Using social media to communicate research: Experiences of the International Livestock Research Institute

Tezira Lore
Communications Specialist

Agri-biotechnology and Biosafety Communications Conference (ABBC 2015)
Nairobi, Kenya
13-14 April 2015
ILRI’s value proposition

“ILRI is creating and integrating knowledge to enable diverse partners to find innovative solutions to make livestock a sustainable pathway out of poverty”
Licence to publish... licence to share

Creative commons licence
“Some rights reserved”
Welcome

This is a repository of agricultural research outputs and results produced by different parts of CGIAR and partners. It indexes reports, articles, press releases, presentations, videos, policy briefs and more. Visit the community of your choice; search across the whole site; sign up for email alerts and newsfeeds on topics or groups that interest you.

CGSpace is a collaboration of several centers and research programs. It is hosted by the International Livestock Research Institute.

Communities in CGSpace

Select a community to browse its collections.

- Africa RISING [288]
- AgriFood Chain Toolkit [100]
- Animal Genetic Resources Virtual Library [220]
- Bioversity International [292]
- Center for International Forestry Research (CIFOR) [3480]
- CGIAR Challenge Program on Water and Food (CPWF) [2201]
- CGIAR Collective Action in Eastern and Southern Africa [47]
- CGIAR Global Mountain Program [8]
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) [1462]
- CGIAR Research Program on Dryland Systems [118]
- CGIAR Research Program on Livestock and Fish [517]
- CGIAR Research Program on Water, Land and Ecosystems (WLE) [542]
- CGIAR System-wide Livestock Programme [228]
- East Africa Dairy Development Project [96]
- Feed the Future Innovation Lab for Small-Scale Irrigation [5]
- Humidtropics, a CGIAR Research Program [46]
- ICRAF-ILRI Research Methods Group [44]
- IGAD Livestock Policy Initiative [42]
- International Center for Agricultural Research in the Dry Areas (ICARDA) [104]
- International Center for Tropical Agriculture (CIAT) [5224]
- International Livestock Research Institute (ILRI) [12072]
- International Potato Center (CIP) [236]
- International Water Management Institute (IWMI) [5553]
- Livestock and Irrigation Value Chains for Ethiopian Smallholders (LIVES) [53]
- Technical Centre for Agricultural and Rural Cooperation (CTA) [12484]
- Technical Consortium for Building Resilience to Drought in the Horn of Africa [7]
ILRI’s institutional repository
Farmers in Uganda gain from training in pig production and marketing

Saturday 22 February 2014

Posted by Tezira Lore under A4NH, Africa, Animal Diseases, Animal Health, CRP4, East Africa, Food Safety, Food Safety Zoonoses, ILRI, Uganda, Zoonotic Diseases | Tags: pigs, training | Leave a Comment

Pig production is an important livelihood activity for some 1 million smallholder households in Uganda, given the growing demand for pork in both rural and urban areas.

However, many smallholder pig farmers are constrained by lack of adequate information on animal health, feeding and breeding that can help them improve their pig husbandry and scale up their operations towards commercialized production and greater profits.

http://aghealth.wordpress.com/news
Utilization of the Rift Valley fever decision support tool in Kenya: Successes and challenges

Title: Utilization of the Rift Valley fever decision support tool in Kenya: Successes and challenges
Author: Mbotha, D., Bett, B.
AGROVOC Keywords: ANIMAL DISEASES; LIVESTOCK
Date: 2015-01-30
Publisher: ILRI

Series/Report No.: ILRI Discussion Paper;28
URI: http://hdl.handle.net/10568/59776
Status: Open Access
Country: KENYA
Region Focus: AFRICA, EAST AFRICA
CGIAR Research Program: AGRICULTURE FOR NUTRITION AND HEALTH
Subject Focus: ANIMAL DISEASES, DISEASE CONTROL, LIVESTOCK, RVF, VACCINES

Files in this item

<table>
<thead>
<tr>
<th>Files</th>
<th>Size</th>
<th>Format</th>
<th>View</th>
<th>Description</th>
</tr>
</thead>
</table>
New ILRI report reviews the use of a Rift Valley fever decision support tool in Kenya

The International Livestock Research Institute (ILRI) has published a discussion paper on a study carried out to identify the successes and challenges associated with the use of a Rift Valley fever decision support tool in Kenya.

