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Abstract

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of

income and food security, with the highest per capita consumption worldwide. Pests, dis-

eases and climate change hamper sustainable production of bananas. New breeding tools

with increased crossbreeding efficiency are being investigated to breed for resistant, high

yielding hybrids of East African Highland banana (EAHB). These include genomic selec-

tion (GS), which will benefit breeding through increased genetic gain per unit time. Under-

standing trait variation and the correlation among economically important traits is an

essential first step in the development and selection of suitable GS models for banana. In

this study, we tested the hypothesis that trait variations in bananas are not affected by

cross combination, cycle, field management and their interaction with genotype. A training

population created using EAHB breeding material and its progeny was phenotyped in two

contrasting conditions. A high level of correlation among vegetative and yield related traits

was observed. Therefore, genomic selection models could be developed for traits that are

easily measured. It is likely that the predictive ability of traits that are difficult to phenotype

will be similar to less difficult traits they are highly correlated with. Genotype response to

cycle and field management practices varied greatly with respect to traits. Yield related

traits accounted for 31–35% of principal component variation under low and high input

field management conditions. Resistance to Black Sigatoka was stable across cycles but

varied under different field management depending on the genotype. The best cross com-

bination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping

using simple sequence repeat (SSR) markers revealed that the training population was

genetically diverse, reflecting a complex pedigree background, which was mostly influ-

enced by the male parents.
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Introduction
East Africa is considered a secondary center of banana genetic diversity. Uganda in particu-
lar is a home to over eighty cultivars of East African Highland banana (EAHB) commonly
divided into cooking and beer types [1]. The crop greatly contributes to the income and food
security of many smallholder farmers in the region. The significance of the crop in the region
is reflected in the per capita consumption that ranges between 250kg and 600kg with an aver-
age of 400kg in Uganda [2]. Over 85% of the production is consumed locally due to high
demand [3, 4]. Sustainable production of bananas is a challenge because of disease, insect
and nematode pressure. This is worsened by abiotic stress arising through factors associated
with climate change [5]. Yield reductions in EAHB are caused by pests such as root burrow-
ing nematodes especially Radopholus similis and banana weevil (Cosmopolites sordidus).
Black Leaf Streak (Black Sigatoka), a fungal disease caused byMycosphaerella fijiensis reduces
the photosynthetic area of the plant, which decreases yield. Banana bacterial wilt caused by
Xanthomonas campestris pv.musacearum causes 100% yield loss when the banana is attacked
[6±8]. Variation in rainfall patterns impacts banana production by causing drought stress
because most farmers in the region rely on rain for agricultural production. Although pheno-
typic variation is observed in EAHB, their genetic variation is low [9, 10] making them all
susceptible to biotic and abiotic stress. Adaptation of cultivated banana varieties to changing
environment is limited because while some are capable of sexual reproduction, they are all
propagated clonally.

In order to meet the food demand for the growing population, breeding for resistance
and high yielding varieties is considered to be the most sustainable solution to address
banana production constraints [11, 12]. Unlike other crops, banana breeding is complicated
by the polyploid nature of the crop characterized by abnormal meiosis in the cultivated trip-
loid varieties that results in reduced fertility or complete sterility [13±15]. Crossing cultivated
varieties with resistant wild diploids is possible, but a majority of the generated hybrids are
inferior due to linkage drag of unfavorable genes from the wild diploids. However, when
tetraploids are obtained, further improvement is possible because they are both male and
female fertile (Fig 1). Incorporating resistance while maintaining the unique attributes such
as fruit colour, aroma, texture and taste in existing varieties is a big challenge to banana
breeders that calls for dedicated effort and careful choice of cross combinations. Crossbreed-
ing is labour-intensive, costly and time consuming. In the last two decades, some success has
been registered with new hybrids released to farmers while others are in the advanced stages
of evaluation [16]. In order to keep up with the pace at which environmental changes occur
and the demand for new varieties that are productive and of good quality, new breeding
strategies should be employed to increase breeding efficiency and reduce the lengthy selec-
tion period [3].

Marker assisted selection (MAS) has been implemented in many animal and crop breed-
ing programs. The success of MAS greatly depends on the genetic architecture of traits
being improved. To date MAS has not been effectively deployed in banana breeding. The
possible reasons are polyploidy, important economic and agronomic traits may be con-
trolled by many quantitative trait loci (QTL), each with a small additive effect, and the lack
of saturated linkage maps for QTL mapping. It is believed that the application of genomic
selection (GS) will improve the efficiency of crossbreeding programs especially for crops
with long breeding and selection cycle [17, 18] like banana. GS is a form of MAS where
selection is based on the genomic estimated breeding values (GEBV) of superior individuals
in the population as determined by a statistical model [19±21]. This technique is well estab-
lished in animal breeding [22, 23]. In plants, GS has been tested in maize and wheat [24],
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white spruce [25], rice [26] and cassava [27]. However, in bananas GS is in its infancy.
Given that new varieties are selected based on a combination of traits, a selection index of
GEBV in bananas is necessary.

GS studies have reported varying accuracies in prediction (predictive ability of GS models)
and this has been attributed to differences in trait heritability, number of markers, training
population size and genotype x environment interaction [24]. Bananas as perennial plants suf-
fer the consequences of nutrient deficiency and soil moisture variation across seasons and
locations depending on field management practices. Breeding generates genotypes from many
crosses that are genetically different and respond to growth environment differently and this
could affect the accuracy of GS. Therefore, understanding trait variation and the correlation
between different traits is essential to guide the development and selection of suitable GS mod-
els for banana breeding. In this study we tested the hypothesis that trait variations in bananas
are not affected by cross combination, cycle, field management and their interaction with
genotype. For this, a training population created using EAHB breeding material and its prog-
eny was phenotyped in two contrasting conditions. Genetic diversity of the training popula-
tion was assessed using simple sequence repeat (SSR) markers.

Fig 1. Conventional banana breeding starts with crossing 3x inferior and parthenocarpic landrace varieties
(A) with a wild, seeded 2x accession (B). 4x resulting from this cross (C) are selected and crossed with
improved 2x hybrids (D). The resulting secondary 3x (E) are selected and evaluated as potential improved
varieties. This process takes up to 15 years.

https://doi.org/10.1371/journal.pone.0178734.g001
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Materials andmethods
Plant population
Data were collected at the International Institute of Tropical Agriculture, Uganda from a
banana genomic selection (GS) training population between 2013 and 2016. The institute is
located at Namulonge research station, 0.53ÊN 32.58ÊE, 1150 m above sea level with rainfall
of about 1200 mm/y split into two rainy seasons, March-June and September-December and
an average annual temperature of 22ÊC.The GS population consisted of 307 genotypes that
included diploid (11%), triploid (85%) and tetraploid (4%) plants (S1 Table). The ploidy
level of the genotypes was determined using flow cytometry [28, 29]. The core breeding lines
(parents) accounted for 12% of the entire population. Two fields were established with each
genotype replicated three times in a completely randomized design. Suckers were used as
planting materials and before planting, 20kg of farmyard manure was applied in each hole.
One field (GS1) was managed without mulching, additional manure nor inorganic fertilizer
(low input). The second field (GS2) was mulched twice a year. Six months after planting, 480 g
of NPK (25:5:5) fertilizer was added and the same amount was added to each mat per year
(high input).

