
 
May 2010 

 
Disaggregation of Global Circulation Model Outputs 
Decision and Policy Analysis Working Paper No. 2 

 
Julian Ramirez1 and Andy Jarvis1, 2 

International Center for Tropical Agriculture, CIAT, Cali, Colombia 
CGIAR Challenge Program on Climate Change, Agriculture and Food Security, CCAFS 
 
 
Summary 
 
In light of agricultural researchers’ and geographers’ need for high resolution surfaces to 
assess climate change impacts on agriculture and biodiversity-related matters, 
downscaling of GCM (General Circulation Model) outputs has taken on particular 
importance, and several downscaling methods have been developed to date. These 
methods have a range of mathematical and/or physical formulations. Some researchers, 
however, state that downscaling of GCM forecasts is not possible and that the process 
might substantially and systematically increase uncertainties while reducing the accuracy 
of the forecasts. Higher resolution surfaces do not necessarily mean a higher accuracy. 
They rather suggest disaggregation of GCM forecasts. Disaggregation differs from 
downscaling in that it is unlikely that the former  affects the original spatial or temporal 
GCM variability. Consequently, disaggregation is less vulnerable to criticisms that it 
alters original GCM patterns. 
 
Here we present a set of disaggregated GCM predictions, as well as a global database on 
climate change data that can be used for crop modeling, niche modeling, and more 
generally, for assessments of  climate change impacts on agriculture at fine scales. The 
dataset is applicable for any approach that might require monthly maximum, minimum, 
mean temperatures and monthly total precipitation (from which a set of bioclimatic 
indices were be also derived). This database (with a total of 441 different scenarios –sum 
of 24, 20 and 19 GCMs, times 7 time-slices) complements other existing databases that 
use downscaling, by providing a complementary method through which future climate 
scenarios can be developed at higher spatial resolutions than the original GCM spatial 
resolution.. The datasets are available online at http://gisweb.ciat.cgiar.org/GCMPage. 
 
 
Introduction 
 
In light of agricultural researchers’ and geographers’ need for high resolution surfaces to 
assess climate change impacts on agriculture and biodiversity-related matters, , 
downscaling of GCM (General Circulation Model) outputs has taken on particular 
importance, and several downscaling methods have been developed to date. Methods 
have a range of mathematical and/or physical formulations, from smoothing and 



 
interpolation of future climates or changes in climates, to neural networks, and Regional 
Climate Modeling. Some researchers, however, state that downscaling of GCM forecasts 
is not possible and that the process might substantially increase uncertainties while 
reducing the accuracy of the forecasts. Higher resolution downscaled surfaces do not 
necessarily mean more accurate forecasts derived products (i.e. products from impact 
assessment models). 
 
The choice of using GCM data “as is” or attempting to increase GCM resolution turns 
into a paradox since (1) GCM outputs are not useful for impact assessment in most 
landscapes, and (2) downscaling methods might create a false sense of greater accuracy 
while in actuality they may be increasing uncertainties and reducing the accuracy of 
impact assessment models. In view of all this, spatial disaggregation of GCM outputs has 
been used by some researchers in order to maintain the gross representativeness of a 
GCM pattern in both space and time (Buytaert et al., 2009). Spatial disaggregation 
consists of adding coarse GCM cells to either local measurements of climate (from 
weather stations) or high resolution interpolated surfaces. The process uses anomalies or 
deltas, such as the so-called delta-method for downscaling climate surfaces, but does not 
use interpolation (either between weather stations or GCM cell centroids). It is therefore 
less likely to alter original GCM patterns. 
 
Disaggregation provides an easy-to-apply and much more rapid method for developing 
high resolution climate change surfaces for high resolution regional climate change 
impact assessment studies, with a lower likelihood of altering original GCM patterns. 
Since disaggregation does not involve any downscaling, but rather the aggregation of 
‘big’ GCM cells into either points (weather stations) or fine resolution cells, it constitutes 
a highly conservative method unlikely to draw criticism from climate researchers. 
 
