Predictive mapping based on routine surveillance data: Lessons from dengue risk mapping in Vietnam

Bernard Bett¹*, Hu Suk Lee², Johanna Lindahl¹, Vu Sinh Nam³, Nguyen Huu Quyen⁴, Hung Nguyen-Viet² and Delia Grace¹

1. International Livestock Research Institute, Nairobi, Kenya
2. International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
3. Vector Borne Diseases and Training, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
4. Vietnam Institute of Meteorology, Hydrology and Climate Change, Hanoi, Vietnam

*Email: b.bett@cgiar.org
Introduction

• Dengue – a viral disease of humans prevalent in the tropics caused by Dengue virus (DENV 1-4), transmitted by *Aedes* mosquitoes

Dengue risk map (Source: https://www.cdc.gov/dengue/epidemiology/index.html)

• The viruses cause febrile diseases ranging from asymptomatic fevers to more severe illness associated with secondary infections with heterotypic DENV

• Disease has expanded geographically since the 1950s probably due to:
 • Urbanization
 • Tourism and migration
 • Climate change
Extensive studies on DEN risk in SEA and Latin America

- Risk factors: temperature, rainfall and humidity
- Lessons for other regions to learn from as DEN risk expands globally

However:

- Not much has been done to assess interactions between meteorological variables and geographical factors – altitude, land use/land cover, etc.
- Existing risk maps do not show changes in risk with season and land use change

Dengue in Vietnam (94 million people): outbreak every year, large outbreak in 2017 with over 130,000 case and 30 deaths

Pestforecast project – spatio-temporal analysis and risk-mapping of climate sensitive diseases including DEN in Vietnam
Methods

• We collated secondary data:
 - DEN surveillance from Provincial Preventive Medicine Center, Ministry of Health (MoH), for 2001-2012
 - Human population from the General Statistics Office, Ministry of Planning and Investments (MPI)
 - Meteorology from Institute of Meteorology, Hydrology and Climate Change, Ministry of Natural Resource and Environment (MONRE)
 - Land use land cover from MODIS database
 - Altitude from MODIS

• All the data summarized by province (n=63) and month (n=12) to give 9,072 records
Methods

• Descriptive analyses:
 o Generated mean monthly DEN incidence by province in 100,000 people as:

\[
\text{Incidence} = \frac{\text{cases}}{\text{population}} \times 100,000
\]

 o Principal component analysis to filter meteorological data
 o Distribution of DEN incidence by defined levels of geographical predictor variables

• Modelling using hierarchical Bayesian model (INLA) to account for:
 o Spatial autocorrelation
 o Temporal autocorrelation
 o Spatio-temporal interactions
Results – mean DEN incidence

Mean incidence:
- 6.94 cases/100,000
- SD 14.49

Annual DEN incidence 2001 - 2012
Results – principal component analysis

Met data

- Met data had 13 variables, some correlated
- Principal component analysis clustered met variables into about 4 groups
- Principal variables identified and used in the regression model:
 - Humidity, rainfall, minimum temperature and evaporation

Results of the principal component analysis of meteorological variables
Methods – monthly DEN incidence at levels of geographical factors

Altitude

Wetlands

Urban settlements

Area under forests

Area under savanna grassland

Area under crops
Results – posterior parameter distributions from the hierarchical spatiotemporal Bayesian model fitted to data

Final model generated and used for risk mapping

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>2.5% quantile</th>
<th>97.5% quantile</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-0.150</td>
<td>0.006</td>
<td>-0.161</td>
<td>-0.138</td>
<td>-0.150</td>
</tr>
<tr>
<td>Minimum temperature (squared)</td>
<td>0.010</td>
<td>0.000</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Rainfall</td>
<td>0.299</td>
<td>0.002</td>
<td>0.295</td>
<td>0.303</td>
<td>0.299</td>
</tr>
<tr>
<td>Rainfall (squared)</td>
<td>-0.034</td>
<td>0.000</td>
<td>-0.035</td>
<td>-0.034</td>
<td>-0.034</td>
</tr>
<tr>
<td>Altitude</td>
<td>-0.001</td>
<td>0.001</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Urban areas</td>
<td>0.733</td>
<td>0.012</td>
<td>0.710</td>
<td>0.756</td>
<td>0.733</td>
</tr>
<tr>
<td>Hyperparameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IID</td>
<td>1.118</td>
<td>0.291</td>
<td>0.651</td>
<td>1.786</td>
<td>1.016</td>
</tr>
<tr>
<td>BYM model</td>
<td>1.359</td>
<td>0.736</td>
<td>0.415</td>
<td>3.230</td>
<td>0.926</td>
</tr>
</tbody>
</table>
Results – risk maps (\log DEN incidence/pop)

Dry season (Jan – Feb)
Wet season (May – November)
Discussion and conclusions

• Our analyses combine met and geographical data on land use/land cover and altitude to show **seasonal dynamics in DEN risk**

• Statistical model developed can be used for **forecasting** by changing rainfall and temperature values

• **Space-time interactions** significant -- risk in the endemic areas evolves much faster and to much higher levels during the monsoon periods than non-endemic areas

• Findings/maps useful for **surveillance and targeted interventions**
Acknowledgements

Local partners – MoH, IMEH, NIHE, MOH

CGIAR Research Program on Climate Change, Agriculture and Food Security

CGIAR Research Program on Agriculture for Nutrition and Health
better lives through livestock

Contact person: B.Bett@cgiar.org