Traits
The yield-related traits scored included: days to fruit maturity (DFM) that is, days between
flowering and harvesting, bunch weight at full maturity (BWT), number of hands (cluster)
(NH) and number of fruit fingers (NF), fruit length (FL), fruit circumference (FC), fruit diam-
eter (FRD), pulp diameter (PLD) and peel thickness (PED), where PED = (FRDÐPLD)/2. The
vegetative (growth) traits included: number of standing leaves at flowering (NSLF), youngest
leaf spotted with Black Sigatoka at flowering (YLSF), index of non-spotted leaves at flowering
(INSL), height of tallest sucker at harvesting (HTSH), plant height at flowering (PHF), plant
girth at 100 cm from soil surface (PG), height of tallest sucker at flowering (HTSF), total num-
ber of suckers at flowering (TS), number of standing leaves at harvesting (NSLH) and youngest
leaf spotted with black sigatoka at harvesting (YLSH).

Total number of suckers (TS) was recorded at flowering in cycle 1 only after which each
mat was left with a maximum of three plants and these included the flowered plant, follower
sucker and the sucker produced by follower sucker if present. A Vernier caliper was used to
measure FRD and PLD. Fruit related traits such as FL, FC, FRD and PLD were recorded
from the middle finger of the second hand on the bunch. Measurements for FC, FRD and PLD
were recorded midway the length of the finger. However, to measure FRD and PLD, a cross-
section of the fruit was made to expose the pulp. The INSL was calculated from the formula,
INSL = 100�(YLSF-1)/NSLF [30]. This formula should give percentage values ranging from
0±100% to represent completely susceptible (0%) and completely resistant (100%). In order
to get 100% INSL for completely resistant genotypes, the YLSF was scored as NSLF +1 thus
INSL = 100�((NSLF+1)-1)/NSLF or INSL = 100�NSLF/NSLF

Data analysis
All analyses were performed in R, open source statistical software from www.r-project.org. A
combination of Shapiro-Wilk test, boxplots, standard deviations and histograms were used to
check for normality and outliers in the data and where necessary the outliers were removed
before further analysis. Total number of suckers and bunch weight were transformed by square
root. Using the aggregate function from library (plyr), trait means were calculated for every

Phenotyping and banana genomic selection

PLOSONE | https://doi.org/10.1371/journal.pone.0178734 June 6, 2017 4 / 23

http://www.r-project.org
https://doi.org/10.1371/journal.pone.0178734


genotype and cross combination (family) in every cycle, and field and these were used in corre-
lation analysis and principal component analysis (PCA).

Correlation analysis and test of significance for the correlations between traits were done
using library (Hmisc) and Student's t-test based on cycle 2 data for cross combinations. Coeffi-
cient of determination (R2) was calculated as a square of correlation coefficient between cycle
1 and 2 data. To understand the structure of the population and how different traits influenced
that structure, principal component analysis was done using PCA function provided in the
library (FactoMineR). Traits (dependent variable), cross combinations and individual geno-
types were projected on the first two components (Dim1 and Dim2).

Sources of trait variation were assessed using unbalanced analysis of variance (ANOVA)
based on cycle 1 and 2 data. Linear models were constructed for each trait in respect to each
cycle, field management practice and their interaction with genotype as model_fit = lm(trait
response~clone+cycle+field+clone:field+clone:cycle, data = mydata) where lm = linear model
function. Type III SS ANOVA tables were generated using Anova function provided in the
library(car) as result = Anova(model_fit, singular.ok = TRUE, type = ªIIIº). In cases where
no significant interactions were observed between two independent variables and where one
explanatory variable was not significant, then type II or type I SS ANOVAwas used for further
investigation.

Selection differential (S) and response to selection (R) were used to compare performance
of parental cross combinations [31]. S and R were calculated as, S = PÐG and R = HÐG,
where P = average performance of a pair of parents, G is the average performance of all paren-
tal lines in the training population and H is the average performance of all hybrid that shared
same parental pair. Only cross combinations that had at least five hybrids were compared
across all traits using combined data from the two fields.

Genetic diversity
Genetic diversity of the training population was assessed using simple sequence repeat (SSR)
markers. Cigar leaf samples were collected from the training population in Uganda and
shipped to the Institute of Experimental Botany, Olomouc, Czech Republic under cold chain.
Samples were lyophilized prior to DNA extraction. DNA from lyophilized samples was
extracted using NucleoSpin Plant II kit, Macherey-Nagel, Germany, following the manufactur-
er's instructions. The concentration and quality of DNA was assessed by NanoDrop ND-1000
spectrophotometer. Nineteen informativeMusa SSR primers were used to genotype the GS
training population. The list of primers used, polymerase chain reaction (PCR) conditions,
and fragment analysis procedure were adopted from ChristelovaÂet al. [32].

Two independent rounds of PCR were performed on each sample. The concordance of
alleles from each sample were inspected and scored manually in GeneMarker v1.75 (Softge-
netics, State College, PA, USA). A third round of PCR was performed only for samples that
showed incongruity with the two reactions. Alleles were scored as dominant markers for pres-
ence and absence (1/0). Data were imported in R and squared Euclidean distances were gener-
ated using the function dist provided in the library(ape). Clustering was done with function
hclust based on ward.D method [33, 34]. Polymorphism information content of each marker
was estimated by PowerMarker v3.25 software [35].

Results
During data analysis, some genotypes were excluded for some traits due to missing data or
extreme outliers. The outliers were mainly recorded on plants that were infected with banana
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Xanthomonas wilt before full maturity, plants that snapped due to weevil damage and prema-
ture breaking of the peduncle due to windstorm.

