Animal-source foods & Maternal and Child Nutrition in resource-limiting settings

Paula Dominguez-Salas RVC, ILRI, LCIRAH & Julia de Bruyn University of Sydney
Nutritional contributions of animal-source foods

| Protein of high biological value | • Essential amino acid profile is well matched to body’s requirements
• Contrast to cereals, typically largest contribution to protein intake (eg. maize – limiting in lysine and tryptophan) |
| Variety of micronutrients in bioavailable forms | • Efficient for addressing multiple micronutrient deficiencies
• Haem iron, pre-formed vitamin A |
| Enhanced uptake of less bioavailable micronutrients | • Non-haem iron (plant-source foods)
• Significant given inhibitory effect of oxalates and phytates in diet |
| High nutrient density | • Benefits for young children and those with reduced dietary intake
• Small amounts can significantly increase nutritional adequacy of diets based on staple crops |
<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Red meat</th>
<th>Liver</th>
<th>Milk</th>
<th>Poultry meat</th>
<th>Eggs</th>
<th>Consequences of deficiency</th>
<th>Prevalence of deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>0</td>
<td>0</td>
<td>+++</td>
<td>0</td>
<td>0</td>
<td>Nutritional rickets and inhibited bone growth and density; maternal increased risk of preeclampsia</td>
<td>Global estimates not available. WHO estimates that low intakes are common and nutritional rickets is reappearing. (FAO)</td>
</tr>
<tr>
<td>Fe (heme)</td>
<td>++</td>
<td>+++</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>Anaemia; impaired growth, immune function, child cognitive development/school performance; lowered work capacity; mortality</td>
<td>Estimated 1 in 4 people worldwide has iron deficiency (WHO global database on iron deficiency)</td>
</tr>
<tr>
<td>Fe (total)</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>Pregnancy complications; low birth weight; impaired immune function, mortality, growth faltering; diarrhea.</td>
<td>Estimated 1 in 5 world’s population is at risk of inadequate intake.</td>
</tr>
<tr>
<td>Zn</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>Growth faltering; impaired development; xerophthalmia and blindness; impaired immune system; increased mortality; skin infections</td>
<td>Low serum retinol concentration affects 33% of the preschool age children and 15% of pregnant women in populations at risk of VAD worldwide (WHO Global Database on Vita.A)</td>
</tr>
<tr>
<td>Vit A (retinol)</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>Stunted growth, skin lesions, corneal vascularisation, cheilosis, angular stomatitis, glossitis, photophobia, anemia, and neuropathy.</td>
<td>Good estimates of deficiency unavailable but incidence believed to be up to 40% in developing countries</td>
</tr>
<tr>
<td>Vit B2</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>Megaloblastic anemia; gastrointestinal symptoms neurological symptoms; demyelinating disorder of the central nervous system.</td>
<td>High prevalences reported worldwide, particularly deficient in vegetarian diets with no supplementation</td>
</tr>
<tr>
<td>Vit B12</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>Fatty liver, increased risk of neural tube defects in pregnancy. Choline is critical during fetal development, particularly lifelong memory and learning functions.</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Functional outcomes related to ASFs

• First randomised, controlled feeding study to compare effect of meat-, milk- and plant-based foods on functional outcomes in children
• Two-year project
• Schools of rural Kenya
• Children 6-14 y
• Mid-morning “snacks” given each day – githeri (maize, beans, greens)
• Cognitive assessments
• School-yard behaviours observed
• Height, weight, mid-upper arm circumference, triceps and subscapular skinfold thickness

Functional outcomes related to ASFs

- **Control**
 - Improved:
 - Physical activity
 - Initiative
 - Leadership
 - Cognitive performance
 - School test scores
 - Arm muscle mass
 - Vitamin B12 status

- **Githeri + Minced beef**

- **Githeri + Milk**

- **Githeri + Oil**
 - Improved:
 - Linear growth (if stunted)
 - Vitamin B12 status

Dairy products and physical stature?