The decision support tool was developed by various stakeholders from government and non-government sectors following the 2006-07 outbreak of Rift Valley fever in East Africa. It identifies events leading to the disease outbreak and matches them with interventions that could be implemented at each point.

The study involved three activities:

- a review of literature to describe systems that could be used with the decision support tool and to identify how other frameworks have been used to support disease control policies
- focus group discussions and key informant interviews with farmer groups, local and international organizations and decision-makers in the Department of Veterinary Services
- a stakeholder workshop to validate the findings obtained and develop recommendations on ways to improve awareness and utilization of the framework

Download the discussion paper

Citation

- Write blog post to publicize new report
- Ensure title is ‘tweetable’ (this one: 85 characters with spaces)
- Add categories and tags
- Embed photo from Flickr
- Include ‘download’ link to the item in the repository
- Include an excerpt

New ILRI report reviews the use of a Rift Valley fever decision support tool in Kenya
Healthy people, animals and ecosystems:
The role of CGIAR research

Bernard Bett, Veterinary Epidemiologist, ILRI
Jimmy Smith, Director General, ILRI

Regional Conference on Zoonotic Diseases in Eastern Africa
Naivasha, Kenya
9–12 March 2015

Some 60 oral and poster presentations covered a wide range of aspects of research on zoonotic diseases including epidemiology, antimicrobial resistance, diagnostic surveillance, outbreak investigations, disease modelling and foodborne zoonoses.

Bernard Bett, a veterinary epidemiologist at the International Livestock Research Institute (ILRI), gave a keynote presentation on behalf of the institute’s director general Jimmy Smith, detailing how research by ILRI is contributing to healthy people, animals and ecosystems.

Food insecurity remains a challenge for millions of people in the region. Animal-source foods can play a role in improving food and nutritional security, particularly in developing countries where demand for meat, milk and eggs is on the rise. Thus, food security is linked to the health of the livestock that produce these food products.

However, because of the threat of endemic and emerging zoonotic diseases, human health is influenced by animal health. Furthermore, changing patterns of land use, such as irrigation and intensified farming, can have an impact on the life cycles of vectors that spread diseases that affect both animals and people. Therefore, the impact of agriculture on ecosystem health also needs to be considered when tackling animal and human health challenges.

View the presentation “Healthy people, animals and ecosystems: The role of CGIAR research”
Healthy people, animals and ecosystems: The role of CGIAR research

Title: Healthy people, animals and ecosystems: The role of CGIAR research

Author: Bett, B., Smith, J.W.

AGROVOC Keywords: ANIMAL HEALTH; FOOD SAFETY

Date: 2015-03-11

Publisher: ILRI

URI: http://hdl.handle.net/10568/59789

URL: http://www.slideshare.net(ILRl/healthy-people-animals-and-ecosystems

Status: Open Access

CGIAR research program: AGRICULTURE FOR NUTRITION AND HEALTH

Subject Focus: ANIMAL HEALTH, ENVIRONMENT, FOOD SAFETY, HEALTH, RESEARCH, ZOONOTIC DISEASES
Health risks from aflatoxins

Aflatoxins pose both acute and chronic risks to health. Exposure to aflatoxins is particularly high for low-income populations in the tropics that consume relatively large quantities of staples such as maize or groundnuts. Consumption of very high levels of aflatoxins can result in acute illness and death, as observed in Kenya in recent years (brief 2). It is well established that chronic exposure to aflatoxins leads to liver cancer (especially where hepatitis is prevalent), and this is estimated to cause as many as 26,000 deaths annually in Africa south of the Sahara (brief 3). Other effects of chronic exposure are less understood due to the difficulties in establishing causality when putative effects are correlated with a number of adverse health determinants. Chronic exposure is associated with immune suppression and higher rates of illness. For infants, exposure is associated with stunting, but the specific role of aflatoxins in stunting has not been identified (brief 4), just as a dose-response relationship has also not been identified. Animal studies provide ample evidence that high levels of aflatoxins in animal feeds have adverse effects for animal health, growth, and productivity. These are suggestive of such effects in humans, but animal studies typically involve much higher levels of aflatoxin exposure than is usually observed in human populations (brief 5).