Correlation of traits
Significant correlations were observed among and between growth and yield traits (Tables 1
and 2). PHF had significant positive correlation with PG followed by HTSF. PG positively cor-
related with BWT, NF and HTSF in that respective order. The traits associated with Black Siga-
toka resistance (NSLF, YLSF and INSL) also correlated significantly to each other. However,
they had significant negative correlations with fruit traits such as FC, FRD and PLD. A positive
and significant correlation was observed between BWT and all fruit traits (NH, NF, FL, FC,
FRD, PLD), which were similarly significantly and positively correlated to each other. Under
conditions of low input field management (GS1), TS, NSLH and NF were not significantly cor-
related with other traits while under high input field management (GS2), it was INSL, DFM
and HTSH that did not have significant correlation with other traits. In both fields, the highest
positive correlations were observed among the yield traits. In this population, absolute apical
dominance was not observed as all genotypes had at least one sucker at the time of flowering.
However, sucker regulation varied among genotypes with a range of 1±25 suckers per plant.

Principal component analysis (PCA)
Principal component analysis showed that in both fields, the yield (fruit) traits contributed to
the first component (Dim 1) while the vegetative (growth) traits contributed to the second
component (Dim 2) (Fig 2A and 2B). Among the vegetative traits, PHF and PG contributed to
Dim 1. Dim 1 accounted for 31.07% of variation in GS1 and 35.86% in GS2. Dim 2 accounted
for 21.89% of variation in GS1 and 15.40% in GS2. The traits with the highest negative loading
on Dim 1 included FC, FRD and PLD for GS1 while for GS2 it was FC, FRD, PLD and FL. In
both GS1 and GS2, the traits with the highest positive loading on Dim 2 were NSLF, YLSF,
INSL and NSLH. Both DFM and TS had the least contribution to the two components
with completely different orientation in GS1 and GS2. Generally, in both fields the two compo-
nents accounted for 50% of the variation observed in the genotype cross combinations (Fig 3A
and 3B).

For individual genotypes, a similar trend was observed with Dim 1 and Dim 2 accounting
for 31.43% and 19.11% of total trait variation, respectively (Fig 4A). Projection of the individ-
ual factors (genotypes) on the two components did not reveal any distinct population structure
(Fig 4B). The same trend was observed when individual cross combinations were projected
on the two components. However, in GS1 cross combinations C35 (917K-2 x Kokopo), C28
(8817S-1 x 917K-2) and C52 (SH2095 x SH2766) and in GS2 cross combinations C35 (917K-2
x Kokopo), C22 (365K-1 x 660K-1) and C29 (8817S-1 x 917k-2) were distinct and clearly sepa-
rated out from the others (Fig 3a and 3b). When the data were re-examined, genotypes from
cross C35 had the least average scores on the yield traits while cross C22, C29 and C52 had the
highest average scores on the yield traits. All the four planes of the two components were rep-
resented in the population.

Based on Black Sigatoka resistance and fruit filling (indicated by FRD), four main groups
were represented in the population: (i) genotypes with high INSL and good fruit filling, (ii)
high INSL with poor fruit filling, (iii) low INSL with good fruit filling and (iv) low INSL with
poor fruit filling. On average the observed INSL and FRD for the genotypes in the four groups
were as follows: (i) 78.1% and 3.0cm, (ii) 80.1% and 1.4cm, (iii) 66.8% and 3.1cm, and (iv)
67.1% and 1.4cm, respectively. Genotypes projected on Dim 2 had high average scores on
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NSLF, YLSH, INSL, and NSLH and in contrast they had the lowest average scores on BWT,
FL, FC, FRD, and PLD and the reverse was true for those projected on Dim 1.

Analysis of variance
Visual inspection of boxplots for various traits indicated a cycle effect on data distribution of
some traits while others were not affected by cycle. For example, Plant height increased at
cycle 2 while index of non-spotted leaves did not increase (Fig 5a and 5b) and this was con-
firmed by ANOVA results. Fruit traits such as FC, FRD and PLD showed a bimodal distribu-
tion with the histogram having two peaks. Based on these parameters, the population could be
separated into two main groups, poor fruit filling genotypes with FRD < 2.0 cm and FC< 8.0
cm, and good fruit filling genotypes with FRD� 2.0 cm and FC� 8.0 cm (S1A±S1DFig).

Fig 2. Principal component analysis plots generated in R using package FactoMineR for the traits
scored in a banana genomic selection training population. (A) shows the distribution of traits under low
input field management (GS1) and (B) shows the distribution of traits under high input field management
(GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.g002

Fig 3. Principal component analysis plots generated in R using package FactoMineR for the cross
combinations in a banana genomic selection training population. (A) shows the distribution of cross
combinations under low input field management (GS1) and (B) shows the distribution of cross combinations
under high input field management (GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.g003
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Coefficients of determination showed that under low input, cycle had less effect on NSLF,
YLSF, INSL, TS, HTSF and PED across genotype cross combinations (Table 3). The Student's
t-test revealed that both PED and HTSF were the most stable traits across cycles at 95% confi-
dence level with P = 0.515 and P = 0.108, respectively. Under high input, cycle accounted for
less than 50% of the variation in NSLF, YLSF, INSL, TS, HTSF, DFM, NSLH, NH, NF and
PED between cross combinations. Just as in the first field, PED and HTSF were the least
affected with P = 0.216 and P = 0.108, respectively. Under high input field management, trait
variation due to cycle was more homogenous as compared to low input field management.
However, in both cases the effects were statistically significant (P< 0.001) indicating that cycle
is a source of variation in genotype performance.

When generating ANOVAmodels, genotype (clone) was assumed to be the main source of
variation. In addition to genotype the effect of cycle, field and their interaction with genotype

Fig 4. Principal component analysis plots generated in R using package FactoMineR for the traits
scored in a banana genomic selection training population. (A) shows the distribution of traits for
individual genotypes and (B) shows the distribution of individual genotypes on the first two components based
onmean of combined data from the two fields.

https://doi.org/10.1371/journal.pone.0178734.g004

Fig 5. Effect of cycle on trait variation in bananas, where (a) shows an increase in plant height at
flowering at cycle 2 while (b) shows no increase in index of non-spotted leaves at cycle 2.

https://doi.org/10.1371/journal.pone.0178734.g005
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was investigated. In all models for all traits, genotype had significant effect on trait variation
with P< 0.001 (Table 4, S3 Table). Traits that were not affected by the interaction between
genotype and field management practice include PHF and PG whereas traits not affected by
interaction between genotype and cycle include NSLF, YLSF, INSL, YLSH, FL, FRD and PED
(P> 0.05). Weak interaction between genotype and cycle was observed on NSLH and HTSH
with P = 0.0417 and 0.0408, respectively. In some cases, although there were significant inter-
actions between genotype and field or cycle, either field or cycle did not show significant effect
on the trait when interaction was included in the model.