- Systematic review and meta-analysis of studies supplementing usual diet with dairy products on physical growth
- 12 studies, up to 3500 children
- Europe (3), USA (2), China (2), Vietnam (1), Kenya (1), Indonesia (2) and India (1)
- Male and female children, 3-13 years
- Most likely effects: +0.4cm per annum additional growth with 245mL milk/day
- Moderate quality evidence of supplementation with dairy products stimulating linear growth

de Beer, 2012.
Nutritional contributions of animal-source foods

To reach the recommended daily intake of 18 mg of iron, a woman would have to eat at least 8 times more spinach than cooked liver. Iron found in vegetables is also harder for the body to absorb, because it is usually bound to fibre.

Micronutrient content

Recommended Nutrient Intake (RNI) for Vitamin A for a breastfeeding mother:

950 µg/d

- Chicken liver, fried
 9g

- Fresh papaya
 704 g

- Spinach, cooked
 148 g

- Orange sweet potato, cooked
 220 g
Village poultry, gender and maternal and child nutrition

Findings and lessons from Tanzania

Julia de Bruyn BVSc (Hons)
PhD candidate & Project Research Assistant
Faculty of Veterinary Science & Charles Perkins Centre
julia.debruyn@sydney.edu.au
Acknowledgements
Chickens, children and crops...

Strengthening food and nutrition security through family poultry and crop integration in Tanzania and Zambia

- Five-year interdisciplinary project
- Cluster randomised controlled trial
- Newcastle disease (ND) vaccination
- Range of crop interventions
- Height-for-age of children
Why village chickens?

Accessible form of livestock

Work well in local settings

Efficient production system

Multiple roles and benefits

• Owned by majority of households
• Women, landless, disability

• Suit taste preferences
• Low input (capital, labour, inputs)

• Scavenge, broody, evade predators
• Very high benefit-cost ratio

• Pest control, manure
• Petty cash, social credit
A focus on women

- Limited access to opportunities and resources
- **Resource-limited household members**
- Key players in family poultry production
- Primarily responsible for management of chickens
- Lose power in decision making re marketing and consumption

Boys eat more meat than their sisters from around 12 years of age, when they start working in the field.

Men are reported to receive “the best bits” and a larger share of meat than women of the same age, or any other household member.

Reasons nominated by women for allocating meat to male household members:
- “The one who brings the food”
- Men spend more energy
- Men need more strength
- A sign of respect
- Head of the household

Bagnol, 2015
Nutritional contributions of eggs

For infants 7-12 months old: + 20-50% recommended daily allowance (RDA), ++ >50% RDA (Source: Iannotti et al, 2014)
How reliable are original data sources? Does the origin of data make it appropriate for use in the intended geographic area? Do databases reflect the spectrum of foods consumed in a given country or region?

Most data presented in national or regional databases is derived from sources outside the country or region, often from analyses conducted decades previously. There is significant variation in the nutrient content of equivalent food items in databases from developed nations (including nutrients of public health significance).
Food Composition Data

• Genotype?
• Diet?
• Season?
• Management systems?
• Differing fat content?

Baseline consumption patterns - Chicken

Table 1: Proportion of target household-members consuming at least one meal containing chicken in Sanza ward (Visual diary, August 2014)

<table>
<thead>
<tr>
<th></th>
<th>Breastfeeding women</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number consuming</td>
<td>Total number (n)</td>
<td>Proportion consuming chicken (%)</td>
<td>Number consuming</td>
<td>Total number (n)</td>
</tr>
<tr>
<td></td>
<td>chicken</td>
<td></td>
<td></td>
<td>chicken</td>
<td></td>
</tr>
<tr>
<td>Sanza</td>
<td>7</td>
<td>53</td>
<td>13.2%</td>
<td>5</td>
<td>53</td>
</tr>
<tr>
<td>Ntlope</td>
<td>7</td>
<td>48</td>
<td>14.6%</td>
<td>5</td>
<td>51</td>
</tr>
<tr>
<td>Chicheho</td>
<td>5</td>
<td>49</td>
<td>10.2%</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>Ikasi</td>
<td>27</td>
<td>52</td>
<td>51.9%</td>
<td>27</td>
<td>52</td>
</tr>
</tbody>
</table>
Baseline consumption patterns - Eggs

