Seroepidemiology of *Brucella* spp. in humans and livestock in eastern Kenya: Opportunities for One Health interventions

S.W. Kairu-Wanyoike¹, D. Nyamwaya², M. Wainaina², J. Lindahl²,³,⁴, E. Ontiri², S. Bukachi⁵, I. Njeru⁶, J. Karanja⁶, D. Grace², B. Bett²*

1. Department of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Nairobi
2. International Livestock Research Institute, Nairobi
3. Swedish University of Agricultural Sciences, Uppsala
4. Uppsala University, Uppsala
5. Institute of Anthropology, Gender and African Studies, Nairobi
6. Division of Disease Surveillance and Response, Ministry of Health, Nairobi

The 98th Annual Conference of Research Workers in Animal Diseases, Chicago, IL, 3-5 December 2017
Introduction

• Brucellosis - zoonotic disease caused by gram-negative coccobacillus in the genus *Brucella*
 • *B. melitensis, B. abortus, B. suis, B. ovis, B. canis* -- classical species affecting livestock
 • *B. melitensis, B. abortus, B. suis* – zoonotic species
 • Most widespread zoonotic infection

• Risk factors – sub-Saharan Africa
 • Large herd sizes and land holding
 • Nomadic pastoralism

• Impacts on livestock production and trade
 • Longer calving intervals
 • Reduced growth
 • Increased incidences of abortion, infertility and calf mortality
 • Trade restrictions

• Disease in humans -- prolonged fever, body aches, arthralgia and weakness
Challenges with brucellosis control in SSA

• Endemic in a wide range of hosts – livestock and wildlife -- which share grazing/watering points

• Clinical signs often not discernible
 o Chronic infections in livestock rarely show any signs
 o Humans – disease often misdiagnosed for febrile infections e.g. malaria

• Limited access to veterinary/health services in endemic areas

• Deep-rooted socio-cultural practices which enhance exposure
Objectives

• Determine seroprevalences of *Brucella* spp. in livestock and humans in eastern Kenya

• Estimate the proportion of human exposure attributable to livestock infection

• Examine patterns of occurrence (clustering) of exposures at various levels of subject aggregation – i.e., individual-herd-village levels
Methods – study design

Study site:
- Arid/semi-arid region in eastern Kenya

Study design:
- Cross sectional design
- Humans and livestock within households
- Power sample size estimation techniques – 220 households and 550 subjects
- Sampling frame constructed with local leaders
Methods – sampling and analysis

- Livestock sampled by officers from DVS while humans MoH

- Activities
 - Blood collection
 - Serum extraction and storage
 - Sample screening using ELISA kits

- Ethical review – AMREF and IACUC – ILRI

- Statistical analysis – multilevel mixed effects logistic model in STATA

ELISA Kits used

Animal samples –
 - Brucella competitive ELISA (Svanovir® Brucella-Ab C-ELISA)

Human samples
 - Brucella IgG in vitro ELISA (Demeditec Diagnostics GmbH)
Results – livestock (animal level)

• 2,017 animals sampled comprising: 460 cattle, 927 goats, 630 sheep
 Mean seroprevalence: 3.47% (95% CI: 2.72 – 4.36%)

Mixed effects logistic regression model showing risk factors for livestock exposure

<table>
<thead>
<tr>
<th>Variables</th>
<th>Levels</th>
<th>Odds Ratio</th>
<th>Z</th>
<th>P>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimate</td>
<td>SE</td>
<td>95% CI</td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Kid/lamb/calf</td>
<td>0.13</td>
<td>0.13</td>
<td>0.02 – 1.00</td>
</tr>
<tr>
<td></td>
<td>Weaner</td>
<td>0.18</td>
<td>0.11</td>
<td>0.05 – 0.59</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>Bura</td>
<td>3.73</td>
<td>2.57</td>
<td>0.96 – 14.43</td>
</tr>
<tr>
<td></td>
<td>Hola</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01 – 0.04</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herd ID</td>
<td></td>
<td>1.13</td>
<td>0.60</td>
<td>0.40 – 3.21</td>
</tr>
<tr>
<td>Village ID</td>
<td></td>
<td>0.99</td>
<td>0.82</td>
<td>0.19 – 5.04</td>
</tr>
</tbody>
</table>