Whereas there were significant interactions between genotype and field management, there
was no significant main effect of field on NSLF, YLSF, HTSF, INSL, TS, NSLH, YLSH, HTSH,
NH, NF and PED. Similarly, in the presence of significant interaction between genotype and
cycle, there was no main effect of cycle on INSL, HTSF, HTSH, FC, PLD and PED (Table 4, S3
Table). When the interactions were removed from the models, all the factors had significant
effect on the traits except INSL and PED, for which cycle had no effect. Analysis was repeated
on these two traits using type I and type II ANOVA and both produced similar results as that
observed with type III SS.

Performance of cross combinations (parental pairs)
The GS training population consisted of 77 different cross combinations representing about
two decades of banana breeding activities by IITA and NARO Uganda. Some of these cross
combinations gave rise to the tetraploids and improved diploids that are part of the core breed-
ing lines in the program. Tetraploids and triploids were predominantly used as female parents
while the diploids provided the pollen source but in some instances 2x by 2x or 4x by 4x
crosses were made. The majority of the cross combinations were excluded for this analysis in

Table 3. Coefficient of determination and Student's t-test P-values showing the effect of cycle on
cross combinations.

GS1 GS2
Traits df R2 P-value df R2 P-value

NH 60 0.87 <0.0001 56 0.44 <0.0001
PLD 57 0.78 <0.0001 56 0.65 <0.0001
FRD 59 0.77 <0.0001 56 0.68 <0.0001
PED 58 0.06 0.5150 56 0.03 0.2161
BWT 60 0.79 <0.0001 56 0.74 <0.0001
NF 60 0.54 <0.0001 56 0.37 <0.0001
FL 59 0.77 <0.0001 56 0.64 <0.0001
FC 58 0.79 <0.0001 56 0.73 <0.0001
DFM 59 0.54 <0.0001 56 0.25 <0.0001
NSLH 60 0.63 <0.0001 56 0.38 <0.0001
PHF 66 0.65 <0.0001 63 0.73 <0.0001
PG 66 0.65 <0.0001 63 0.73 <0.0001
NSLF 66 0.25 <0.0001 63 0.28 <0.0001
YLSF 66 0.47 <0.0001 63 0.26 <0.0001
INSL 66 0.14 0.0015 63 0.21 0.0001
TS 68 0.12 0.0032 68 0.12 0.0032
HTSF 68 0.04 0.1084 68 0.04 0.1084

Df = degrees of freedom, GS1 = low input ®eld,GS2 = high input ®eldand R2 = coef®cientof determination

https://doi.org/10.1371/journal.pone.0178734.t003
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this work because they had less than five hybrids in the population. However, crosses between
different EAHB with Calcutta 4 were treated as one cross because the EAHB represent a clone
set with very low genetic diversity [9]. In total sixteen cross combinations were compared and
they included one 2x by 2x, one 3x by 2x and fourteen 4x by 2x crosses (Table 5 and S2 Table).

The best cross in terms of yield and fruit size was C10 (1201K-1xSH3217). Many hybrids
from this cross had the highest bunch weight (R = 3.8) characterized by longer fruit fingers,
big fruit circumference and the highest pulp content. However, the plants were very tall with
big girth. Their maturity period was shorter (about 4.5 months on average) and comparable to
hybrids from EAHBxCalcutta 4. Generally, crosses involving SH3217, SH3362 and 9128±3 as
male parents produced hybrids that had good fruit filling characteristics although they varied
in Black Sigatoka resistance and suckering behavior. For example, crosses involving 9128±3
generated hybrids that had the lowest INSL.

Hybrids from a cross between 5610S-1 and 2180K-6 produced the highest number of leaves
scored at flowering (R = 2.1). They had the highest resistance to Black Sigatoka as reflected by
INSL (R = 7.2%) despite the parents being susceptible. They were the shortest (R = -62.3 cm)
with smaller plant girth. Their average maturity period was almost two months more than the
average of all parental lines (R = 54.6 days) and the longest of all other hybrids. Due to long
maturity period the number of standing leaves at harvest was very low because of normal
leaf senescence. Despite producing many fruit fingers and slightly more hands per bunch,
their average yield and size of fruits were lower than those of the parents. However, some
exceptional lines such as 25031S-7 (diploid) had sizable bunch with relatively big fruits.

Table 4. Effect of genotype (clone), field management, cycle and their interaction on trait variation.

Dep. variable Indep. variable Sum Sq Df F value Pr(>F)
PHF Clone 2222889.11 306 3.77 <0.0001

Clone:Field 432297.46 284 0.79 0.9947
Clone:Cycle 332846.71 299 1.05 0.2662

PG Clone 73176.82 306 4.30 <0.0001
Clone:Field 12061.30 284 0.76 0.9981
Clone:Cycle 13057.24 299 1.51 <0.0001

INSL Clone 116602.02 306 2.44 <0.0001
Clone:Field 58583.77 284 1.32 0.0005
Clone:Cycle 51026.49 299 0.95 0.6947

TSsqrt Clone 240.28 305 3.21 <0.0001
Clone:Field 100.88 282 1.46 <0.0001

BWTsqrt Clone 1213.89 303 12.55 <0.0001
Clone:Field 126.77 269 1.48 <0.0001
Clone:Cycle 108.68 276 1.49 <0.0001

FC Clone 9506.06 300 16.11 0.0000
Clone:Field 733.66 269 1.39 0.0001
Clone:Cycle 751.00 272 1.29 0.0021

PLD Clone 865.42 299 17.60 0.0000
Clone:Field 68.27 269 1.54 <0.0001
Clone:Cycle 60.55 271 1.29 0.0022

PED Clone 20.96 299 11.41 <0.0001
Clone:Field 16.61 269 10.05 <0.0001
Clone:Cycle 3.15 271 0.80 0.9913

sqrt Original data transformed by square root

https://doi.org/10.1371/journal.pone.0178734.t004
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Crosses involvingM. acuminata ssp.malaccensis 250 as male parent produced hybrids
that were tall, slender, with bunches that had many fruit fingers poorly filled with pulp but
some individual genotype exceptions were observed. The hybrids were resistant to Black
Sigatoka and had the highest number of functional leaves at harvesting. Hybrids from cv.

Table 5. Comparison of mean performance of parental cross combinations (S) and hybrids from those crosses (R) against themean of all parents.

