Climate-smart soil protection and rehabilitation in Benin, Burkina Faso, Ethiopia, India and Kenya

November 2016, Nairobi, Kenya

An Notenbaert, Birthe Paul, Caroline Mwongera, Celine Birnholz, Deborah Bossio, Evan Girvetz, Jessica Koge, Juliet Braslow, Katherine Snyder, Rolf Sommer, Wendy Okolo and Špela Kalčić
Outline

• Objectives of the CSS project
• CSS evaluation
 • Farm Typology
 • Climate Smartness Assessment (Kalkulator)
 • Evaluation of Land Management Options (ELMO)
 • Attainable impact
• CSA prioritization framework
• Recommendations
Objective of the Climate Smart Soils Project

• Assessment of climate smartness of ongoing and potentially suitable alternative agricultural soil conservation practices, including:
 • analysis of farm-level cost-benefit and tradeoffs
 • evaluation of the overall CSA impact and scope
 • adoption and scaling potentials

• Design of a CSA prioritization process

“Agriculture has to be part of the solution to climate change.”
Climate smart agriculture

Triple-win goal – three pillars (FAO 2013):

1. Sustainably increasing agricultural productivity and incomes;
2. Adapting and building resilience to climate change;
3. Climate change mitigation: reducing greenhouse gases emissions, where possible.

"To ensure a food-secure future, farming must become climate resilient."
CIAT's approach to evaluate the climate smartness

Climate Smartness
- Identification of farm major farm types
- List of major management practices
- Expert assessment of practices
- Evaluation of Land Management Options (ELMO)
- Biophysical assessment
- Farm household modeling
- Evaluation of Land Management Options (ELMO)
- Cost-Benefit Analysis
- Attainable impact

Outcome Indicators

Adoption potential & Impact
CSA rapid assessment - methodology

Stakeholder workshops -> Farming system types -> Case study farmer interviews

- Soil technology shortlist
- Input data

Modelling CSA indicators for baselines and scenarios
Modelling of CSA indicators and trade-offs

Calories produced on farm/hectare
- Cash crops and meat not taken into account
- ‘Potential supply’ only

Soil nitrogen balances farm/hectare
- Simplified, non-holistic indicators

GHG emissions from agriculture per farm/hectare
- Soil C stock changes not included
- IPCC tier 1/2 overestimating for SSA
Farming system types

Factors: intensification, production orientation, commercialization, agro-ecological potential and resource endowment

- Large scale, modern farm
- Medium scale, semi-modern farm
- Small-scale, traditional farm
- Small-scale, female-headed farm
Shortlisted/tested soil technologies

- Stone bunds
- Composting with manure
- Intercropping sorghum/maize with cowpea
- Relay cropping with mucuna

Stakeholders listed most relevant soil protection and rehabilitation technologies
Nitrogen balance

Female-headed small scale farm Small scale farm Medium scale farm Large scale farm

kg N

-60 -40 -20 0 20 40 60 80 100 120

Per Farm Per ha
Soil erosion

![Bar chart showing soil loss (t soil/year) for different farm sizes and types.](image)

- Female-headed small scale farm
- Small scale farm
- Medium scale farm
- Large scale farm

Soil loss (t soil/year)

- Per farm
- Per ha
Greenhouse gas emissions

- Enteric Fermentation
- Manure Management
- Soil emissions (N2O)
- Rice production
- Burning

<table>
<thead>
<tr>
<th>Per farm</th>
<th>Per ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female-headed small scale farm</td>
<td></td>
</tr>
<tr>
<td>Small scale farm</td>
<td></td>
</tr>
<tr>
<td>Medium scale farm</td>
<td></td>
</tr>
<tr>
<td>Large scale farm</td>
<td></td>
</tr>
</tbody>
</table>
Trade-offs: Productivity vs. N balance