Log likelihood -202.49, number of observations 1,503
Results – livestock (herd-level)

- Herd-level seroprevalence: 60.16% (54.93 – 65.23%)

Mixed effects logistic regression model showing risk factors for livestock exposure at the herd level

| Variable | Level | Estimate | SE | 95% CI | z | P>|z| |
|------------|-------|----------|-----|-------------|------|-----|
| Fixed effects | | | | | | |
| Herd size | | 1.03 | 0.02| 1.00 – 1.08 | 2.11 | 0.03|
| Area | Bura | 0.14 | 0.13| 0.03 – 0.84 | -2.16| 0.03|
| | Hola | 1.00 | | | | |
| Constant | | 4.60 | 7.00| 0.23 – 91.03| 1.00 | 0.32|
| Random effect | | | | | | |
| Village ID | | 1.54 | 1.32| 0.29 – 8.23 | | |

Log likelihood -52.41, number of observations 119

\(^1\)Herd size divided by 100 to stabilize its odds ratio
Results – humans

- 1,022 humans sampled
 mean seroprevalence -- 35.81% (32.87 – 38.84%)

Mixed effects logistic regression model showing risk factors for human exposure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Levels</th>
<th>Odds Ratio</th>
<th></th>
<th>Z</th>
<th>P>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimate</td>
<td>SE</td>
<td>95% CI</td>
<td></td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>≤17</td>
<td>0.31</td>
<td>0.07</td>
<td>0.20 – 0.47</td>
<td>-5.34</td>
</tr>
<tr>
<td></td>
<td>18 - 40</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40</td>
<td>2.00</td>
<td>0.42</td>
<td>1.32 – 3.01</td>
<td>3.30</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>3.23</td>
<td>0.60</td>
<td>2.24 – 4.66</td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td>Irrigation</td>
<td>0.15</td>
<td>0.07</td>
<td>0.06 – 0.36</td>
<td>-4.31</td>
</tr>
<tr>
<td></td>
<td>Pastoralism</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>0.58</td>
<td>0.16</td>
<td>0.35 – 0.98</td>
<td>-2.03</td>
</tr>
<tr>
<td>Random effects</td>
<td>Household ID</td>
<td>0.57</td>
<td>0.29</td>
<td>0.21 – 1.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Village ID</td>
<td>1.08</td>
<td>0.40</td>
<td>0.52 – 2.24</td>
<td></td>
</tr>
</tbody>
</table>

Log likelihood -501.60, number of observations 1,016
Results - livestock/human interactions

• Odds of human exposure in household with at least one seropositive animal:
 3.34 (95% CI: 1.48 – 7.57)

• Intra-cluster correlation coefficients (ICC)
 o Livestock: household and village levels: 0.39 vs 0.18
 o Humans: household and village levels: 0.33 vs 0.22
Discussion and conclusions

• Brucella infections in human and livestock cluster at households and villages.

• Challenges and opportunities associated with these occurrence patterns:
 o For epidemiological surveys, we need high number of households and villages to obtain reliable measures of burden or demonstrating absence
 o Risk-based surveillance e.g. using human cases identified in hospitals to locate infected livestock

• Cases in livestock increases risk in people 3 fold – interventions at the animal-level can greatly minimize risk of exposure

• Observations on risk factors corroborate published findings – age, herd size in livestock, and age and sex in people
Acknowledgements

The study participants, local and international partners

CGIAR Research Program on Agriculture for Nutrition and Health

Defense Threat Reduction Agency
better lives through livestock