Enhancing rice production in sub-Saharan Africa: characterization of rice blast pathogen and establishment of a rice breeding strategy for durable disease resistance

Authors:
Samuel Mutiga1,2 (see partnership), Felix Rotich3, Veena Devi Ganeshan4, Emmanuel Mgonja5, David Mwongera6,7, Jagger Harvey1, Lusike Wasiliva1, Ibrahimia Ouedraogo3, Drissa Silué4, Bo Zhou5, Tom Mitchell1, Guo-Liang Wang5, James Correll6, & Nick Talbot9

Project summary
Rice is steadily becoming a staple food to the majority of people in Africa, yet its production is outstripped by demand, resulting in net imports from abroad. Rice blast disease is a major factor that has led to decline in rice production in Africa. This international collaborative research for development project is aiming at overcoming rice yield losses caused by blast disease and hence increasing rice production in sub-Saharan Africa. Breeding for durable blast resistance requires knowledge about the genetic diversity of the pathogen population and its virulence spectrum; durable resistance represents the most sustainable rice blast control strategy. The project has characterized blast pathogen collections from East and West Africa using genomics, and a panel of rice genotypes including those carrying the 24 known resistance genes (R-genes). Based on the results, the project has initiated a breeding program which combines the most promising R-genes into adapted African cultivars. In addition, the project is establishing a biobank of the pathogen collections at BecA-ILRI Hub for use by African scientists and their partners.

Outcomes
1. An integrated research for development team, including African national program pathologists and breeders, has coalesced around a major agricultural improvement problem, and is making key advances to addressing it.
2. Broad geographic collaboration to investigate rice blast disease and to establish appropriate breeding strategies.

Additional expected outcomes
1. Durably blast-resistant rice varieties will be made available to rice growers in sub-Saharan Africa for effective disease control and hence increased rice production, leading to increased food security.
2. Reduced reliance on rice imports due to increased production by African farmers, driving increased food and economic security.
3. Regional disease monitoring and future breeding efforts can be developed and informed by the observed relationship between pathogen genetics and virulence spectrum.
4. Phytosanitary strategies could be adopted based on the observed pathogen virulence spectrum to safeguard regions from introduction of new virulent strains through rice trade. This needs better established plant quarantine systems.
5. Regionally-tailored blast resistance breeding efforts, for East and West Africa, will proceed with field evaluations in selected blast hotspots.
6. African scientists will be better equipped to conduct further pathogen characterization and screening of local rice germplasm for resistance to blast, making use of the biobank at the BecA-ILRI Hub. Identification of additional R genes is expected.
7. African national rice breeders and their partners will be better equipped to address short- and long-term disease resistance challenges using appropriate high-end biosciences tools.

Potential to scale-up
- Globally, rice blast disease destroys an amount of rice sufficient to feed 60 million people annually. Africa is among the regions faced with frequent food shortage due to crop losses caused by diseases, including rice blast. Effective blast control would lead to reduced hunger and malnutrition in Africa.
- The efforts of this project were highly commended by African rice breeders and pathologists during a workshop in Kenya (June 2015). The scientists have received the seed of the breeding populations from this project, and will conduct hotspot evaluations.
- African rice production (2.1 t/ha) is well below the world average (3.5 t/ha). Because blast disease is a major constraint in Africa, durably blast resistant varieties developed in this project hold the potential of enabling African farmers to almost double their rice production.

Fig. 1. Genetic relatedness of isolates of rice blast pathogen (n=70) from nine African countries and the mean disease reactions (0-9 scale; 0=absence; 4.4-increasing disease severity) of individual lineages. Characterization was based on genotyping by sequencing derived single nucleotide polymorphisms. (Colours denote countries: Senen, Benin, Ethiopia, Ghana, Kenya, Malawi, Nigeria, Tanzania, Uganda, Zimbabwe.)

Fig. 2. Disease reactions on rice genotypes (n=45) inoculated with blast pathogen isolates from East (n=40); A, top graph; and West Africa (n=5); B, bottom graph. Rice genotypes in the Y-axis, and isolates names in the X-axis. Colors: Disease and Resistance. White spaces denote missing data.

Fig. 3. Development of blast resistance breeding populations. Strategies 1 and 2 are based on the biobank characterization in Fig. 2 above, while strategy 3 introduces blast resistance into the consumer-prefered tropical commercial varieties.

1. BecA-ILRI Hub, Kenya
2. University of Arkansas - Fayetteville, USA
3. Ohio State University - Columbus, USA
4. Kenya Agricultural and Livestock Research Organization (KALRO)
5. Environmental Institute for Agricultural Biosciences Eastern and Central Africa (KALRO)
6. Africa Rice Center (AfricaRice), Benin
7. International Rice Research Institute (IRRI), Philippines
8. University of Exeter, UK (overall project lead)

For more information, contact:
Dr. Samuel Mutiga, Project Leader, Biosciences Eastern and Central Africa (BecA-ILRI Hub), Box 21919, Nairobi 00100. Tel: +254-20-3790000 ext.3114. E-mail: s.mutiga@cgiar.org
Dr. Jagger Harvey, Senior Scientist, Dr. Jagger Harvey, Senior Scientist, jHarvey@cgiar.org
Bioversity International and Central Africa International Crops Research Institute (BecA-IRRI) Hub, Box 69790, Nairobi 00100. Tel: +254-20-3790000 ext.3114. E-mail: t.mitchell@cgiar.org
Bioversity International (www.bioversityinternational.org)
Central Africa International Crops Research Institute (BecA-IRRI) (www.becainter.org)