New data-driven estimation of terrestrial CO 2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression: Data Driven Co 2 Fluxes in Asia
View/ Open
Authors
Date
2017-04Language
enType
Journal ArticleAccessibility
Limited AccessMetadata
Show full item recordCitation
Ichii, K., et al. 2017. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research: Biogeosciences 122(4):767–795.
Permanent link to cite or share this item: http://hdl.handle.net/10568/82763
Abstract/Description
The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2 = 1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
CGIAR Author ORCID iDs
Kazuhito Ichiihttps://orcid.org/0000-0002-8696-8084
Masahito Ueyamahttps://orcid.org/0000-0002-4000-4888
Nobuko Saigusahttps://orcid.org/0000-0003-2456-5279
Ma. Carmelita Albertohttps://orcid.org/0000-0002-9131-3429
Jonas Ardöhttps://orcid.org/0000-0002-9318-0973
Eugenie Euskirchenhttps://orcid.org/0000-0002-0848-4295
Takashi Hiranohttps://orcid.org/0000-0002-0325-3922
Joanna Joinerhttps://orcid.org/0000-0003-4278-1020
Hideki Kobayashihttps://orcid.org/0000-0001-9319-0621
Luca Belelli Marchesinihttps://orcid.org/0000-0001-8408-4675
Lutz Merboldhttps://orcid.org/0000-0003-4974-170X
Kentaro Takagihttps://orcid.org/0000-0002-1321-2841
Andrej Varlaginhttps://orcid.org/0000-0002-2549-5236
Marion Syndonia Bret-Hartehttps://orcid.org/0000-0001-5151-3947
Yoshiko Kosugihttps://orcid.org/0000-0002-0256-8404
Shenggong Lihttps://orcid.org/0000-0003-4889-9927
Takashi Machimurahttps://orcid.org/0000-0001-9978-8843
Sandipan Mukherjeehttps://orcid.org/0000-0001-7299-0304
Yukio Yasudahttps://orcid.org/0000-0002-7218-6591
ZHANG Yipinghttps://orcid.org/0000-0001-5593-4220