

# CIAT Research Online - Accepted Manuscript

# Passiflora gustaviana, a New Species of Passiflora (Supersection Laurifolia) from Colombia Revealed by Multivariate Analysis

The International Center for Tropical Agriculture (CIAT) believes that open access contributes to its mission of reducing hunger and poverty, and improving human nutrition in the tropics through research aimed at increasing the eco-efficiency of agriculture.

CIAT is committed to creating and sharing knowledge and information openly and globally. We do this through collaborative research as well as through the open sharing of our data, tools, and publications.

#### Citation:

Ocampo Pérez, John Albeiro; Molinari, Miguel. 2017. Passiflora gustaviana, a New Species of Passiflora (Supersection Laurifolia) from Colombia Revealed by Multivariate Analysis. Systematic Botany 42(4): 1-11

Publisher's DOI: https://doi.org/10.1600/036364417X696555

Access through CIAT Research Online:

#### http://hdl.handle.net/10568/89930

Terms:

© **2017**. CIAT has provided you with this accepted manuscript in line with CIAT's open access policy and in accordance with the Publisher's policy on self-archiving.



This work is licensed under a <u>Creative Commons Attribution-NonCommercial 4.0 International License</u>. You may re-use or share this manuscript as long as you acknowledge the authors by citing the version of the record listed above. You may not use this manuscript for commercial purposes.

For more information, please contact CIAT Library at CIAT-Library@cgiar.org.

| 1  | OCAMPO AND MOLINARI: PASSIFLORA GUSTAVIANA, A NEW SPECIES FROM                                      |
|----|-----------------------------------------------------------------------------------------------------|
| 2  | COLOMBIA                                                                                            |
| 3  |                                                                                                     |
| 4  |                                                                                                     |
| 5  |                                                                                                     |
| 6  | Passiflora gustaviana, a New Species of Passiflora (Supersection Laurifolia) from                   |
| 7  | Colombia Revealed by Multivariate Analysis                                                          |
| 8  |                                                                                                     |
| 9  | John A. Ocampo Pérez <sup>a,b,c</sup> and Miguel Molinari <sup>d</sup>                              |
| 10 |                                                                                                     |
| 11 | <sup>a</sup> Universidad Nacional de Colombia sede Palmira, Facultad de Ciencias Agropecuarias,     |
| 12 | Departamento de Ciencias Biológicas. Carrera 32 No. 12-00 Chapinero, vía Candelaria                 |
| 13 | Palmira, Valle del Cauca, Colombia.                                                                 |
| 14 | <sup>b</sup> International Center for Tropical Agriculture, Recta Cali-Palmira, Km. 17 –            |
| 15 | CIAT/Ecosystem Services, Palmira, Valle del Cauca, Colombia.                                        |
| 16 | <sup>d</sup> Universidad de los Andes, Facultad de Ciencias Forestales, Associate Curator, Hebarium |
| 17 | (MER), apartado 384, Mérida 5101, Mérida, Venezuela.                                                |
| 18 | <sup>c</sup> Correspondence author (jaocampo@unal.edu.co)                                           |
| 19 |                                                                                                     |
| 20 | Abstract—A new species of Passiflora (supersection Laurifolia, series Laurifoliae) from             |
| 21 | the Andean region of Colombia is described and illustrated using morphological descriptors          |
| 22 | analysis. This species is closely related to P. popenovii Killip and can be recognized mainly       |
| 23 | by its purple stem, leaf size (12.5–16.5 $\times$ 5.0–7.9 cm), biglandular petioles, pedicel length |
| 24 | (8-10 mm), bracts light green, glandless, flowers length (28-30 mm), corona filaments in            |

