CGSpaceA Repository of Agricultural Research Outputs
    View Item 
    •   CGSpace Home
    • Alliance of Bioversity International and CIAT
    • Alliance Bioversity CIAT Journal Articles
    • View Item
       
    • CGSpace Home
    • Alliance of Bioversity International and CIAT
    • Alliance Bioversity CIAT Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment

    Thumbnail
    View/Open
    Data_desousa_2021.pdf (856.9Kb)
    Authors
    Sousa, Kauê de
    Etten, Jacob van
    Poland, Jesse
    Fadda, Carlo
    Jannink, Jean-Luc
    Gebrehawaryat Kidane, Yosef
    Lakew, Basazen Fantahun
    Mengistu, Dejene Kassahun
    Pè, Mario Enrico
    Solberg, Svein Øivind
    Dell’Acqua, Matteo
    Date
    2021-08
    Language
    en
    Type
    Journal Article
    Review status
    Peer Review
    ISI journal
    Accessibility
    Open Access
    Usage rights
    CC-BY-4.0
    Metadata
    Show full item record
    Share
    
    Citation
    de Sousa, K.; van Etten, J.; Poland, J.; Fadda, C.; Jannink, J.L.; Gebrehawaryat, Y.; Lakew, B.F.; Mengistu, D.K.; Pè, M.E.; Solberg, S.Ø.; Dell'Acqua, M. (2021) Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment. Communications Biology 4: 944. 9 p. ISSN: 2399-3642
    Permanent link to cite or share this item: https://hdl.handle.net/10568/114893
    DOI: https://doi.org/10.1038/s42003-021-02463-w
    Abstract/Description
    Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments.
    CGIAR Author ORCID iDs
    Kauê de Sousahttps://orcid.org/0000-0002-7571-7845
    Jacob van Ettenhttps://orcid.org/0000-0001-7554-2558
    Carlo Faddahttps://orcid.org/0000-0003-3075-6207
    CGIAR Impact Areas
    Climate adaptation and mitigation; Nutrition, health and food security
    Other CGIAR Affiliations
    Climate Change, Agriculture and Food Security
    Contributes to SDGs
    SDG 2 - Zero hunger
    AGROVOC Keywords
    abiotic stress; breeding; climate change; biodiversity; participatory research; plant breeding; triticum durum; wheat; estrés abiotico; mejora; cambio climatico
    Subjects
    AGRICULTURE; CROP PRODUCTION; FOOD SECURITY;
    Countries
    Ethiopia
    Regions
    Sub-Saharan Africa
    Organizations Affiliated to the Authors
    Inland Norway University of Applied Sciences; Bioversity International; Kansas State University; Cornell University; United States Department of Agriculture; Scuola Superiore Sant'Anna; Ethiopian Biodiversity Institute
    Related material
    Related reference: https://hdl.handle.net/10568/108545
    Related citation
    de Sousa, K.; van Etten, J.; Poland, J.; Fadda, C.; Jannink, JL.; Gebrehawaryat, Y.; Lakew, B.F.; Mengistu, D.K.; Pè, M.E.; Solberg, S.Ø.; Dell'Acqua, M., 2020 Replication Data for: "Data-driven decentralized breeding increases genetic gain in challenging crop production environments", https://doi.org/10.7910/DVN/OEZGVP, Harvard Dataverse, V1, UNF:6:QUZ55x4U3JRGMDb7PNfHpQ== [fileUNF]
    Collections
    • Alliance Bioversity CIAT Journal Articles [781]
    • Research Lever 5: Digital Inclusion [88]

    AboutPrivacy StatementSend Feedback
     

    My Account

    LoginRegister

    Browse

    All of CGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy RegionBy CountryBy SubregionBy River basinBy Output typeBy CIP subjectBy CGIAR System subjectBy Alliance Bioversity–CIAT subjectThis CollectionBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy RegionBy CountryBy SubregionBy River basinBy Output typeBy CIP subjectBy CGIAR System subjectBy Alliance Bioversity–CIAT subject

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AboutPrivacy StatementSend Feedback