CROSS C04 C05 C08 C10 C11 C12 C13 C16 C22 C27 C31 C33 C34 C37 C61 MxC4
S (NSLF) -0.5 -0.2 1.2 0.4 0.2 -0.2 -0.3 1.2 0.7 1.9 0.1 -0.3 -0.1 1.4 0.4 -1.1
R (NSLF) -0.4 0.5 0.8 0.0 1.4 0.9 0.1 1.8 2.1 1.8 0.6 0.3 -0.2 1.4 0.8 0.1
S (YLSF) -0.7 -0.4 1.4 0.3 0.0 -0.2 -0.3 1.7 0.2 1.7 -0.8 -1.1 -0.7 1.1 -0.3 -1.5
R (YLSF) -0.7 0.3 0.7 0.0 0.8 0.4 0.1 1.8 2.2 1.7 0.4 -0.1 -0.1 1.2 0.7 -0.1
S (PHF) 24.1 -33.5 6.6 35.2 35.8 17.2 -37.5 3.8 -21.8 -1.5 -14.0 -11.4 -58.2 -22.5 0.2 25.9
R (PHF) 14.8 -23.8 10.1 33.6 -23.4 -7.4 -39.4 -6.6 -62.3 2.5 0.5 7.9 -31.0 -17.6 -9.5 7.6
S (PG) 9.6 -2.9 5.0 11.1 11.7 2.8 -7.5 -0.1 -5.3 1.3 0.9 1.4 -8.5 -1.6 3.6 3.3
R (PG) 3.6 -3.2 1.2 6.0 -1.4 2.3 -6.8 -1.4 -5.7 -0.6 2.2 4.9 -5.4 -2.0 3.3 2.0
S (HTSF) 11.4 -8.5 30.1 24.2 31.7 -5.5 -18.1 20.5 -46.3 23.0 -27.5 -25.0 -33.7 0.3 -4.7 23.0
R (HTSF) 15.0 -10.3 6.3 23.3 -21.1 -7.3 -26.8 14.3 -32.5 13.4 0.8 -2.5 -14.4 -4.0 -6.4 4.2
S (INSL) -1.8 -1.0 4.9 0.9 0.3 0.2 0.7 7.2 -1.5 3.9 -6.4 -6.5 -4.2 1.1 -4.3 -7.0
R (INSL) -2.9 0.6 1.4 1.2 -1.9 -0.7 1.1 5.7 7.2 4.1 0.1 -1.8 1.8 2.7 2.2 -0.9
S (TS) -1.6 2.8 0.7 -1.0 1.1 -1.1 3.0 1.2 -1.7 0.1 -3.3 -2.9 1.3 -0.7 -0.4 0.0
R (TS) -0.3 1.9 0.6 0.8 -1.0 -1.2 0.8 1.0 -0.4 -0.8 0.3 -1.9 1.2 0.0 0.7 -1.2
S (DFM) 2.4 2.7 15.9 10.0 -1.3 4.9 6.5 31.4 14.2 32.9 8.9 10.9 8.8 28.0 8.2 -21.3
R (DFM) 7.8 6.3 21.1 7.3 -1.9 19.9 1.6 8.3 54.6 32.6 23.9 11.2 13.5 22.3 20.7 7.2
S (NSLH) -0.7 -0.9 0.3 -0.4 -0.5 -0.1 -0.7 1.3 0.5 1.5 0.4 0.1 -0.3 1.4 0.6 -0.7
R (NSLH) -0.9 0.0 0.8 -0.4 1.5 0.6 0.1 2.3 0.3 1.4 0.3 0.1 -0.1 1.1 0.1 0.2
S (YLSH) -0.4 -0.4 0.3 -0.1 -0.2 0.0 -0.3 1.0 0.1 1.1 -0.1 -0.2 -0.3 0.6 0.0 -0.4
R (YLSH) -0.5 0.1 0.5 -0.2 0.9 0.1 0.0 0.8 0.1 0.6 0.2 0.2 0.1 0.8 0.1 0.1
S (HTSH) 27.6 -0.1 25.2 34.0 26.8 5.9 -21.3 10.8 -21.7 28.9 -2.6 4.6 -21.7 1.6 -2.2 7.7
R (HTSH) 23.4 -0.3 45.0 24.0 -18.4 18.4 -23.1 17.3 -15.9 19.1 23.6 9.9 -11.6 15.0 2.9 31.0
S (BWT) 5.6 2.3 4.2 7.2 7.0 1.5 -2.3 -1.5 -0.6 2.1 2.1 1.6 -1.2 -0.2 2.6 -0.7
R (BWT) 3.4 0.7 1.0 3.8 -0.9 1.0 0.4 -4.0 -2.3 -2.3 0.7 2.5 -0.1 -2.8 3.4 1.4
S (NH) 0.7 0.1 0.2 2.6 0.5 0.7 -0.1 0.0 1.1 0.6 0.2 0.3 -0.3 -0.3 -0.1 -0.8
R (NH) 0.4 0.4 1.0 0.9 1.2 1.1 0.3 0.9 1.2 0.4 0.8 1.2 -0.4 0.5 0.7 -0.3
S (NF) 22.1 -1.8 19.7 37.2 17.5 7.0 -19.7 7.7 7.5 15.9 8.8 12.2 -13.4 9.2 3.6 -16.0
R (NF) 15.9 9.0 35.8 12.8 19.9 13.9 1.5 21.7 27.4 10.7 19.6 25.6 -3.1 16.3 13.5 2.0
S (FL) 1.6 -0.2 0.8 2.8 1.9 0.7 -1.1 -1.4 -1.5 0.4 0.5 1.0 -0.9 -0.2 1.2 0.2
R (FL) 2.8 0.3 -0.8 2.5 -1.3 -0.2 -0.2 -3.9 -2.0 -2.6 -0.5 1.6 1.3 -2.6 2.3 0.3
S (FC) 2.2 0.7 2.2 2.1 3.1 1.2 -1.2 -1.1 0.4 0.9 1.2 0.6 -0.7 0.3 1.4 0.9
R (FC) 0.8 0.0 -0.6 1.2 -1.8 -0.7 -0.4 -3.4 -2.8 -2.5 -0.8 0.1 -0.4 -3.0 0.6 0.8
S (FRD) 0.6 0.2 0.6 0.6 0.9 0.4 -0.4 0.0 0.2 0.6 0.5 0.3 -0.2 0.2 0.6 0.1
R (FRD) 0.2 0.0 -0.3 0.3 -0.7 -0.3 -0.2 -1.2 -1.0 -0.8 -0.4 -0.1 -0.2 -1.0 0.1 0.4
S (PLD) 0.6 0.2 0.6 0.6 0.9 0.3 -0.3 0.0 0.1 0.6 0.5 0.3 -0.1 0.2 0.6 0.1
R (PLD) 0.2 0.0 -0.3 0.3 -0.7 -0.3 -0.1 -1.2 -1.0 -0.9 -0.4 -0.1 -0.2 -1.0 0.1 0.4
S (PED) 0.00 0.00 0.02 0.00 0.02 0.03 -0.02 0.01 0.01 0.02 0.00 -0.03 -0.03 -0.02 -0.01 0.01
R (PED) 0.01 0.01 -0.01 0.01 0.00 0.02 -0.01 -0.01 0.01 0.04 0.02 0.01 0.00 0.00 0.01 0.00