- Stone bunds
- Compost w/manure
- Intercropping with cowpea
- Relay cropping

□=female-headed small-scale, Δ=small scale, ◊=medium scale and ○=large scale

\[\Delta \text{Productivity (AME days/ha)} \]

\[\Delta \text{N balance (kg N/ha)} \]
Trade-offs: Productivity vs. GHG emissions

- □ = female-headed small-scale,
- Δ = small scale,
- ◊ = medium scale and
- ○ = large scale

ΔGHG emissions (t CO2e/ha) vs. ΔProductivity (AME days/ha)

- Orange circle: Stone bunds
- Gray triangle: Compost w/manure
- Yellow diamond: Intercropping with cowpea
- Blue square: Relay cropping
Evaluating Land Management Options (ELMO)

Participatory tool for assessing farmers’ land management (LM) decisions, preferences & trade-offs

1. Identify techniques & attributes to be discussed
2. Record respondent characteristics
3. Define LM techniques & baseline
4. Rank & Score LM costs & input requirements
5. Rank & Score LM benefits & desired outcomes
6. Rank LM advantages & positive attributes
7. Rank LM disadvantages & negative attributes
8. Rank and weight LM alternatives overall

Individual discussions with farmers
ELMO - results

Relative importance of advantages & disadvantages of practices

Advantages
- Diversifies income
- Lasting impact
- Multiple benefits
- Fills critical food/cash gaps

Disadvantages
- Can't see effect
- No market for products
- Too labour-intensive
- Too time-consuming
- Too expensive

Shows average scoring by farmers
Overall preference of practices

Shows average weight attributed according to overall preference relative to other land management practices. Note that total exceeds 100%, because interviews cover different combinations of land management practices.
Farmer’s general perceptions and preferences

• Practices that demand large amounts of labor and other purchased items are beyond the reach of many farmers

• Diversity of benefits is an important factor shaping farmers’ land use preferences

• Practice must be able to show improvements in soil fertility, crop yields and income generation and also contribute towards better food supplies to be attractive and viable

• Being able to demonstrate quick wins in monetary terms, although desirable, are not by themselves enough to make a practice the most preferred choice or most viable option for the farmer
Calculating “attainable impact” across the two regions

1. Number of farm households of each farm type
 ~ rural population / HH-size * farm type %

<table>
<thead>
<tr>
<th></th>
<th>Small-scale / Traditional managed by woman or young man</th>
<th>Small-scale / Traditional</th>
<th>Medium-scale / Semi-modern</th>
<th>Large-scale / Modern</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>5</td>
<td>35</td>
<td>49</td>
<td>11</td>
</tr>
<tr>
<td>Number HHs</td>
<td>7,359</td>
<td>51,514</td>
<td>72,119</td>
<td>16,190</td>
</tr>
</tbody>
</table>

2. Adoption rates (% of the HHs likely to adopt the specific intervention) per farm type
 ~ ELMO

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Small-scale / Traditional managed by woman or young man</th>
<th>Small-scale / Traditional</th>
<th>Medium-scale / Semi-modern</th>
<th>Large-scale / Modern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composting with manure</td>
<td>35</td>
<td>12</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Intercropping cereal/cowpea</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucuna relay</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone Bunds</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20% or
Calculating “attainable impact” across the five districts

3. Number of adopting farms x estimated impact per farm

<table>
<thead>
<tr>
<th></th>
<th>Composting with manure</th>
<th>Intercropping cereal/cowpea</th>
<th>Mucuna relay</th>
<th>Stone Bunds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale / Modern</td>
<td>30.38M</td>
<td>9.95M</td>
<td>0.01M</td>
<td>0.36M</td>
</tr>
<tr>
<td>7K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium-scale / Semi-modern</td>
<td>39.47M</td>
<td>9.66M</td>
<td>0.18M</td>
<td>0.21M</td>
</tr>
<tr>
<td>51K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-scale / Traditional</td>
<td>0.26M</td>
<td>0.02M</td>
<td>0.36M</td>
<td>0.01M</td>
</tr>
<tr>
<td>72K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-scale / Traditional managed by woman or young man</td>
<td>0.26M</td>
<td>0.01M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>16K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Importance of expected adoption rates

