CGSpaceA Repository of Agricultural Research Outputs
    View Item 
    •   CGSpace Home
    • International Livestock Research Institute (ILRI)
    • ILRI articles in journals
    • View Item
       
    • CGSpace Home
    • International Livestock Research Institute (ILRI)
    • ILRI articles in journals
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New data-driven estimation of terrestrial CO 2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression: Data Driven Co 2 Fluxes in Asia

    Thumbnail
    View/Open
    Thumbnail (11.70Kb)
    
    Authors
    Ichii, Kazuhito
    Ueyama, Masahito
    Masayuki Kondo
    Saigusa, Nobuko
    Kim, Joon
    Alberto, Ma. Carmelita R.
    Ardö, Jonas
    Euskirchen, Eugenie
    Minseok Kang
    Hirano, Takashi
    Joiner, Joanna
    Kobayashi, Hideki
    Belelli Marchesini, Luca
    Merbold, Lutz
    Miyata, Akira
    Taku M. Saitoh
    Takagi, Kentaro
    Varlagin, Andrej
    Bret-Harte, Marion Syndonia
    Kenzo Kitamura
    Kosugi, Yoshiko
    Ayumi Kotani
    Kumar, K.
    Li, Shenggong
    Machimura, Takashi
    Yojiro Matsuura
    Yasuko Mizoguchi
    Takeshi Ohta
    Mukherjee, Sandipan
    Yuji Yanagi
    Yasuda, Yukio
    Yiping, Zhang
    Fenghua Zhao
    Date
    2017-04
    Language
    en
    Type
    Journal Article
    Accessibility
    Limited Access
    Metadata
    Show full item record
    Share
    Citation
    Ichii, K., et al. 2017. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research: Biogeosciences 122(4):767–795.
    Permanent link to cite or share this item: http://hdl.handle.net/10568/82763
    DOI: https://dx.doi.org/10.1002/2016JG003640
    Abstract/Description
    The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2 = 1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
    CGIAR Author ORCID iDs
    Kazuhito Ichiihttps://orcid.org/0000-0002-8696-8084
    Masahito Ueyamahttps://orcid.org/0000-0002-4000-4888
    Nobuko Saigusahttps://orcid.org/0000-0003-2456-5279
    Joon Kimhttps://orcid.org/0000-0002-6381-8585
    Ma. Carmelita Albertohttps://orcid.org/0000-0002-9131-3429
    Jonas Ardöhttps://orcid.org/0000-0002-9318-0973
    Eugenie Euskirchenhttps://orcid.org/0000-0002-0848-4295
    Takashi Hiranohttps://orcid.org/0000-0002-0325-3922
    Joanna Joinerhttps://orcid.org/0000-0003-4278-1020
    Hideki Kobayashihttps://orcid.org/0000-0001-9319-0621
    Luca Belelli Marchesinihttps://orcid.org/0000-0001-8408-4675
    Lutz Merboldhttps://orcid.org/0000-0003-4974-170X
    Kentaro Takagihttps://orcid.org/0000-0002-1321-2841
    Andrej Varlaginhttps://orcid.org/0000-0002-2549-5236
    Marion Syndonia Bret-Hartehttps://orcid.org/0000-0001-5151-3947
    Yoshiko Kosugihttps://orcid.org/0000-0002-0256-8404
    Shenggong Lihttps://orcid.org/0000-0003-4889-9927
    Takashi Machimurahttps://orcid.org/0000-0001-9978-8843
    Sandipan Mukherjeehttps://orcid.org/0000-0001-7299-0304
    Yukio Yasudahttps://orcid.org/0000-0002-7218-6591
    ZHANG Yipinghttps://orcid.org/0000-0001-5593-4220
    AGROVOC Keywords
    DATA
    Subjects
    DATA; GEODATA;
    Regions
    ASIA
    Collections
    • Mazingira Centre [57]
    • ILRI sustainable livestock systems program outputs [211]
    • ILRI articles in journals [4825]

    AboutSend Feedback
     

    My Account

    LoginRegister

    Browse

    All of CGSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy CPWF subjectBy CCAFS subjectBy CIFOR subjectBy IWMI subjectBy RegionBy CountryBy SubregionBy CRP subjectBy River basinBy Output typeBy CTA subjectBy WLE subjectBy Bioversity subjectBy CIAT subjectBy CIP subjectBy animal breedBy CGIAR System subjectThis CollectionBy Issue DateAuthorsTitlesBy AGROVOC keywordBy ILRI subjectBy CPWF subjectBy CCAFS subjectBy CIFOR subjectBy IWMI subjectBy RegionBy CountryBy SubregionBy CRP subjectBy River basinBy Output typeBy CTA subjectBy WLE subjectBy Bioversity subjectBy CIAT subjectBy CIP subjectBy animal breedBy CGIAR System subject

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AboutSend Feedback