S = Selection differential, R = Response to selection, bold values are the highest observations, C04 = 1201K-1x9128-3, C05 = 1201K-1 x cv. Rose,
C08 = 1201K-1 xmalaccensis, C10 = 1201K-1 x SH3217, C11 = 1201K-1 x SH3362, C12 = 1438K-1 x 5610S-1, C13 = 1438K-1 x cv. Rose, C16 = 1438K-1
xmalaccensis, C22 = 5610S-1 x 2180K-6, C27 = 660K-1 xmalaccensis, C31 = 917K-2 x 5610S-1, C33 = 917K-2 x 9128±3, C34 = 917K-2 x cv. Rose,
C37 = 917K-2 xmalaccensis, C61 = 917K-2 x SH3362 and MxC4 = Matooke (EAHB) x Calcutta 4

https://doi.org/10.1371/journal.pone.0178734.t005
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Rose were slender and shorter and were the highest in sucker production while other traits
varied considerably.

Hybrids from different cross combinations had longer maturity period (128±185 days) than
EAHB. On average EAHB mature within 90 days after flowering while the average maturity
period for all parental lines was 130 days.

Genetic diversity of GS training population
Out of the nineteen SSR markers, eighteen were used to delineate the structure of the study
population, because marker mMaCIR164 produced ambiguous allele profiles across samples.
From 18 loci, 195 alleles were scored and the number of alleles per locus ranged between 4 and
18 with an average of 10.8. Polymorphism information content (PIC) of the markers was high
with an average of 0.87 (0.53±0.95)while the major allele frequency was on average 0.22 (0.1±
0.45).

Despite the complex pedigree background of the GS population, SSR markers were infor-
mative enough to delineate the structure of the population (Fig 6). Hierarchical clustering
based onWard's criterion revealed ten groups indicating that the genetic diversity of popula-
tion was high. The triploid East African highland bananas clearly separated from other trip-
loids. They had the lowest within group genetic diversity. The tetraploids that resulted from
crossing EAHB by cv. `Calcutta4' andM. acuminata ssp.malaccensis 250 formed their own
cluster but were closely linked to that of EAHB, thus supporting the hypothesis that the tetra-
ploids were formed after fusion of unreduced gametes from triploid EAHB and haploid gam-
etes from diploid cv. `Calcutta4' andM. acuminata ssp.malaccensis 250. The within cluster
dispersion was rather homogenous and not highly diverse for the tetraploid hybrids probably
due high allele dosage from EAHB. SSR data suggested that the tetraploid presumed to be
hybrids of cv. Enzirabahima byM. a malaccensis 250 (29275S-1, 29275S-4 and 29275S-5), were
in fact admixtures from pollination of EAHB with cv. `Calcutta4'. These tetraploid inherited
17 alleles specific for cv. `Calcutta4' and none of ssp.malaccensis 250 specific alleles across the
18 SSR markers used.

Hierarchical clustering of hybrids was much influenced by male parents used in the cross.
The biggest percentage of hybrids was produced from crosses involving tetraploids derived
from EAHB and cv. `Calcutta4'. Hybrids from ssp.malaccensis 250 were more distinct from
the rest of the population and formed their own cluster. Four hybrids (26998S-1, 27074S-1,
28506S-1 and 27960s-1) presumed to be progeny of 2180K-6, cv. `Calcutta4' and cv. `Rose'as
male parents clustered together with ssp.malaccensis 250 hybrids. SSR genotype profiles sug-
gested that those four hybrids were misidentified because they had ssp.malaccensis 250 specific
alleles. The highest genetic diversity was observed in the diploid parents and between families.
Diploids that were linked by pedigree clustered together but the within cluster differences
were high compared to EAHB and tetraploids. Diploids such as cv. `Calcutta4', 861S-1, 5610S-
1, 2180K-1, Kokopo, and cv. `Rose'clustered with their hybrids. Hybrids derived from 5610S-1
x 2180K-1 were all diploids and closely related to cv. `Calcutta4' and 861S-1 and formed a sep-
arate cluster. Although the pedigree of 2180K-1 could not be traced, there is a possibility that
one of its parents was cv. `Calcutta4'. Hybrids from cv. `LongTavoy' and cv. `Calcutta4' were
not easily delineated because of the close resemblance of these genotypes. One cluster (J) com-
prising of triploid hybrids showed high within cluster diversity. Majority of advanced hybrids
especially NARITA hybrids comprising of potential candidate varieties are found in this clus-
ter. The ssp. zebrina accessions included in the analysis clustered within the main clusters sug-
gesting their genetic relatedness with other acuminata genotypes. In the population, some
genotypes were duplicates. The duplicates identified included 28465S-2 (A&B), 26337S-11
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Fig 6. Dendrogram showing the genetic diversity of the genomic selection training population based on 19 informative SSRmarkers. The
squared Euclidean distances were used to generate the hierarchical clusters based on ward.D criterion.Where cluster A = tetraploids (4x) byM. a. spp.
malaccensis 250, * share only female parent, cluster B = matooke (EAHB), cluster C = tetraploids from EAHB (3x) by Calcutta 4 a wild diploid (2x), cluster
D = wild and improved diploids, cluster E = Black Sigatoka resistant diploid hybrids, cluster F = hybrids of 5610S-1 as a male parent, * share grandparent
Calcutta 4, GC = good for cooking and N = NARITA hybrid, cluster G = cv. Rose was the main male parent, * share genetic background, cluster H = Long
Tavoy and Calcutta 4 are the grandparents, cluster I = mostly hybrids of SH3217 as male parent, N = NARITA,@ = released variety as NARITA 7/M9/
Kiwangazi and cluster J = triploid hybrids with complex pedigree,most advanced hybrids such as NARITAs (N) are found in this cluster of which some are
promising variety candidates and GC = good for cooking.

https://doi.org/10.1371/journal.pone.0178734.g006
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(A&B) and 26337S-22 (A&B) while 27524S-12 (A&B) that were assumed to be duplicates
were clarified to be genetically different although both were progeny of ssp.malaccensis 250.
Other supposed unique genotypes were identified as likely clonal pairs, such as 24948S-9 and
24948S-10, 24948S-22 and 24948S-27, 25623S-11 and 25628S-11, 24948S-12 and 24948S-21,
12479S-1 and 12479S-13, 25737S-1 and 25356S-1, and 25066S-1 and 25066S-2.