| 25 | five series, minute-filiform inner filaments length (1-4 mm), fimbriate purplish operculum      |
|----|-------------------------------------------------------------------------------------------------|
| 26 | margin, staminal filaments length (6.8-7.1 mm), ovary glabrous, yellow mature fruits            |
| 27 | mottled with irregular white dots, lightly pubescent, and total soluble solids content in fruit |
| 28 | juice (13.5%–14.3%). The newly identified species <i>P. gustaviana</i> grows on the slopes of   |
| 29 | high mountains between 1,900 and 2,309 m above sea level, with an annual mean                   |
| 30 | temperature of 16.2°C. It is considered a new endemic species of Colombia and may be            |
| 31 | regarded as endangered (EN) because of its limited occurrence. This new species                 |
| 32 | constitutes an important unexploited genetic resource useful for the improvement of             |
| 33 | cultivated Passiflora species.                                                                  |
| 34 |                                                                                                 |
| 35 | Keywords—Conservation, endemism, IUCN red list, Laurifoliae, PCA, Passifloraceae,               |
|    |                                                                                                 |
| 36 | Tropical Andes.                                                                                 |
| 37 |                                                                                                 |
| 38 | Passiflora L. is the largest genus in the family Passifloraceae Juss. ex Roussel, with more     |
| 39 | than 577 species of vines, lianas, shrubs, and trees. Passiflora is split into five subgenera   |
| 40 | (Astrophea (DC.) Mast., Decaloba (DC.) Rchb., Deidamioides (Harms) Killip, Passiflora           |
| 41 | L., and Tetrapathea (DC.) P. S. Green) distributed mainly in the Neotropics, from coastal       |
| 42 | zones up to 4,300 m above sea level in the Andean slopes at páramo limits (Ulmer and            |
| 43 | MacDougal 2004; Krosnick et al. 2009). Subgenus Passiflora includes ca. 240 species and         |
| 44 | is divided into six supersections with several particular features, such as having petiolar     |
| 45 | nectaries, variable leaf shape, large colorful flowers, large fruits (Killip 1938; Feuillet and |
| 46 | MacDougal 2003; MacDougal and Feuillet 2004), a chromosome number that usually is $n$           |
| 47 | = 9, and an average genome size of 1.311 pg (Snow and MacDougal 1993; Yotoko et al.             |

2011). Pollinators include carpenter bees, bumblebees, honeybees, wasps, birds (mostly
short and sword-billed hummingbirds) and bats, with specific suites of floral characteristics
associated with each syndrome (Ulmer and MacDougal 2004; J. Ocampo pers. obs.).

52 Colombia has 174 reported species of *Passiflora*, being the country with the highest 53 *Passiflora* richness and with the greatest diversity in the Andean region (Ocampo et al. 2007; Hernández et al. 2017). The largest number of species is found between 1,000 and 54 2,000 m above sea level and the most common species thrive in disturbed habitats, such as 55 roadsides, cultivated land, and secondary forests (Ocampo et al. 2010). Thirty three 56 57 inventoried species are included in supersection Laurifolia (Cervi) Feuillet & MacDougal series *Laurifoliae* Killip ex Cervi with Colombia being the center of diversity with 12 58 species, followed by Brazil and Venezuela with 10 species each (Ocampo et al. 2011). 59 60 *Laurifoliae* species include vigorous vines that often cover the trees used as support. Species in this series are very easy to recognize by their filiform to linear stipules, one pair 61 of petiolar nectaries, and their generally long, dark green, glossy, unilobed and acuminate 62 leaves (Rome and Coppens d'Eeckenbrugge 2017). The pendent flowers have a corolla that 63 is often campanulate (except in P. guazumaefolia Juss., P. odontophylla Harms ex Glaziou, 64 65 and *P. kikiana* Cervi & Linsingen) and of a delicate white or cream to red and purple color, frequently tinged slightly with violet (Ocampo et al. 2011). Their corona is formed of long 66 pendent filaments striated with deep violet and attached to a short hypanthium. In other 67 68 species, such as P. ambigua Hemsl., P. popenovii Killip, and P. pergrandis Holm-Nielsen & Lawesson, the flowers are grouped on small branches with minute leaves and short 69 70 internodes, which gives the impression of a dense inflorescence (Ulmer and MacDougal 71 2004). The fruits are large (except in *P. gabrielliana* Vanderpl.,  $3.5-7.5 \times 2.5-5.2$  cm),