<table>
<thead>
<tr>
<th>Method</th>
<th>Composting with manure</th>
<th>Intercropping cereal/cowpea</th>
<th>Mucuna relay</th>
<th>Stone Bunds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale / Modern</td>
<td>53.17M</td>
<td>5.97M</td>
<td>0.01M</td>
<td>0.18M</td>
</tr>
<tr>
<td>5K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium-scale / Semi-modern</td>
<td>69.08M</td>
<td>5.82M</td>
<td>0.07M</td>
<td>0.17M</td>
</tr>
<tr>
<td>51K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-scale / Traditional</td>
<td>0.51M</td>
<td>0.01M</td>
<td>0.09M</td>
<td>0.00M</td>
</tr>
<tr>
<td>72K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-scale / Traditional managed by woman or young man</td>
<td>0.41M</td>
<td>0.38M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>16K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trade-offs with GHG emissions

AME days

<table>
<thead>
<tr>
<th></th>
<th>Composting with manure</th>
<th>Intercropping cereal/cowpea</th>
<th>Mucuna relay</th>
<th>Stone Bunds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale / Modern</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Medium-scale / Semi-modern</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>NA</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional managed by woman or young man</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
</tbody>
</table>

GHG emissions

<table>
<thead>
<tr>
<th></th>
<th>Composting with manure</th>
<th>Intercropping cereal/cowpea</th>
<th>Mucuna relay</th>
<th>Stone Bunds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-scale / Modern</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Medium-scale / Semi-modern</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>NA</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional managed by woman or young man</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
</tbody>
</table>
Trade-offs with soil fertility

<table>
<thead>
<tr>
<th>AME days</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Composting with manure</td>
<td>Intercropping cereal/cowpea</td>
<td>Mucuna relay</td>
<td>Stone Bunds</td>
</tr>
<tr>
<td>Large-scale / Modern</td>
<td>58.27M</td>
<td>0.03M</td>
<td>0.01M</td>
<td>0.30M</td>
</tr>
<tr>
<td>Medium-scale / Semi-modern</td>
<td>50.00M</td>
<td>0.03M</td>
<td>0.07M</td>
<td>0.37M</td>
</tr>
<tr>
<td>NA</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional</td>
<td>0.68M</td>
<td>0.90M</td>
<td>0.09M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional managed by woman or young man</td>
<td>0.48M</td>
<td>0.36M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N Balance</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Composting with manure</td>
<td>Intercropping cereal/cowpea</td>
<td>Mucuna relay</td>
<td>Stone Bunds</td>
</tr>
<tr>
<td>Large-scale / Modern</td>
<td>2.49M</td>
<td>0.34M</td>
<td>0.62M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Medium-scale / Semi-modern</td>
<td>0.89M</td>
<td>0.02M</td>
<td>0.63M</td>
<td>0.00M</td>
</tr>
<tr>
<td>NA</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional</td>
<td>1.63M</td>
<td>0.96M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
<tr>
<td>Small-scale / Traditional managed by woman or young man</td>
<td>0.56M</td>
<td>0.06M</td>
<td>0.00M</td>
<td>0.00M</td>
</tr>
</tbody>
</table>
CSA prioritization framework

- Scoping
 - Delineate Geographic Area
 - Identify Farm Types
 - Agree on Key Indicators
 - List Practices to Consider:
 - WOCAT Database
 - CSA Compendium
 - Expert Assessment

- Expert Scoring of Long List of Practices

- Short List
 - Farm & Household Modeling
 - Biophysical Assessment
 - Cost-Benefit Analysis
 - Evaluation of Land Management Options

- Portfolio
 - Project Design & Implementation at Scale

- Outcome Indicators
- Scaling potential

- Climate Smartness

Stakeholder Consultation & Workshops
Thank you!