This publication is a product of the collaborative effort between the International Center for Tropical Agriculture (CIAT), the lead Center of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); the Tropical Agricultural Research and Higher Education Center (CATIE); and the World Bank to identify country-specific baselines on CSA in seven countries in Latin America: Argentina, Colombia, Costa Rica, El Salvador, Grenada, Mexico, and Peru.

The document was prepared under the co-leadership of Andrew Jarvis and Caitlin Corner-Dolloff (CIAT), Claudia Bouroncle (CATIE), and Svetlana Edmeades and Ana Bucher (World Bank). The main authors of this profile were Karolina Argote and Andrew Jarvis; and the team was comprised of Andreea Nowak (CIAT), Miguel Lizarazo (CIAT), Pablo Imbach (CATIE), Andrew Halliday (CATIE), Beatriz Zavariz-Romero (CIAT), Rauf Prasodjo (CIAT), María Baca (CIAT), Chelsea Cervantes De Blois (CIAT), Juan Carlos Zamora (CATIE), and Bastiaan Louman (CATIE).

This document should be cited as:

Original figures and graphics: Fernanda Rubiano
Graphics editing: CIAT
Scientific editor: Caitlin Peterson
Design and layout: Green Ink and CIAT

Acknowledgements
Special thanks to the institutions that provided information for this study: MADR, DNP, MADS, FEDEGAN, FEDEARROZ, FENALCE, and FUNDESOT.

This profile has benefited from comments received from World Bank colleagues: Willem Janssen, Marc Sadler and Eija Pehu, as well as from Natalia Gómez and Luz Díaz.