Inter-epidemic Rift Valley fever virus seropositivity in an irrigation scheme in Bura, south-east Kenya

Deborah Mbotha1,2, Bernard Bett1, Salome Kairu-Wanyoike3, Delia Grace1, Absolomon Kihara1, Martin Wainaina1, Antje Hoppenheit2, Peter-Henning Clausen2 and Johanna Lindahl1,4

1International Livestock Research Institute, Nairobi, Kenya
2Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
3State Department for Veterinary Services, Nairobi, Kenya
4Swedish University of Agricultural Sciences, Uppsala, Sweden
Rift Valley fever: Background
Rift Valley fever: Distribution

Spatial and temporal distribution of reported Rift Valley fever outbreaks in Africa and the Arabian Peninsula (1912 – 2012) Total number of human deaths (HD) is indicated for selected countries for all outbreak periods. (Nanyingi et al., 2015)
Rift Valley fever: Study aim

Investigate low-level RVFV transmission during an inter-epidemic period (IEP) in Bura irrigation scheme and evaluate the role of potential risk factors.
Materials and methods: Study site
Bura irrigation scheme, Tana River County, southeast Kenya

[Map showing Bura, Chifiri, Husingo, and Tana River]
Materials and methods: Study design

- Longitudinal study – 10 months
 - Open sentinel herd – sheep and goats
 - Screening of anti-RVFV immunoglobulin IgG antibodies directed against RVF virus nucleoprotein
 - Commercially available ELISA kits from ID Screen® from Idvet (Louis Pasteur, France)
 - Testing done using manufacture’s protocol

- Bura (irrigation scheme) – 139 animals
- Husingo (riverine) – 109 animals
- Chifiri (pastoralism) – 69 animals
Materials and methods: Study design

• Periodic sampling done 6 times
 • 3 times during short wet season - Nov-Dec 2014, Jan 2015
 • 3 times during dry season – Sept 2014, Mar & Jun 2015

• Data analysis
 • Generalized linear mixed-effects model (GLM) with binomial family structure in R 3.2.3
 • Account for sample selection method
 • Bura & Husingo – not random (from previous study)
 • Chifiri - random
 • Kaplan-Meier survival analysis
 • 2 levels of analyses (outcomes)
 • Seroprevalence
 • Seroconversion
Results: Seroprevalence

- Total 39 (12.3%) animals tested positive during study period
 - Varied across sampling sites
 - Pastoralist village - 26.1%
 - Irrigation and riverine - 8.6% and 8.3% seropositive animals respectively
Results: Seroconversion

Seroconversions – 15

• Irrigation villages – 7, spread over 4 months (Dec – Mar)
• Riverine village – 8, all in Jan 2015, (wet season)
• Pastoral village – None

• Incidence rate (new cases per 1000 animals per month) was not significantly different (p>0.05) between the irrigated (7) and the riverine areas (11)

• Seroconversions significantly higher in wet season between November 2014-January 2015 than in dry season (OR=71.22, CI= 13.54- 752.15, p=<0.001)
Results: Seroconversion
Results: Seroconversion

Kaplan-Meier survival analysis of RVF virus seropositivity by site

- irrigated
- pastoral
- riverine

Probability of survival vs Months
Conclusion

Creation and expansion of irrigation schemes in this region

- Establishes more habitats that appear similar to the riverine ecosystem
 - RVF incidence

- Potentially contributes in endemic transmission of vector-borne diseases that naturally occur in similar suitable ecosystems

- Increases risk of local RVFV endemicity

- Policy makers
 - Better understanding for vector and RVF prevention and control within changing environment
Acknowledgments

- Dr Anderson Thuo Njau, DVO Bura, Kenya
- Samuel Cheruyiot Tonui, AHA, Bura, Kenya
- John Maigwa Kimani, AHA, Kabete, Kenya
- State Department for Veterinary Services in Kabete, Bura, Garissa
- Dahlem Research School (DRS)
- Institute for Parasitology and Tropical Veterinary Medicine

Financial support

- German Academic Exchange Service (DAAD) in Bonn, Germany
- International Livestock Research Institute (ILR), Nairobi, Kenya
- Dynamic Drivers of Disease in Africa Consortium (DDDAC), Nairobi, Kenya
Thank you!

Questions?

http://upload.wikimedia.org/wikipedia/commons/d/d0/Aedes_asiaticus.jpg