72 round to ovate, yellow to orange mottled with irregular white points, and with a thick 73 mesocarp. The arils present a firm consistency, and the whitish translucent pulp is strongly aromatic. Most species have edible fruits and the seeds are dispersed by tree-climbing 74 75 arboreal mammals (e.g. monkeys and coatis), because the fruits do not fall after maturing. 76 The series *Laurifoliae* is particularly interesting for the economic development of new fruit 77 crops, while its attractive and colorful flowers also give the plant an ornamental value (Ocampo et al. 2011; Rome and Coppens d'Eeckenbrugge 2017). Additionally, the 78 79 remarkable capacity of species in the series to grow on flooded soils (e.g. P. riparia Mart. ex Mast., P. gabrielliana, P. guazumaefolia), as well their resistance to soil parasites (e.g. 80 81 *P. nitida*, *P. odontophylla*) are of interest for developing rootstocks and for transferring the 82 corresponding genes to other passion fruit species (Yockteng et al. 2011; Ocampo and Coppens d'Eeckenbrugge 2017). 83

84

85 On the other hand, the general similarity in most organs frequently makes it difficult to 86 distinguish particular species, so as that the prominent *Passiflora* taxonomist Killip (1938) 87 and other experts of series Laurifoliae (Vásquez 1998; MacDougal and Feuillet 2004; Rome and Coppens d'Eeckenbrugge 2017) have considered it as an "exceedingly difficult" 88 89 group. In several cases, both experts as well as amateurs may have underestimated the 90 infra-specific variation in widely distributed species, or even infra-individual variation, 91 splitting well known species into several new species only distinguished by a few 92 quantitative or qualitative traits, such as color. In series Laurifoliae, identification of species into several morphological groups demands experience and caution, even for the 93 most common species such as P. ambigua, P. nitida, P. laurifolia and P. tolimana Harms, 94

which display high infra-specific variability and wide geographic distribution. For instance, *P. metae* M. Bonilla, C. Aguirre & C. Caetano was recently described from Colombia
without taking into account the infra-specific variation; after rigorous revision based on
herbaria and field observations we consider it synonymous with *P. tolimana* (M. Rome and
G. Coppens, pers. comm.; J. Ocampo pers. obs.).

100 Multivariate analyses of morphological descriptors are a tool that can be used to solve

101 issues between closely related taxa. Despite the remarkable morphological diversity

102 described among species of series *Laurifoliae*, few studies have compared infra- and

103 interspecific variation with statistical tools. A recent and detailed list of descriptors was

used by Ocampo and Coppens d'Eeckenbrugge (2017) to study morphological divergence

105 of 61 species of genus *Passiflora*, showing a clear separation among the subgenera

106 Astrophea, Decaloba and Passiflora with special emphasis on quantitative and qualitative

107 floral traits. The morphological cladistic analysis supported the delimitation of the species

and with particular infra-specific morphological variation in some species, such as *P*.

109 *popeonovii*, *P. nitida*, *P. maliformis* L., and *P. edulis* Sims.

110 In this paper we propose a new species, *P. gustaviana*, belonging to subgenus *Passiflora*,

supersection *Laurifolia*, series *Laurifoliae*, discovered in Colombia. This new species is

described, illustrated and compared with its closest relative *P. popeonovii*, using a pheneticapproach.

