Genomics selection in livestock

ILRI – ICARDA Perspectives

Raphael Mrode (ILRI) – Joram Mwacharo (ICARDA) - Olivier Hanotte (ILRI)

Workshop on Implementing Genomic Selection in CGIAR Breeding Programs, Montpellier, 10-12 December 2015
Benefits of genomic selection

- Benefits of genomic selections have well been demonstrated in developed countries
 - Reduced generation interval
 - Accuracies of above 70% have been reported for young genomic proven bulls
 - Higher rates of genetic gains

- Genomic systems in developed countries are characterised
 - With large reference populations
 - Collaboration among countries
 - Well defined phenotypes and mostly within pure breeds
Trajectories for the livestock sector* and opportunities for genomics selection

• **Rapid inclusive growth systems**
 ✓ developing sustainable food systems that deliver key animal-source nutrients to the poor
 ✓ facilitating a structural transition in the livestock sector of developing countries.
 ✓ transition is from many smallholders keeping livestock in low-productive systems to eventually fewer households raising more productive animals. **Productivity traits - Adaptive traits.**

• **High growth systems with externalities**
 ✓ dynamic markets, IT, investment capital, infrastructure and skilled human resources
 ✓ fast-changing small-scale livestock systems. **NOT OUR CLIENTS**

• **Fragile growth systems**
 ✓ productivity is severely limited by remoteness, harsh climates or environments,
 ✓ emphasis will be to enhance the important roles of livestock in the resilience of people and communities to environmental variability.
 ✓ **Productivity traits - Adaptive traits.**

The largest dairy herd in the world (Al Karj – Kingdom of Saudi Arabia)

Almarai Dairy Farms

High growth with externality

Sustainability
Rapid inclusive growth systems
Fragile growth systems

E.g. Pastoral systems

Maximize Adaptive diversity
Genomic selection in livestock systems: no one-size-fit

- **High growth** → Classical GS
- **Strong growth** → Innovatives GS approaches
- **Fragile growth**
Opportunities offered by genomics in small holder systems

- Quick wins from genotypic data includes
 - Reduces the need for accurate pedigree recording as genomic relationship can easily be computed
 - Parentage discovery using SNP data
 - Usage to determine the breed composition of cross-bred animals in the absence of pedigree.
 - Gives the opportunity to match different genotypes & management system

- Using DGEA small holder data -- 1038 cows HD genotypes
 - Successfully determined the breed composition of the animals using admixture analysis
 - Computed G matrix and undertake genomic predictions: GBLUP, SNP-BLUP and BayesC & BayesCpi
Classification of cows by breed composition

<table>
<thead>
<tr>
<th>Dairy%</th>
<th>Breedtype</th>
<th>Dairy% by Breedtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0-20%)</td>
<td>Zebu</td>
<td>6</td>
</tr>
<tr>
<td>2 (0.33-35%)</td>
<td>Mixed + Zebu</td>
<td>6</td>
</tr>
<tr>
<td>3 (36-60%)</td>
<td>Ayr/Gue/Jer</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fri</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Mixed + Zebu</td>
<td>6</td>
</tr>
<tr>
<td>4 (61-87.5%)</td>
<td>Ayr</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Fri</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Ayr/Fri</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Gue/Fri</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Ayr/Gue/Fri</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Mixed + Zebu</td>
<td>6</td>
</tr>
<tr>
<td>5 (>87.5%)</td>
<td>Ayr</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Fri</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Ayr/Fri</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Gue/Fri</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Gue/Fri/Ayr</td>
<td>5</td>
</tr>
</tbody>
</table>

Accuracy of prediction

Zebu + Mixed crosses: 32%

Cows with 61-87.5% dairy: 35%

Cows with >87.5% dairy: 41%
Projects with major genomic initiatives

- The Africa Dairy Genetic Gain (ADGG) project in Ethiopia & Tanzania
 - Development of a small and cheaper chip to determine breed composition and parentage discovery
 - Certification of young bulls on the basis of breed composition and genomic profile
Opportunities

• Availability of data offers opportunities to GWAS and positive signatures of selection to identify regions of genome associated with productivity and adaptability.

• Usage of gene editing in addition to genomic selection increase frequency of alleles for adaptability (Jenko et al, 2015).

• Genomic data gives for better understanding of genetic diversity in the fragile growth sector and how to select for it.
Regional and International Collaborations (dairy sector)

- Across regional genomics might be necessary for application of genomics for small holder farmers
 - Only third of the 20,000 bulls in the reference pop for the German genomic system are home proven.
 - In the UK, less than one third of 22,000 bulls in the reference pop are domestic bulls
 - Possibly most exotics sires used in crossing breeding are similar across regions or countries
 - Policies that promote easy flow of data across country boundaries while maintaining data security and ownership will be needed
Regional and International Collaborations (dairy sector)

- Need to collaborate with developed countries where some of the sires of these cows could have been genotyped
 - Parentage discovery & determine breed composition
 - Genotype by environmental interaction if enough data
Conclusions

• Genomics offers quick wins in small holder systems through use of genomic relationship matrix and parentage discovery

• Given smaller data structure, well adapted methodologies both in terms of developing relevant chips and analytics tools will be needed

• Collaboration on across country or regional basis will be needed to ensure adequate data and best sires can be used across regions

• Strong national partnership with be needed to deliver the impact of better genetics resulting from genomics

• Genotyping of cross bred animals offers possibilities for further optimize cross breeding systems