Use of DNA sequences for identification of possible biotypes of the fruit bearer
Neoleucinodes elegantalis (Lepidoptera: Crambidae), an important pest of Andean solanaceous fruits

Gerardo Galeano Sánchez1, Patricia Zapata1, Oscar Castañeda1, Harold Suárez-Baron1, Ana Elizabeth Díaz2 and Jose Tohme1

1 Department of Entomology and Natural Resources Protection, International Center for Tropical Agriculture (CIAT), Colombia; 2 Colombian Corporation for Agricultural Research (CORPOICA) La Sierra, Armenia, Colombia; CIAT-CORPOICA Ecuador.

INTRODUCTION

In Colombia, Venezuela, Ecuador, Brazil and Honduras, the tomato borer, Neoleucinodes elegantalis, is the most important fruit-related plague of the Solanaceae family. A suitable molecular characterization using a DNA barcoding system is necessary to clarify different issues inside the taxonomy of Neoleucinodes genus. Additionally, other DNA sequences used for molecular identification and phylogenetics studies, can be implemented to obtain a better understanding of the genetic variability across different animal groups and allows to acquire a enhanced description of the population’s genetic variation. The main objectives of this study are 1. Evaluate the performance of DNA barcoding sequences (COI gene and 18S DNA gene), in the genetic characterization of populations of N. elegantalis, collected in different wild and cultivated solanaceous plants in Colombia and Ecuador. 2. Determination of possible haplotypes related with each population belonging to this species. 3. Identification of geographical patterns associated with the distribution of this insect.

MATERIALS AND METHODS

DNA extraction from 292 individuals collected in Colombia, Ecuador and Honduras was performed using the GF – 1 Nucleic Acid Extraction Kit (GF-100-Vert-Rand) and the protocol proposed by Gilbertson et al. (1991).

Amplifications were carried out using universal primers that flank the COI region, with COI Forward (5’-GCTTCAAATACATAAGTATCGG-3’) and COI-Reverse (5’- TAAACTTACGTTACAAAAATCA-3’) (Folmer et al. 1994). Additionally, a new set of primers was developed to amplify the 18S DNA gene. Nol_Co1-351/4-61- Fox (5’-AAACCGGCAACAAAAATCGT-3’) and Neo_Co18S-05 Rev(5’-CGTGTGGAAGACCTACAATA-3’). Purification of the PCR product was performed using the PCR Clean up system (Promega).

The sequences were obtained using an automatic sequencer ABI 3730 (Perkin Elmer/ Applied Biosystem - Expedíce) (CA) from MACROGEN sequencing server and then were assembled using the software Sequencer 4.6 (Gene Codes Corporation Ann Arbor, MI, USA).

Divergence between groups was very high and the greatest were found in one specific group from Colombia, which was distributed all along the Western Cordillera, and was also apparently geographically isolated from the rest of the populations of N. elegantalis.

RESULTS

The analysis of the COI showed good sensitivity, achieving an initial differentiation of 49 possible haplotypes, with some association to specific life zones, but without apparent relation to the host type.

Genetic distances were inferred using the Maximum Likelihood (ML) method and including the evolutionary model GTR+G. The sequences used to construct the dendrogram corresponds to Cytochrome c oxidase I (COI) and 18S DNA sequences respectively. The evaluation of both sequences in a combined way allows a better characterization of samples according their geographical origin. Besides it was possible to improve the resolution in term of genetic differentiation into samples distributed across Colombia and Ecuador. This distribution was associated with the geographic zones proposed by Kutman et al. (2004), for the specific case of Colombia.

Additionally, our possible new species samples are clustered with individuals included in the group associated with samples from Eulaceinodes genus.

DISCUSSION

DNA Barcoding was an accurate tool for the identification of haplotypes as well as discrimination of species (N. silvatici) reported previously by Díaz and Solis (2007) using geometric morphology. The number of haplotypes obtained revealed a possible role of biogeographic isolation between valleys and of possible human pressure through the use of pesticides inducing divergent selection in N. elegantalis. The NJ analysis shows a wide distribution of the species along the Magdalena valley watershed, this sub-region is located between the Central and Eastern Cordilleras. The distribution of N. elegantalis in this region could explain the wide range of altitudinal adaptation of the species that could facilitate dispersal. With regard to the Caquetá Valley, diversity centers on the southwestern slope of the Central Cordillera and on the East of Western Cordillera.

The classification of regions proposed by Kutman et al. (2004), are highly correlated to the grouping of haplotypes recovered in the species. The evaluation of sequences of Cytochrome c oxidase I (COI) and 18S DNA gene, as a single one sequences reveals a powerful tool in haplotypes characterization, showing a strong differentiation in relation with the geographic origin of each sample.

CONCLUSIONS

• The DNA Barcoding tool shows high sensitivity in N. elegantalis haplotype identification, and to correlation with the sub-regions of Colombia which suggest at least 3 different geographic groups, related to both biogeographic separation, and human intervention through the use of pesticides.
• The evaluation of sequences of Cytochrome c oxidase I (COI) and 18S DNA gene, as a single one sequences reveals a powerful tool for N. elegantalis haplotypes characterization.
• This is the first genetic analysis of N. elegantalis and the first attempt to obtain a molecular characterization of the species.
• Genetic differentiation could mean that there is partial reproductive isolation in N. elegantalis, further research could center on resolving this issue.
• Through this methodology we confirm the existence of a new species of Neoleucinodes genera (N. silvatici) previously proposed by Díaz and Solis (2007) with the use of morphological characteristics.
• Thus, for N. elegantalis both mitochondrialDNA identification and morphological divergence provide evidence for the existence of populations that are going through ecological specialization.

BIBLIOGRAPHY


ACKNOWLEDGMENTS

Many thanks to the Regional Fund for Agricultural Technology (FONTEG) for funding this study.