114

#### 115 MATERIALS AND METHODS

In June 2004, Gustavo Morales of the Botanical Garden of Bogotá "José Celestino Mutis" -116 117 JBB (Cundinamarca, Colombia) found a mature fruit of a *Passiflora* plant belong to Passiflora series Laurifoliae along the roadside in a secondary forest in right margin in 118 119 Kilometer 2 between the municipalities of Pacho and Supatá (2,079-2,150 m), department 120 of Cundinamarca. Its seeds were extracted and later germinated and two seedlings were 121 planted in the JBB at 2,550 m above sea level in June 2006. Four years later, the plants bloomed for the first time in August and theirs fruits were harvested in October of that 122 123 same year. Afterwards, this probable new species was compared with other species of Laurifoliae and based on previous studies (Ocampo et al. 2011; G. Morales, pers. obs.), P. 124 125 popenovii was established as its morphologically closest relative species.

126

127 The morphological description was carried out in situ on living specimens of P. gustaviana 128 and the morphologically similar species P. popeonovii, using 42 quantitative and 51 qualitative vegetative and reproductive descriptors (Table 1). These descriptors were 129 130 assessed for individual sample taken from Colombia: two cultivated plants of P. gustaviana planted in the JBB, and four plants of *P. popenovii* cultivated in home gardens in the 131 municipalities of Chachagui (Nariño) and Timbio (Cauca). Five measurements were taken 132 133 for the quantitative characters of each individual. A principal component analysis (PCA) was carried out with quantitative data applying the varimax normalized rotation option, and 134 factors with an eigenvalue greater than one were retained. Additionally, Duncan's multiple 135 136 comparison test between means (95% confidence level) for each descriptor was used to compare variation among species, using the *R* package (Pardo and Del Campo 2007). The 137 total soluble solids content (°Brix) found within the fruit's juice of quantitative characters 138 was estimated with the help of a hand held Brix refractometer (ATC). The color of the 139

qualitative characters was then recorded, using the Royal Colour Chart (Royal Horticultural
Society 2001). We followed the infrageneric classification of Feuillet and MacDougal
(2003).

| 144 | Three expeditions to study highland Laurifoliae species in the field were carried out in       |
|-----|------------------------------------------------------------------------------------------------|
| 145 | 2010 to 2016 in 42 different localities within six departments (Antioquia, Boyacá,             |
| 146 | Cundinamarca, Nariño, Tolima, and Valle del Cauca) of Colombia. Identifying data were          |
| 147 | recorded for each specimen collected, which include locality, habitat, elevation and           |
| 148 | geographic coordinates. Additionally, we examined specimens of series Laurifoliae from         |
| 149 | the major herbaria in Colombia (AFP, CAUP, CDMB, CHOCO, COL, COAH, CUVC,                       |
| 150 | FAUC, FMB, HUA, HUQ, JBB, JAUM, MEDEL, PSO, SURCO, TOLI, TULV, VALLE,                          |
| 151 | and UIS) and other countries (F, GH, K, QCA, MA, MO, MOL, NY, P, TX, US, and                   |
| 152 | USM). Dried specimens were recorded and photographed to create a species description of        |
| 153 | Colombian Laurifoliae. This database of field and herbaria data that we employed was           |
| 154 | supplemented with specimens mentioned in various species descriptions published by             |
| 155 | Killip (1938, 1960), Holm-Nielsen et al. (1988) and Ulmer and MacDougal (2004). The            |
| 156 | description was created following the Passiflora morphological terminology proposed by         |
| 157 | Tillett (1988). The data were gathered and cleaned with OpenRefine (Verborgh and de            |
| 158 | Wilde 2013) to generate a dot map of the distribution of the <i>P. gustaviana</i> collections, |
| 159 | using the ArcMap 10.3 software. Finally, conservation status was assessed according to         |
| 160 | IUCN (2014) categories and supported with geographic distribution data, based on the           |
| 161 | extent of occurrence (EOO) and area of occupancy (AOO), found using the Geospatial             |
| 162 | Conservation Assessment Tool - GeoCAT (Bachman et al. 2011).                                   |