Discussion
Trait evaluation
Bananas express many traits that are used to evaluate hybrids in breeding programs. These
traits can be broadly classified as vegetative/agronomic (growth) traits, or yield and consumer
appeal (fruit) traits. Growth and yield related traits are used to assess the level of introgression
of resistance genes and this is done in the early evaluation trial. The index of non-spotted
leaves (INSL) is a measure of resistance to Black Sigatoka, a fungal disease that causes rapid
drying of leaves hence reducing the photosynthetic area [7]. Results from ANOVA obtained in
this work showed that INSL was not significantly affected by cycle. However, the effect of level
of input in field management on INSL depended on genotype. This suggests that resistance to
Black Sigatoka might be under strong genetic control and less influenced by cycle.

Correlation analysis showed a positive correlation between INSL, NSLF and YLSF. How-
ever, these three had low but significant negative correlations with yield-related traits under
low input field management conditions. These results suggest that whereas some Black Siga-
toka resistant genotypes give good yield, others produce inferior fruits. Reduction in functional
leaves and photosynthetic area has been shown to impact banana yield potential [7]. Tushe-
mereirwe [36] indicated that Black Sigatoka reduced yield of EAHB by more than 30%. Our
results show that under high input field management conditions, the impact of the disease on
yield traits was less severe (Tables 1 and 2). This result is in agreement with Mobambo et al.
[37] who reported that soil fertility had an effect on host plant response to Black Sigatoka and
yield in plantains. The symptoms of Black Sigatoka often increase after flowering probably
because at that time the ability of a plant to withstand the fungal attack is lowered as it commits
most of the energy and resources to the developing inflorescence. Some genotypes had no
functional leaves at harvest, indicating that they were very susceptible to Black Sigatoka after
flowering. Selection of hybrids based on the number of functional leaves at harvest as a mea-
sure of resistance to Black Sigatoka should be done with caution because of the negative associ-
ation between foliar symptoms to Black Sigatoka and fruit filling.

The present study shows that based on yield and growth traits, four groups of bananas
existed in the training population that is, genotypes with high INSL and good fruit filling, high
INSL with poor fruit filling, low INSL with good fruit filling and low INSL with poor fruit fill-
ing representing the four planes of the two components. However, PCA could not resolve the
population structure into clear-cut clusters due to complex pedigrees, although Osuji et al.
[38] used this approach to distinguish between differentMusa triploids. This phenomenon
could be attributed to differences in carbon source to sink capacities.

Plant physiological studies have shown that the balance between source and sink transloca-
tion of photosynthetic assimilates is key to plant productivity [39]. In bananas, Dens et al. [40]
demonstrated the effect of manipulating the carbon source (C-source) and carbon sink (C-
sink) of mother plant on ratoon crops in cv. `Williams'and cv. `GrandNain' at a mat level.
Their results showed genotype and environmental effect on flowering time, plant height and
bunch size for the first ratoon crop. They concluded that the bunch was a larger C-sink than
the ratoon crop. At individual plant level, it is likely that difference in C-source to C-sink
capacity exists in bananas because our results showed that poor fruit filling genotypes were not
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significantly affected by cycle and field inputs. It can be postulated that when plants have a
strong C-sink capacity they tend to have high yield with increased leaf senescence, while those
with low C-sink capacity maintain many leaves with low yield at harvest. More physiological
studies in banana are required to shed light on this aspect. It has been reported that at the time
of flowering, the fruits and seeds became major sinks and any factor that reduces translocation
of photosynthetic assimilates to fruits reduces the harvest index [41].

The training population consisted of poor and good fruit filling genotypes based on FL, FC,
FRD and PLD. This characteristic was consistent across cycles and field management, with
two overlapping peaks in a binary pattern (S1A Fig). However, given the consistence of the
traits under different field conditions, there is likelihood that fruit filling is under control of
one or few major-effect quantitative trait loci (QTL). Given that the training population was
not a classical bi-parental mapping population this argument may not hold, but investigations
using genome wide association studies while accounting for pedigree effect [42] may help to
unravel the underlying genetic mechanisms using genome-wide markers such as SNPs.

This study did not find sufficient evidence to show that absolute apical dominance existed
in our training population. Different levels of sucker regulation (1±25 suckers) were observed
in different cross combinations. This result is in agreement with the observation made by
Ortiz and Vuylsteke [43] that non-apical dominance genes were fixed in AA genotypes of
Musa.

GxE interaction
The effects of cycle and field input management on the genotype and how the genotype inter-
acted with these two aspects of the environment were evaluated. The effect of cross combina-
tion was also assessed. Based on coefficients of determination and analysis of variance,
genotype, cycle, field and their interactions had different levels of effect on trait variation
among cross combinations and individual genotypes. While PHF and PG significantly
increased at cycle 2, field management did not have a significant effect on these traits. This
could be attributed to the fact that the suckers used were at different physiological maturity.
Yield traits were also affected by cycle but the bi-modal distribution was maintained. When
bananas are planted in the field they first undergo an establishment phase and build reserves
that can accelerate growth of the daughter plants. Therefore, cycle 2 is best to compare geno-
types especially with regard to yield traits. Tushemereirwe et al. [16] reported a cycle effect on
traits when they analyzed some advanced hybrids, but it was not fully known whether this
behavior occurred in different banana genotypes. The effect of cycle alone varied across traits
depending on field management except for PED, HTSF and INSL that were most stable. It
should however be noted that under optimum field management the cycle explains a small
proportion of trait variation in genotypes because most traits had coefficient of determination
values below 0.4 in GS2.

The present results show that different banana traits may have different genetic architecture
with some traits influenced by GxE. In marker assisted selection this can hamper deployment
of classical marker technologies that rely on identifying QTLs. Approaches such as genomic
selection that utilize genome-wide markers in complex populations such as in this study
provide an opportunity to dissect such traits and could be exploited by banana breeders to
increase genetic gain per unit time. Genotype by environment interaction has been shown to
affect the accuracy of genomic selection models [24, 44]. Therefore, understanding genotype
trait variation across different environments is paramount.

Many hybrids generated from crossbreeding usually have inferior fruit size irrespective of
the ploidy level. Such inferiority has been attributed to linkage drag from wild diploids [45].
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Bananas have a long selection cycle, they are labor intensive, costly and require large land area
for evaluation. Any technology that can discriminate the inferior genotypes from the good
ones at a nursery stage could save a lot of resources and time for the breeders thus increasing
the breeding efficiency. With the availability of theMusa reference genome [46, 47] and
decreasing costs of next generation sequencing technologies, high density marker technologies
such as genotyping by sequencing are available for many plant species [48]. This provides an
opportunity to investigate the application of genomic selection in banana breeding.

