Introduction

Sweetpotato is an important crop that is widely consumed in sub-Saharan Africa. Sun drying of sweetpotatoes is a traditional practice: after drying on rocks crushed or sliced dried sweetpotato are stored in granaries; re-hydrated and boiled to be eaten like fresh roots, or milled into flour to make porridge. Orange fleshed sweetpotato is being promoted in Africa to tackle vitamin A deficiency. There are inconsistent reports on the effect of sun-drying on pro-vitamin A retention. High losses have been reported which may be associated with the unsaturated stable provitamin A carotenoids easily degraded by light, oxygen and heat (Rodriguez Amaya 1997). This poster describes work to understand the effects of sun/solar drying and storage on pro-vitamin A retention.

Materials and methods

- **Samples**: Sweetpotato varieties from Uganda (produced by Namulonge Research Station NARO) and Mozambique (World Vision)
- **Driers**: solar: under clear plastic sheeting (greenhouse; tent or tunnel); sun: direct exposition, shade: under a roof made of straw.
- **Total carotenoids content** on sweetpotatoes grown in Uganda and Mozambique by visible spectrophotometry and trans-β-carotene content by HPLC on preliminary samples (Orange Flesh Sweetpotato from USA). Samples were selected in minimum triplicate. Readings were done at 450nm.
- **Losses** were calculated following the formula: total carotenoids (or all trans-β-carotene loss (%) = 100 - 100 x total carotenoids (or all trans-β-carotene) content in dried or stored chips (µg/g dry weight) / total carotenoids (or all trans-β-carotene) in fresh chips (µg/g dry weight)
- **Analysis of variance** SPSS14.0 software: Significant differences per variety between samples (p<0.05) were given by Tukey test and are indicated by different letters in the same column.

Results

Preliminary trials

Cross flow drying (hot air drying) significantly retained a higher content of all trans-carotenoids and total carotenoids than sun-drying. No significant difference was observed between drying by greenhouse solar dryer and direct sun in term of all trans-carotene and total carotenoids (table 1). Total carotenoids content was significantly correlated to β-carotene content (R=0.737; p<0.01; 20 extractions) which indicated that total carotenoids can be used to estimate β-carotene content and provitamin A. All trans-β-carotene content represented 87% of total carotenoids.

Field trials

On both varieties grown in Uganda and Mozambique, no significant difference was observed between retention in solar tunnel and/or tent or sun dryer (tables 2&3). This differs from previous studies that reported sun drying was more damaging than solar drying (Rodriguez Amaya 1997, Mulokozi and Svanberg 2003).

Weather had a significant impact: average loss was 39% in wet weather against 4% in dry weather (table 2). There was a significant correlation between losses and drying time (Pearson coefficient R=0.727; p<0.01). Shade drying significantly retained more total carotenoids compared to sun and solar drying in Mozambique. Loss of provitamin A was even insignificant compared to fresh sweetpotatoes on MGCL (loss=1.0%) (table 3). Dried chips stored for 4 months had important losses for both varieties Ejumula and Kakamega with an average of 67%. Clear polythene bags placed under the window did not demonstrate any difference to opaque (black bag) sealed or with simple knot. Overall losses were of 78% (table 4). Some other studies on storage showed that light did not have such an important impact compared to other factors such as presence of oxygen.

Conclusions

- No significant difference was observed between the various solar dryers and sun dryer in terms of provitamin A retention: sun-drying can be recommended to farmers if the drying time is controlled.
- Shade drying significantly retained more total carotenoids than sun and solar drying but in some cases fermentation due to slower drying affected the chips quality.
- Losses are less than 40% in drying in general and less than 20% in dry weather in Uganda and Mozambique.
- On the other hand, losses after 4 month-storage are more than 60% independently of packaging (clear or opaque).
- Mechanisms of loss still need to be investigated.
- All dried chips met daily nutritional requirement for children (table 5).

Acknowledgments

The authors are grateful to HarvestPlus Challenge Programme as part of the “Reaching End Users in Uganda and Mozambique with OFSP” project for financial support. Preliminary work was financed by CIRAD Support to PhD students.

References