#### 165 RESULTS

| 166 | Two specimens belonging to the new P. gustaviana were registered during the collection         |
|-----|------------------------------------------------------------------------------------------------|
| 167 | trips, found growing mostly in disturbed habitats like road borders and secondary forest       |
| 168 | margins. Regarding herbaria revisions, only four dried specimens deposited in the herbaria     |
| 169 | of the Instituto de Ciencias Naturales (ICN) of the Universidad Nacional de Colombia           |
| 170 | Bogotá branch (COL), and the José Celestino Mutis Botanical Garden of Bogotá (JBB)             |
| 171 | were recorded as P. gustaviana. In relation its closest relative P. popenovii, 20 records from |
| 172 | herbaria (12) and field collections (8) under cultivation were registered in the departments   |
| 173 | of Cauca and Nariño in the south-west of Colombia. A dot map of the spatial distribution of    |
| 174 | P. gustaviana based on the six known records of the species, representing our recent field     |
| 175 | collections and existing herbarium specimens, is shown in Fig. 1.                              |

176

177 Multivariate analysis identified 31 quantitative descriptors with high interspecific variation. 178 Three principal components with an eigenvalue superior to one were retained, representing 96.1% of the total variation (Table 2). The first component (62%) is primarily associated 179 180 with 24 descriptors characterizing internode length, stipule length, lobe size, petiole 181 nectaries, bract size, flower length, longest inner filament of corona length, sepal length, 182 petal width, nectary chamber size, hypanthium diameter, androgynophore length, staminal filaments length, ovary length, fruit size/weigth/total soluble solids content in juice, and 183 184 seed length. The second component (26%) is represented by pedicel length, the corona's 185 outermost filament length, petal length, sepal width, hypanthium length, and styles length. 186 The third component (7.4%) is only associated with operculum length. Fig. 2 shows the

| 187 | individuals in the principal plane (88.3% variance total), showing a clear grouping by             |
|-----|----------------------------------------------------------------------------------------------------|
| 188 | species and geographic origin. The representatives of <i>P. gustaviana</i> are placed on the right |
| 189 | side along the first axis in relation to their larger size of leaves, flowers and fruits, and      |
| 190 | greater total soluble solids content in fruit juice (°Brix), in relation to individuals of $P$ .   |
| 191 | popenovii. Additionally, the 31 descriptors selected by PCA showed significant differences         |
| 192 | according to Duncan's multiple comparison test between the individuals of P. gustaviana            |
| 193 | and P. popenovii (Table 2).                                                                        |
| 194 |                                                                                                    |
| 195 | Qualitative descriptors analysis identified 10 of the 51 descriptors evaluated on the basis of     |
| 196 | their potential to discriminate among species. These descriptors were associated with stem         |
| 197 | color (mature branch), and bract color and glandless, shape and color of inner filaments of        |
| 198 | the corona, operculum margin, ovary pubescence, and color of mature fruits. Table 3                |
| 199 | synthesizes the observations for quantitative and qualitative descriptors between P.               |
| 200 | gustaviana and its closest relative P. popenovii.                                                  |
| 201 |                                                                                                    |
| 202 |                                                                                                    |
| 203 | TAXONOMIC TREATMENT                                                                                |
| 204 | Passiflora gustaviana Ocampo & Molinari, sp. nov.—TYPE: COLOMBIA.                                  |
| 205 | Cundinamarca: Bogotá D.C, frutales de clima frío, de semillas colectadas en Supatá vía             |
| 206 | Pacho (Cundinamarca). Alt. 2,550 m.s.n.m, 17 August 2010, Gustavo Morales 3190                     |
| 207 | (holotype: JBB!);                                                                                  |
| 208 |                                                                                                    |

