Land use change and the risk of selected zoonotic diseases: Observations from a case study in an arid/semi-arid area in Kenya

Bernard Bett¹, Mohammed Said¹, Rosemary Sang², Salome Bukachi³, Johanna Lindahl¹, Salome Wanyoike⁴, Ian Njeru⁵ and Delia Grace¹

1. International Livestock Research Institute, Nairobi
2. Kenya Medical Research Institute, Mbagathi Way, Nairobi
3. Institute of Anthropology, Gender and African Studies, Nairobi
4. Department of Veterinary Services, Ministry of Agriculture, Nairobi
5. Division of Disease Surveillance and Response, Ministry of Public Health, Nairobi

14th Conference of the International Society for Veterinary Epidemiology and Economics (ISVEE)
Merida, Yucatan, Mexico
3-7 November 2015
Introduction

• Climate and demographic changes and food insecurity

• Irrigation – being used to boost food production in arid/semi-arid areas

• Effects: major trade-offs in ecosystem services

 ➢ More food produced (provisioning services) at the expense of biodiversity and regulatory services (disease, flooding, erosion)

 ➢ Disease transmission contributed by:
 o Standing water masses associated with irrigation
 o Human settlements and periurban settlements
 o Livestock diversity – more small than large ruminants
Objectives

- The effects of irrigation on:
 - Ecosystem changes – diversity of hosts
 - Risk of vector-borne and other zoonotic diseases

Irrigated site with stagnant water in the drainage canals – source of water for the people but also breeding grounds for mosquitoes
Methods

The study site:

- Arid/semi-arid region in northeastern Kenya
- Two irrigation schemes and pastoral areas around them
- Studies:
 - Ecological/GIS analyses – secondary data
 - Entomological surveys
 - Sero-epidemiological surveys in livestock and people
Ecological analyses: Land cover changes between 1975 and 2010

Legend
- Closed trees
- Open trees (65-40% crown cover)
- Very open trees (40-15% crown cover)
- Trees and shrubs savannah
- Open trees on temporarily flooded land
- Open shrubs (65-40% crown cover)
- Very open shrubs (40-15% crown cover)
- Closed herbaceous vegetation on permanently flooded land
- Open to closed herbaceous vegetation on temporarily flooded
- Open to closed herbaceous vegetation
- Irrigated land / Cropland
- Tana River-Waterbodies
- Clouds
- Urban and Rural Settlemens

20 0 20 40 60 80 Kilometers

1975 b) 2010
Field surveys

- Mosquito sampling
- Livestock and human sampling
 - Sample size determination
 - Serum samples analyzed using various ELISA kits

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Samples used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rift Valley fever virus, Brucella spp., and Coxiella burnetii</td>
<td>Livestock and people</td>
</tr>
<tr>
<td>West Nile virus, dengue fever virus, Leptospira spp.</td>
<td>People</td>
</tr>
</tbody>
</table>
Data analysis

- Ecosystem changes – GIS analysis to determine habitat rarity
- Entomology and sero-prevalence data
 - Treated as point-referenced data
 - Analyzed using stochastic partial differential equation implemented in R INLA (Rue et al., 2009)
 - Significance of the spatial effect -- DIC

Triangulation in R INLA to capture spatial effects
Results: Apparent densities of mosquitoes trapped
Outputs of a regression model used to analyse the effects of rainfall and irrigation on mosquito densities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Levels</th>
<th>All mosquitoes trapped</th>
<th>Primary RVF vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credible interval</td>
<td>Credible interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50% 97.50%</td>
<td>2.50% 97.50%</td>
</tr>
<tr>
<td>Land use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td>1.23</td>
<td>0.38</td>
<td>1.47</td>
</tr>
<tr>
<td>Other</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Rain</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Hyper-parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theta 1</td>
<td>-3.03</td>
<td>1.97</td>
<td>-3.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.79</td>
<td>-9.75</td>
</tr>
<tr>
<td>Theta 2</td>
<td>1.87</td>
<td>1.53</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.23</td>
<td>-3.95</td>
</tr>
<tr>
<td>DIC</td>
<td></td>
<td>1099.57</td>
<td>641.39</td>
</tr>
</tbody>
</table>

DIC (Deviance Information Criterion): A measure of model fit, lower values indicating better fit.
Posterior distributions of irrigation and rainfall parameters from the mosquito regression model
Sero-prevalences of target pathogens in livestock

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Sero-prevalence (95% CI)</th>
<th>Irrigated areas</th>
<th>Non-irrigated areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rift Valley fever</td>
<td>22.2 (20.1 – 24.4)</td>
<td></td>
<td>36.0 (31.7 – 40.5)</td>
</tr>
<tr>
<td>Coxiella burnetti</td>
<td>14.5 (13.1 – 16.0)</td>
<td></td>
<td>9.5 (7.2 – 12.2)</td>
</tr>
<tr>
<td>Brucella spp</td>
<td>2.8 (2.0 – 3.7)</td>
<td></td>
<td>5.3 (3.4 – 7.7)</td>
</tr>
</tbody>
</table>

Posterior distribution of the land use parameter
Odd ratios from a regression model used to analyse sero-prevalences of the zoonotic pathogens in people

- Odds of being exposed in an irrigated area compared to pastoral

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVF</td>
<td>1.27</td>
</tr>
<tr>
<td>WNV/Dengue</td>
<td>1.27</td>
</tr>
<tr>
<td>C. burnetti</td>
<td>1.13</td>
</tr>
<tr>
<td>Leptospira spp</td>
<td>0.38</td>
</tr>
<tr>
<td>Brucella spp</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Discussion and conclusions

• Irrigation – increased food production at the expense of habitat fragmentation, biodiversity conservation

• Used multiple pathogens to generate generic lessons

• Irrigation and primary vectors of RVF

• Biodiversity and disease regulation/dilution effect --- inconsistent findings
 o Results from livestock – no significant patterns – movement across areas
 o Results from people – higher risk of vector-borne diseases in irrigated area and directly transmitted zoonoses in pastoral area
Acknowledgements

This work falls under the project ‘Dynamic Drivers of Disease in Africa: Ecosystems, livestock/wildlife, health and wellbeing: REF:NE/J001422/1” partly funded with support from the Ecosystem Services for Poverty Alleviation Programme (ESPA). The ESPA program is funded by the Department for International Development (DFID), the Economic and Social Research Council (ESRC) and the Natural Environment Research Council (NERC). Other funding was provided by the CGIAR Research Program Agriculture for Nutrition and Health