Using WorldClim (Hijmans et al., 2005) as the baseline climate (‘current climate’), we 
applied spatial disaggregation to 24 different GCMs from the IPCC Fourth Assessment 
Report (2007), directly downloaded from the Earth System Grid (ESG) data portal, for 
the emission scenarios SRES-A1B (24 GCMs), SRES-A2 (19 GCMs), and SRES-B1 (20 
GCMs), and for 7 different 30 year running mean periods. A total of 441 future climate 
scenarios were produced at four different spatial resolutions (30 arc-seconds, 2.5 arc-
minutes, 5 arc-minutes, and 10 arc-minutes). Each climate scenario or dataset (SRES 
scenario – GCM – timeslice) comprises 4 variables at a monthly time-step (mean, 
maximum, minimum temperature, and total precipitation) and a set of bioclimatic indices 
(Nix, 1986; Busby, 1991). The data is freely available on 
http://gisweb.ciat.cgiar.org/dapablogs/dapa-climate/ 
 
 
The disaggregation method 
 
Here we applied the simple disaggregation method based aggregation of anomalies 
(deltas) of original GCM outputs to a high resolution baseline climate. Anomalies were 



 
calculated as the difference between future 30-year averages to the 1961-1990 average of 
GCM outputs in three variables (maximum and minimum temperatures, and total 
precipitation). These anomalies were then applied to a baseline climate given by a high 
resolution surface (WorldClim; Hijmans et al., 2005). The method does not make any 
particular assumption, but simply ‘updates’ current climates to future climates by adding 
the corresponding changes to each variable.  
 
The process consists of the following steps: 
 

1. Gathering of baseline data (current climates corresponding to WorldClim) 
2. Gathering of full GCM timeseries 
3. Calculation of 30 year running averages for present day simulations (1961-1990) 

and 7 future periods (2010-2039, 2020-2049, 2030-2059, 2040-2069, 2050-2079, 
2060-2089, 2070-2099) 

4. Calculation of anomalies as the absolute difference between future values in each 
of the 3 variables to be disaggregated 

5. Addition of anomalies surfaces to the current climates from WorldClim, using 
absolute sum for temperatures, and addition of relative changes for precipitation 

6. Calculation of mean temperature as the average of maximum and minimum 
temperatures 

 
WorldClim and full GCM timeseries are freely available in the internet, and all other 
calculations were carried out by means of Geographic Information Systems (GIS) 
software. Used formats are NetCDF (for GCM outputs), ESRI-GRID (for WorldClim and 
final disaggregated data), and ESRI-ASCII grids for providing standard and easy-to-use 
outputs to potential users of the data. 
 
 
Baseline data 
 
With an eye to providing credible future high resolution surfaces, we used WorldClim 
(Hijmans et al., 2005, available at http://www.worldclim.org/), a global database of 
climate surfaces at 30 arc-second spatial resolution (~1km at the Equator). This database 
was developed from compiled monthly averages of climate as measured at weather 
stations from a large number of global, regional, national and local sources, mostly from 
the 1950-2000 period, using the Thin Plate Smoothing Spline (TPS) algorithm 
(Hutchinson, 1995) that yielded climate surfaces for monthly maximum, minimum, mean 
temperatures and total monthly precipitation. 
 
WorldClim contains data from the Global Historical Climate Network Dataset (GHCN; 
the WMO Climatological Normals (CLINO); the FAOCLIM global climate database; a 
database assembled by the International Center for Tropical Agriculture (CIAT); and 
additional databases from Latin America and the Caribbean (R-Hydronet), the Altiplano 



 
in Peru and Bolivia (INTECSA), the ‘Nordic Countries’ in Europe (Nordklim), Australia 
(BOM), New Zealand, and Madagascar. 
 
WorldClim climate surfaces were developed from 47,554 locations with precipitation 
records, 24,542 locations with mean temperature records, and 14,835 locations with 
minimum and maximum temperature records. Other global datasets have been produced 
using fewer locations for both temperatures and precipitations (New et al., 2002), but 
WorldClim has the advantage of having higher spatial resolution, whilst maintaining 
accuracy (Figure 1). 

 
Figure 1 WorldClim surface corresponding to maximum temperature in January, at 30 arc-

seconds spatial resolution 
 
While we recognize that the dataset might not be perfect and/or accurate in all parts of the 
world, it does represent to a considerable degree current climates, as reported by 
instrumental records, at a scale that allows for the application of any modeling technique 
at a site-specific level. Critical areas where very low number of locations were used for 
interpolations are: the Amazon, the Sahara, Russia, Greenland, and some places in the 
mid-east, among others (see Hijmans et al., 2005 for further detail) 
 
In addition, WorldClim has been employed considerably by modelers, conservationists 
and agricultural researchers because of its high resolution. The dataset has been cited 



 
more than 500 times in peer reviewed publications. For all the above reasons, we chose to 
use WorldClim for our baseline data, representing the 1961-1990 period (current climates 
hereafter). 
 