Table 2: Proportion of target household-members consuming at least one meal containing eggs in Sanza ward (Visual diary, August 2015)

<table>
<thead>
<tr>
<th></th>
<th>Breastfeeding women</th>
<th></th>
<th>Children under 2 years</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number consuming</td>
<td>Total number (n)</td>
<td>Proportion consuming</td>
<td>Number consuming</td>
</tr>
<tr>
<td></td>
<td>eggs</td>
<td></td>
<td>eggs</td>
<td>eggs</td>
</tr>
<tr>
<td>Sanza</td>
<td>4</td>
<td>53</td>
<td>7.5%</td>
<td>6</td>
</tr>
<tr>
<td>Ntope</td>
<td>9</td>
<td>48</td>
<td>18.8%</td>
<td>9</td>
</tr>
<tr>
<td>Chicheho</td>
<td>4</td>
<td>49</td>
<td>8.2%</td>
<td>6</td>
</tr>
<tr>
<td>Ikasi</td>
<td>14</td>
<td>52</td>
<td>26.9%</td>
<td>16</td>
</tr>
</tbody>
</table>
Baseline analysis of LFA in Sanza and Majiri

- Baseline data
- Households with children <24 months
- 8 communities, 2 wards
- Interview-based data collection
 - MCHN questionnaire
 - Livelihood questionnaire
- Child anthropometry
 - Length-for-age (LAZ)

SANZA WARD
Baseline data
(n = 231)

MAJIRI WARD
Baseline data
(n = 279)

2014
May Jun Jul Aug Sept Oct Nov
Methods

- Child gender
- Child age
- Household socioeconomic status
- Gender of household head
- Household size
- Level of maternal education
- Cattle ownership
- Small ruminant ownership
- Chicken ownership

House construction materials

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>Grass, thatch, mud</td>
<td>Iron sheets, tiles</td>
</tr>
<tr>
<td>Walls</td>
<td>Grass, thatch, poles & mud</td>
<td>Mud bricks, baked bricks, cement bricks</td>
</tr>
<tr>
<td>Floor</td>
<td>Earth</td>
<td>Wood, tiles, concrete</td>
</tr>
</tbody>
</table>

Asset ownership

1 point for each item owned, from a list of 13 items (e.g., radio, bicycle, motorcycle, solar panel)
Methods

- Child gender
- Child age
- Household socioeconomic status
- Gender of household head
- Household size
- Level of maternal education
- Cattle ownership
- Small ruminant ownership
- Chicken ownership

Length-for-age Z-scores of children <24 months of age
Results

- Child gender
- Child age
- Household socioeconomic status
- Gender of household head
- Household size
- Level of maternal education
- Cattle ownership
- Small ruminant ownership
- Chicken ownership

Length-for-age Z-scores of children <24 months of age

Mean LAZ -1.47 (SD 1.37)

n = 460
Results

Child age
Older children have a significantly lower LAZ (p<0.001)

Consistent with documented pattern of height faltering beginning soon after birth and continuing until 24 months of age.

Chicken ownership
Chicken from households owning chickens have a higher LAZ than those from households without chickens (-1.32 cf. -1.56; p=0.06)

Scope for interventions such as Newcastle disease vaccination that promote poultry ownership and increased flock size to contribute to improved nutrition?

Next steps…
• Impact of chicken flock size?
• Impact of chicken housing?
• Longitudinal findings?
Thank you
Questions?