Performance of cross combinations
The true breeding value of a genotype is determined by the quality of hybrids produced when
it is involved in a cross. By comparing the responses to selection (R) and selection differentials
(S) of sixteen cross combinations it was concluded that no single cross combination presented
all the good qualities targeted by the breeders in hybrids. This further explains the complex
trait variation observed within study population. No attempt was made to determine heritabil-
ity of the traits because of unbalanced design and the possibility of confounding from heterosis
[31]. Some hybrids that had many active leaves at harvest showed variation in fruit filling.
Performance of the hybrids was greatly influenced by the male parent involved in the cross.
Although both diploids and tetraploids had 50% segregation opportunity, the tetraploids were
genetically very similar, whereas the diploids were more genetically diverse with the exception
of SH3217 and SH3362 that were closely related. Crosses involving diploid SH3217, SH3362
and 9128±3 produced hybrids which were superior in yield compared to other crosses. These
diploids are parthenocarpic, with big fruits and many hands (clusters) per bunch. The best
cross combination was C10 (120K-1 x SH3217) that produced hybrids that were fairly resistant
to Black Sigatoka, high yielding and quick maturing. Despite the susceptibility of 1201K-1 par-
ent to Black Sigatoka, segregation was observed and some hybrids that had some acceptable
levels of resistance were produced.

Tenkouano et al. [49] reported a 4-fold contribution of male parents toward yield traits
while Rowe and Rosales [50] highlighted that breeding for improved diploids with pest and
disease resistance, parthenocarpy and good yield was the best strategy in banana improvement.
Gene pyramiding has also been suggested so that multiple introgressions of good traits are
possible [51]. Most of the improved varieties produced by crossbreeding are triploid and all
assumed to be completely sterile but no research has been conducted to evaluate their fertility.
Further improvement of these triploids is necessary given that no single hybrid has all traits
desired by farmers and consumers. The 2x by 2x hybrids were all diploid and some had sizable
bunches compared to other diploids in the core breeding set, i.e. could be interesting as
improved 2x parents. Further evaluation of these diploids for pollen viability and partheno-
carpy will be necessary before they are incorporated in the core breeding set despite their long
maturity period. Hybrids that take four months to mature may be considered quick maturing,
given that the majority take more than four months.

Genetic diversity of GS training population
Whereas principal component analysis on cross combinations and individual genotypes
showed that high genetic diversity existed in the training population, its power to resolve the
structure of the population into clear-cut clusters that make biological sense was limited. This
was attributed to complex pedigrees in the population with 77 cross combinations represented.
The half-sib families were closely related to one another with which they shared a common
parent. The population was interconnected due to shared parents in their pedigree. Use of
SSR markers proved valuable in delineating the population structure that could be easily
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interpreted. The set of markers used was reported to be informative and has been used on gen-
otyping the banana collection from the International Transit Center [32]. The polymorphism
information content (PIC) of 0.87 was high enough to resolve even the closest genotypes. Up
to ten unique clusters were resolved and results showed that clustering was mostly influenced
by the genetic diversity in diploid parents.

Triploid EAHB and tetraploids derived from them by crossing with cv. `Calcutta4' formed
two distinct but closely related clusters, supporting the hypothesis of production of unreduced
3n and reduced n gametes during meiotic events in the tetraploid progenitors [52]. Despite the
high PIC of the markers, the EAHB showed a very low genetic diversity consistent with the
hypothesis that this group of bananas is an ancient clone set [9]. Even with a high number of
polymorphic SSR markers Kitavi et al. and Karamura et al. [9, 53] failed to separate this group
into the corresponding phenotype-based clone sets of Karamura [1]. However, some genetic
differences were observed between some individual genotypes that could be attributed to
mutations within this ancient clone set. The population was predominated with genetic intro-
gression from cv. `Calcutta4'. Hybrids fromM. acuminata ssp.malaccensis 250 formed a
distinct cluster. Three tetraploids presumed to be arising from a cross of EAHB with ssp.
malaccensis 250 grouped together with those derived from EAHB by cv. `Calcutta4'. The pres-
ence of Calcutta 4-specific alleles in these tetraploids and the absence of ssp.malaccensis 250
specific alleles suggest that these hybrids are progeny of EAHB by cv. `Calcutta4' hence the
high genetic relationship with the rest of the tetraploids. Nevertheless, these tetraploids should
be tested as parents to determine their breeding values so that the breeding genetic pool is
expanded.

The SSR markers proved useful in identifying duplicates and closely related genotypes
based on pedigree background. A combination of highly polymorphic SSR markers and the
power of Ward's clustering method that minimizes the within-group dispersion [34] in the
Euclidean space helped to resolve the structure of the population that was highly interlinked
by pedigree background. The high level of genetic complexity observed in this population rep-
resents different recombination events that make it suitable as a training population for geno-
mic selection.

Apart from obtaining important data on the banana GS training population, important les-
sons were learned during the course of this work. Dedicated efforts are required to understand
the genome organization of bananas through cytological approaches. Ploidy analysis should be
routinely employed in breeding programs to differentiate ploidy levels so that different selec-
tion criteria are used to select hybrids intended for the breeding pipeline from those eligible
for variety release. Despite a majority of the improved hybrids being triploids, their fertility
should be tested so that further improvements can be made on them as a way to achieve gene
pyramiding while minimizing inbreeding.

Conclusion
The response of genotype trait expression to cycle and field management practices varied
greatly. The largest proportion of genetic variation was due to the greater genetic diversity of
male parents used in crosses since the tetraploids used in the majority of crosses as female
parents were genetically related. Yield traits accounted for 31±35%of the total principal com-
ponent variation observed in the population and were loaded on the first component while
vegetative traits contributed to the second component with 15±22%.A high level of correlation
within vegetative- and yield-related traits was observed but correlation between vegetative and
yield traits was low and depended on the interaction with field management practices. There-
fore, genomic selection models could be developed for traits that are easy to measure. It is
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likely that the predictive ability of traits that are difficult to phenotype will be similar to traits
easily measured but highly correlated. The study population was observed to be genetically
diverse with complex pedigree structure. Yield-related traits showed a bi-modal distribution,
which was not influenced by cycle or field management. Resistance to Black Sigatoka was also
stable across cycles but varied under different field management depending on the genotype.
Principal component analysis could not delineate this complex population structure but the
application of SSR markers in combination with Ward's hierarchical clustering proved power-
ful and resolved the structure into biologically meaningful groups.
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S1 Fig. Variation in fruit characteristics. (A) is a histogram showing the bimodal distribution
of fruit circumference (FC), (B) cross sections of poor filling fruits, (C) good filling fruits with
fruit diameter (FRD) and pulp diameter (PLD) values in cm, and (D) poor filling and good fill-
ing banana fruits.
(TIF)
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