AFLATOXIN: A Fungal Toxin Infecting the Food Chain

Persistent high levels of aflatoxins—naturally occurring carcinogenic byproducts of common fungi on grains and other crops—pose significant health risks to animals and humans in many tropical developing countries.

Chronic exposure to aflatoxins leads to liver cancer and is estimated to cause as many as 26,000 deaths annually in sub-Saharan Africa. This infographic depicts the ways that aflatoxins persist throughout the food chain. At each level, research can help understand how to manage risks.

Susceptible Crops
Field crops infested with aflatoxin
- Tree nuts
- Spices
- Oil seeds
- Cereals

Poor Storage
Toxins increase during storage

Animal Consumption
Animals and dairy are infected from contaminated feed

Impact on Dairy Production
Livestock produce less, loss of income and food

Human Consumption
Humans consume toxins in staple foods and dairy products

Impact on Human Health
Consumers experience liver cancer, poisoning
- Acute poisoning
- Liver cancer
- Linked to stunting and immunosuppression

Source: Tackling Aflatoxins: An Overview of Challenges and Solutions, Laurian Unnevehr and Delia Grace.
AFLATOXIN: A Fungal Toxin Infecting the Food Chain

Persistent high levels of aflatoxins—naturally occurring carcinogenic byproducts of common fungi on grains and other crops—pose significant health risks to animals and humans in many tropical developing countries. Chronic exposure to aflatoxins leads to liver cancer and is estimated to cause as many as 215,000 deaths annually in sub-Saharan Africa. This infographic depicts the ways that aflatoxins parallel throughout the food chain. At each level, research can help understand how to manage risks.

Susceptible Craps
- Field crops infected with aflatoxin
- Tree nuts
- Oil seeds
- Dry beans

Poor Storage
- Toxins increase during storage

Human Consumption
- Humans consume toxins in staple foods and dairy products

Animal Consumption
- Animals and dairy are infected from contaminated feed

Impact on Dairy Production
- Livestock produce less, loss of income and food

Impact on Human Health
- Consumers suffer from liver cancer, poisoning

Aflatoxin: A fungal toxin infecting the food chain

An infographic prepared for a media briefing on CGIAR research on aflatoxin control held at ILRI Nairobi on 14 November 2013.
Fact sheet on four common food-borne diseases in Kenya

Typhoid Fever Prevention

- Wash hands with soap.
- Wash Fruits and Vegetables.
- Boil drinking water.
- Get Vaccinated.

The four most common foodborne diseases in Kenya are Aflatoxicosis, Cholera, Typhoid and Brucellosis. The five keys to preventing these diseases and keeping your food safe are:

AFLATOXIN

A Fungal Toxin Infecting the Food Chain

Persistent high levels of aflatoxins—naturally occurring carcinogenic byproducts of common fungi on grains and other crops—pose significant health risks to animals and humans in many tropical developing countries.

Chronic exposure to aflatoxins leads to liver cancer and is estimated to cause as many as 24,908 deaths annually in sub-Saharan Africa. This infographic depicts the ways that aflatoxins persist throughout the food chain. At each level, research can help understand how to manage risks.

- **Animal Consumption**
 - Animals and dairy are infected from contaminated feed
- **Impact on Animal Production**
 - Livestock produce less, loss of income and food
- **Susceptible Crops**
 - Field crops infected with aflatoxin
- **Poor Storage**
 - Tomatoes increase during storage
- **Human Consumption**
 - Humans consume toxins in simple foods and dairy products
- **Impact on Human Health**
 - Consumers experience liver cancer, poisoning

Linked to burning and damaged crops.
Some lessons on best practice

- Publish content under creative commons licensing
- Capture once, re-use often
- **Tagging**: the secret behind re-use across systems
- Develop usage guidelines to help ensure consistency
- Package messages to suit usage across different media
- Monitor feedback, respond, engage... **social** media
better lives through livestock

ilri.org

Unless indicated otherwise, all photos by ILRI
http://www.flickr.com/photos/ilri