Livestock makes multiple contributions to economic and social wellbeing. They also contribute to environmental resilience and sustainability.

Key environmental footprints of concern, however, include nutrient loads, food-feed competition, GHG emissions, water use, and land-use conversion. Due to rising demand for livestock products, livestock’s pressure on land and other resources continues to grow. It is thus imperative for the livestock sector to support a process of sustainable intensification.

In the face of climate change and its expected negative impacts on livestock systems, adaptation and increasing the resilience of livestock production systems should equally be a priority. Arguably the most important climate change impacts are those mediated through the climate’s impact on what the animals eat.

Improved forages and feeding strategies have been identified as one of the most promising entry-points for simultaneously enhancing livestock productivity, eco-efficiency and climate change adaptation.

INTRODUCTION

Identification of suitable, context-specific, no-regret forage species and varieties that can support a resilient and sustainably intensifying livestock sector.

OBJECTIVE

Forage suitability mapping - for current and future climate conditions
- Expert-driven threshold identification
- Online suitability mapping tool

Participatory identification of context-specific no-regret forage species and varieties.

APPROACH

- Forage suitability mapping - for current and future climate conditions
- Expert-driven threshold identification
- Online suitability mapping tool

- Participatory identification of context-specific no-regret forage species and varieties.

CONCLUSIONS AND RECOMMENDATIONS

Although different forage crops have various reactions to climate change, in general a negative impact of climate change on forage crops is projected.

Suitability maps, for both current and future climate conditions, can help development actors make no-regret choices about investments in forages.

Forage breeding and selection programs can help future generations of farmers by developing germplasm suitable to likely future climate conditions.

ACKNOWLEDGEMENT

The work discussed in this poster was an integral part of the CGIAR Research Program on Livestock and three research for development projects therein: (i) Improved forage grasses: Making the case for their integration into humid-to sub-humid livestock production systems in Kenya and Ethiopia (BMZ-funded), (ii) Hands and minds connected to boost eco-efficiency on smallholder livestock-crop systems (BMZ-funded) and (iii) Climate-smart dairy systems in East Africa through improved forages and feeding strategies: enhancing productivity and adaptive capacity while mitigating GHG emissions (IFAD-funded).

FOR MORE INFORMATION

Check: [link to the tool](https://arcg.is/5LH0D)