 
Future GCM predictions 
 
GCMs are representations of earth processes and are performed on powerful computers 
by climatic research centers over the world. To date, a variety of GCMs (with their 
respective versions) have been developed, tested, and their results have been made 
available to the public (IPCC, 2001, 2007). 24 Different GCMs were used in the Fourth 
Assessment Report (IPCC, 2007), each with different parameterization (Table 1, see 
atmosphere and ocean columns indicating resolutions). These GCMs were run under 
different, but not all, SRES emission scenarios (IPCC, 2000).. Outputs were produced for 
the SRES A1B, A2 and B1 emission scenarios. 
 

Table 1 Available GCMs and principal characteristics (resolutions, references) 
Model Country Atmosphere Ocean Reference 
BCCR-BCM2.0 Norway T63, L31 1.5x0.5, L35 N/A 
CCCMA-CGCM3.1 (T47) Canada T47 (3.75x3.75), L31 1.85x1.85, L29 Scinocca et al. (2008) 
CCCMA-CGCM3.1 (T63) Canada T63 (2.8x2.8), L31 1.4x0.94, L29 Scinocca et al. (2008) 
CNRM-CM3 France T63 (2.8x2.8), L45 1.875x(0.5-2), L31 Salas-Mélia et al. (2005) 
CSIRO-Mk3.0 Australia T63, L18 1.875x0.84, L31 Gordon et al. (2002) 
CSIRO-Mk3.5 Australia T63, L18 1.875x0.84, L31 Gordon et al. (2002) 
GFDL-CM2.0 USA 2.5x2.0, L24 1.0x(1/3-1), L50 Delworth et al. (2004) 
GFDL-CM2.1 USA 2.5x2.0, L24 1.0x(1/3-1), L50 Delworth et al. (2004) 
GISS-AOM USA 4x3, L12 4x3, L16 Russell et al. (1995) 
GISS-MODEL-EH USA 5x4, L20 5x4, L13 Schmidt et al. (2005) 
GISS-MODEL-ER USA 5x4, L20 5x4, L13 Schmidt et al. (2005) 
IAP-FGOALS1.0-G China 2.8x2.8, L26 1x1, L16 Yu et al. (2004) 
INGV-ECHAM4 Italy T42, L19 2x(0.5-2), L31 Gualdi et al. (2006) 
INM-CM3.0 Russia 5x4, L21 2.5x2, L33 Diansky et al. (2002) 
IPSL-CM4 France 2.5x3.75, L19 2x(1-2), L30 Marti et al. (2005) 
MIROC3.2-HIRES Japan T106, L56 0.28x0.19, L47 Hasumi and Emori (2004) 
MIROC3.2-MEDRES Japan T42, L20 1.4x(0.5-1.4), L43 Hasumi and Emori (2004) 
MIUB-ECHO-G Germany/Korea T30, L19 T42, L20 Grötzner et al. (1996) 
MPI-ECHAM5 Germany T63, L32 1x1, L41 Jungclaus et al. (2005) 
MRI-CGCM2.3.2A Japan T42, L30 2.5x(0.5-2.0) Yukimoto et al. (2001) 
NCAR-CCSM3.0 USA T85L26, 1.4x1.4 1x(0.27-1), L40 Collins et al. (2005) 
NCAR-PCM1 USA T42 (2.8x2.8), L18 1x(0.27-1), L40 Washington et al. (2000) 
UKMO-HADCM3 UK 3.75x2.5, L19 1.25x1.25, L20 Gordon et al. (2002) 
UKMO-HADGEM1 UK 1.875x1.25, L38 1.25x1.25, L20 Johns et al. (2006) 

 
Different Coupled Models Intercomparison Projects (CMIPs) have been created in order 
to support and enhance the knowledge on GCM-related science. The last existing CMIP 
is the CMIP-3 (PCMDI, 2007; IPCC, 2007), comprising the evaluation of some 22 to 24 



 
different GCMs on a global scale. CMIP-3 also set up a platform for providing GCM 
outputs to the public, under the Earth System Grid (ESG) online platform 
(https://esg.llnl.gov:8443/index.jsp). 
 
The IPCC-data portal (http://www.ipcc-data.org) provides some GCM outputs as well, 
but the most comprehensive dataset is provided by the ESG, including complete 
timeseries of: future simulations (2000-2100) at monthly time-steps, daily data for 
specific periods (e.g. 2020s, 2050s), yearly data, and 30 year running averages. The 
IPCC-data portal only provides the last one.  
 
