Show simple item record

dc.contributor.authorSubbaraoa, Guntur V.
dc.contributor.authorSahrawat, Kanwar Lal
dc.contributor.authorNakahara, K.
dc.contributor.authorIshikawa, T.
dc.contributor.authorKudo, N.
dc.contributor.authorKishii, M.
dc.contributor.authorRao, Idupulapati M.
dc.contributor.authorHash, C.T.
dc.contributor.authorGeorge, T.S.
dc.contributor.authorRao, P.S.
dc.contributor.authorNardi, P.
dc.contributor.authorBonnett, D.
dc.contributor.authorBerry, W.
dc.contributor.authorSuenaga, K.
dc.contributor.authorLata, Jean-Christophe
dc.date.accessioned2013-08-26T14:11:25Z
dc.date.available2013-08-26T14:11:25Z
dc.date.issued2012
dc.identifier.citationSubbarao, G.V., Sahrawat, K.L., Nakahara, K., Ishikawa, T., Kudo, N., Kishii, M., Rao, I.M., Hash, C.T., George, T.S., Rao, P.S., Nardi, P., Bonnett, D., Berry, W., Suenaga, K. and Lata, J.C. 2012. Biological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systems. Advances in Agronomy 114: 249-302.en_US
dc.identifier.urihttps://hdl.handle.net/10568/33528
dc.description.abstractHuman activity has had the single largest influence on the global nitrogen (N) cycle by introducing unprecedented amounts of reactive-N into ecosystems. A major portion of this reactive-N, applied as fertilizer to crops, leaks into the environment with cascading negative effects on ecosystem functions and contributes to global warming. Natural ecosystems use multiple pathways of the N-cycle to regulate the flow of this element. By contrast, the large amounts of N currently applied in agricultural systems cycle primarily through the nitrification process, a single inefficient route that allows much of the reactive-N to leak into the environment. The fact that present agricultural systems do not channel this reactive-N through alternate pathways is largely due to uncontrolled soil nitrifier activity, creating a rapid nitrifying soil environment. Regulating nitrification is therefore central to any strategy for improving nitrogen-use efficiency. Biological nitrification inhibition (BNI) is an active plant-mediated natural function, where nitrification inhibitors released from plant roots suppress soil-nitrifying activity, thereby forcing N into other pathways. This review illustrates the presence of detection methods for variation in physiological regulation of BNI-function in field crops and pasture grasses and analyzes the potential for its genetic manipulation. We present a conceptual framework utilizing a BNI-platform that integrates diverse crop science disciplines with ecological principles. Sustainable agriculture will require development of production systems that include new crop cultivars capable of controlling nitrification (i.e., high BNI-capacity) and improved agronomic practices to minimize leakage of reactive-N during the N-cycle, a critical requirement for increasing food production while avoiding environmental damage.
dc.language.isoenen_US
dc.sourceAdvances in Agronomyen_US
dc.subjectCROPSen_US
dc.titleBiological nitrification inhibition (BNI)—A novel strategy to regulate nitrification in agricultural systemsen_US
dc.typeJournal Articleen_US
cg.subject.ilriAGRICULTUREen_US
cg.subject.ilriCROPSen_US
cg.subject.ilriENVIRONMENTen_US
cg.identifier.statusLimited Accessen_US
cg.contributor.affiliationJapan International Research Center for Agricultural Sciences
cg.contributor.affiliationInternational Crops Research Institute for the Semi-Arid Tropics
cg.targetaudienceSCIENTISTSen_US
cg.fulltextstatusFormally Publisheden_US
cg.identifier.doihttps://dx.doi.org/10.1016/B978-0-12-394275-3.00001-8en_US
cg.isijournalISI Journalen_US
cg.contributor.crpLivestock and Fishen_US
cg.creator.idIdupulapati M. Rao: 0000-0002-8381-9358


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record