We downloaded data from ESG corresponding to full timeseries (1850-2100) of all 
available GCMs (24), at monthly time-steps, for the same 4 variables of interest to us 
(minimum, maximum, mean temperature, and total precipitation), for the 20CM3 (20th 
century simulation), and the SRES-A1B, A2 and B1 emission scenarios. Not all GCMs 
were run under all emission scenarios (Table 2). 
 
Table 2 Available (o) and not available (x) GCM runs under baseline and three SRES scenarios 

Model 20C3M SRES-A1B SRES-A2 SRES-B1 
BCCR-BCM2.0 o o o o 
CCCMA-CGCM3.1-T63 o o x o 
CCCMA-CGCM3.1-T47 o o o o 
CNRM-CM3 o o o o 
CSIRO-MK3.0 o o o o 
CSIRO-MK3.5 o o o o 
GFDL-CM2.0 o o o o 
GFDL-CM2.1 o o o o 
GISS-AOM o o x o 
GISS-MODEL-EH o o x x 
GISS-MODEL-ER o o o o 
IAP-FGOALS1.0-G o o x o 
INGV-ECHAM4 o o o x 
INM-CM3.0 o o o o 
IPSL-CM4 o o o o 
MIROC3.2.3-HIRES o o x o 
MIROC3.2.3-MEDRES o o o o 
MIUB-ECHO-G o o o o 
MPI-ECHAM5 o o o o 
MRI-CGCM2.3.2A o o o o 
NCAR-CCSM3.0 o o o o 
NCAR-PCM1 o o o x 
UKMO-HADCM3 o o o o 
UKMO-HADGEM1 o o o x 
Total 24 24 19 20 

 
An additional issue regards the availability of GCM outputs. Due to a lack of a clear 
agreement, not all research centers provided outputs on all variables; rather, each 



 
selectively decided which variables to provide, creating unfortunate date gaps for non-
climatic research centers hoping to use these data. As such, minimum and maximum 
temperatures were not available for all GCMs--only for 11 (20C3M, A1B, B1) and 9 
(A2). For those GCMs for which no maximum and minimum temperature data were 
available, we used the Multi Model Mean (MMM) of all the other GCMs. While we 
acknowledge that this process might have reduced variance among the different GCMs, 
we preferred to provide MMM-based outputs over not providing data for those models at 
all. 
 
 
Anomalies: how and why? 
 
Using the full present day (20C3M) monthly timeseries, we calculated 30 year running 
means around 1985 (1961-1990) as a baseline, for each of the GCMs and the 4 variables 
of interest. We then calculated 30 year running means for each of the emission scenarios 
andseven periods, so that the complete timeseries were reduced to 8 different 30 year 
averaged periods, as follows: 
 

1. 1961-1990: The baseline climate, also referred to as 20C3M, or ‘current climates’ 
2. 2010-2039, referred to as 2020s 
3. 2020-2049, referred to as 2030s 
4. 2030-2059, referred to as 2040s 
5. 2040-2069, referred to as 2050s 
6. 2050-2079, referred to as 2060s 
7. 2060-2089, referred to as 2070s 
8. 2070-2099, referred to as 2080s 

 
For each of the 7 future periods, the anomaly or delta with respect to the baseline climate 
was calculated for each of the variables and months.  

   
Figure 2 Illustration of the disaggregation process with January maximum temperature using the 
BCCR-BCM2.0 GCM pattern: (a) Baseline data (20C3M), (b) future data for 2050s (2040-2069 
average), (c) delta or anomaly by 2050s, (d) future disaggregated surface at 30 arc-second spatial 
resolution 
 



 
These surfaces were then applied to the baseline climates from WorldClim. In the case of 
temperatures (minimum and maximum temperatures), for each pixel, the anomalies in 
degrees Celsius were simply “added” to the actual value in degrees Celsius reported in 
WorldClim. Differences in baselines were neglected for temperatures (Eqn. 1), but taken 
into account for precipitation [Eqn. 2]. 
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Where, 
 

iFX .  is the future value of the pixel for the variable X (i.e. precipitation, temperature), in 

the month i, 

iCX .  is the current value (i.e. from WorldClim) of the pixel for the variable X, in the 

month i, 

iIX .∆  is the interpolated value of the delta or anomaly corresponding to the pixel, for the 

variable X, in the month i, 
 
We added 1 millimeter to the denominator in Eqn. 2 in order to avoid indetermination in 
areas where current precipitation equals 0. In Eqn. 6, we used the absolute value of the 
change relative to the baseline period (i.e. WorldClim) to avoid monthly precipitation 
values going below 0 and to maintain homogeneities with WorldClim. 
 
After calculating the corresponding future values for each of the 36 coarse resolution 
anomaly surfaces, we calculated mean temperatures, assuming a normal distribution of 
temperatures during the day (Eqn. 3). 
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Where, 
 

iMT .  is the mean temperature in month i, 

iXT .  is the maximum temperature in month i, 

iNT .  is the minimum temperature in month i, 

 
All these calculations were performed in Arc/Info (ESRI, 2008); however, they can be 
performed under any other automatable GIS software or any other package with the 
proper libraries (e.g. R, GRASS, Python, Java). 
 



 
 
Future disaggregated climate surfaces 
 
Our datasets therefore comprise the most up-to-date (with climate science) and 
comprehensive disaggregated set of climate change scenarios, with a total of 441 
different scenarios (sum of 24, 20 and 19 GCMs, times 7 time-slices) at 30 arc-seconds 
spatial resolution. As a whole, original GCM uncertainties were maintained in future 
surfaces, so any uncertainty analysis done with original GCM data provides insights into 
the disaggregated surfaces. The method is highly conservative, keeping variability among 
GCM forecasts and providing ‘updated’ surfaces by assuming only that interactions 
between variables do not change in the future. 
 
We acknowledge the risk of providing 30 arc-seconds future climate data, but we applied 
the disaggregation method to the original WorldClim dataset in order to maintain its 
original condition. However, since 30 arc-s future climate scenarios might cause a false 
sense of accuracy,, after all these calculations, we aggregated the 30 arc-s future data to 
2.5, 5, and 10 arc-minute resolutions using nearest neighbor interpolation (Figure 3).  
 

  
Figure 3 Comparison between downscaled surfaces at different spatial resolutions for an area in 
north-western Colombia including the Andes: (a) 30 arc-seconds, (b) 2.5 arc-minutes, (c) 5 arc-
minutes and (d) 10 arc-minutes. Other resolutions than 30 arc-s are derived from 30 arc-s surfaces 
by nearest neighbor interpolation. 

 
We still provide 30 arc-s data, but users of these data should be aware of the risks of 
using these data, given the assumptions we made in producing them. We suggest that the 
uncertainties in GCM forecasts always be taken into account, and that all users of these 
data dutifullyreport the assumptions involved in disaggregation. 
 
Processing and storage capacity in research centers making use of these datasets might 
also be a limiting factor when using these data. We therefore suggest that research centers 
download the resolution datasets appropriate to their studies. This avoids over-
processing. 
 
 
Globally and freely available 



 
 
A webpage has been created for any global user to download the datasets we produced. 
This webpage is hosted in Cali, Colombia, on CIAT’s web server 
(http://gisweb.ciat.cgiar.org/GCMPage/) and includes a brief description of the data. It 
also contains links to information about all GCM patterns that were disaggregated 
(provided by the IPCC-CMIP3 data portal), as well asto the datasets in the following 
formats: 
 

- ESRI Arc/Info binary grids for data at 2.5 arc-m, 5 arc-m, and 10 arc-m spatial 
resolution 

- ESRI ASCII grids for data at 30 arc-s, 2.5 arc-m, 5 arc-m, and 10 arc-m spatial 
resolution 

 
Beyond the monthly data, we also calculated 19 bioclimatic indices (see Nix, 1986; 
Busby, 1991), which are often used for niche and crop modeling and are related with 
biology and geography of species. These indices provide descriptions of annual trends 
(i.e. annual mean temperature, total annual rainfall), seasonality (temperature range, 
temperature and precipitation standard deviations), and stressful conditions (precipitation 
during dry or wet periods, temperatures during hot and cold periods). These data are also 
presented on our webpage. 
 
 
Conclusions 
 
Disaggregation appears to be a useful alternative, and more conservative, method to 
downscaling. Disaggregated future climate surfaces avoid misrepresentation of original 
GCM uncertainties. Of course, as with all methods(and even with theoriginal GCMs), 
disaggregation still does make several assumptions that must be taken into account when 
using the data as inputs for impact assessment models. 
 
We used spatial disaggregation with WorldClim as our baseline and created a set of 441 
different future climate scenarios at four spatial resolutions (including 30 arc-second 
[~1km]). The datasets are up-to-date and freely available, but should be used carefully 
(particularly those at 30 arc-s spatial resolution), given the assumptions we made in 
creating them. Coarse GCM cells were maintained, so uncertainties were maintained in 
their original forms.One key caveat to keep in mind is that changes in climates may occur 
at regional and local scales (particularly in highly heterogeneous landscapes) that at 
coarse scales (~100-200 km side cells) may not reflect. 
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