| 209 | Plant woody vine or liana. Stem terete, slender, striate, glabrous, purple colored (mature     |
|-----|------------------------------------------------------------------------------------------------|
| 210 | branch) to green colored (young branch). Stipules narrowly linear, 8–13 mm long, 0.5 mm        |
| 211 | wide, not glandular, green, soon deciduous. Tendrils glabrous, red to purple colored and up    |
| 212 | to green. Petioles 1.5–2.7 cm long, slightly canaliculate adaxially, glabrous, a pair of round |
| 213 | sessile glands (about 1.5 mm long), located on the middle of the petiole, green. Leaves        |
| 214 | unlobed, oblong-ovate, 12.5–16.5 cm long, 5–7.9 cm wide, mucronate and generally               |
| 215 | acuminate, rounded at base, lustrous on both surfaces, penninerved (lateral nerves 7 or 8      |
| 216 | pairs), subcoriaceous, margins entire, glabrous, green. Peduncles terete, slender, solitary    |
| 217 | (sometimes in pairs), 10.5–12.8 cm long (including pedicel 0.8–1.0 cm long). Bracts ovate,     |
| 218 | concave, 3.5–4 cm long, 2–2.4 cm wide, rounded, entire, free, glabrous, persistent (until      |
| 219 | fruit maturity), light-green, glandless. Flowers pendulous, fragrant, 2.8-3.0 cm long (from    |
| 220 | the base of the nectary chamber to the ovary apex) $\times$ 6.0–7.2 cm wide, sometimes seen in |
| 221 | clusters on pseudoracemes (small branches with short internodes ca. 2–3 cm, small leaves,      |
| 222 | and flowers at each node). Nectary chamber glabrous, 4–5 mm long x 20–20.1 mm wide,            |
| 223 | green outside and white inside. Hypanthium campanulate, 6–7.8 mm long x 22–24 mm               |
| 224 | diameter (at the base of the sepals), glabrous, green outside and white inside. Sepals         |
| 225 | oblong, 4–4.5 cm long x 2.0–2.3 cm wide, adaxial surface light-green, abaxial surface          |
| 226 | white, slightly concave, glabrous, keeled dorsally just below the apex, the keel terminating   |
| 227 | in a light-green awn about 2 mm long, glabrous. Petals white, linear-oblong, 3.8-4.1 cm        |
| 228 | long x 1.4–1.8 cm wide, glabrous, reflexed. Corona filaments in five series, two major outer   |
| 229 | series, white, banded (4–7 bands) purplish blue, the bands purple near base, thickened,        |
| 230 | fleshy, the second outer series filaments longer (3.6–3.9 cm long) than the outermost series,  |
| 231 | the three inner series 1.0-4.0 mm long, minute, filiform, purplish. Operculum                  |
| 232 | membranaceous, 3.6–4.5 mm long, slightly recurved, white, fimbriated-filamentous at the        |

| 233 | margin, purplish. Limen none. Androgynophore white (sometimes speckled with dark                 |
|-----|--------------------------------------------------------------------------------------------------|
| 234 | purple), 16–17 mm long, trochlea 5–7 mm long. Gynophore white, 1 mm long. Staminal               |
| 235 | filaments white (sometimes finely speckled with dark purple), 9.0-10.0 mm long. Ovary            |
| 236 | glabrous, ovoid, 5-6 mm long, olive green. Styles white (occasionally finely speckled with       |
| 237 | dark purple at base), 6–7 mm long, stigmas greenish-white. Fruit ovoid, 8.1–8.5 cm long $\times$ |
| 238 | 6.5–6.7 cm diameter, lightly pubescent, immature green mottled with irregular white dots;        |
| 239 | mature weights 78–120 g, yellow mottled with irregular white dots, pericarp 1.1–1.3 cm           |
| 240 | thick; pulp aromatic, pleasant odor, flavor slightly sweet and acidic, total soluble solids      |
| 241 | content in fruit juice 13.5–14.3 (°Brix), edible. Seeds obovate, 9–10 mm long $\times$ 4–5 mm    |
| 242 | wide, dark brown, testa reticulate, acute at apex, 78-84 seeds per fruit, surrounded by a        |
| 243 | translucent white aril. Figures 3, 4.                                                            |
|     |                                                                                                  |

245 Geographical Distribution—Rare, endemic to the Colombian Department of Cundinamarca

246 (4,3853° to 5,0712° North and 74,2048° to 74,4339° West), Municipalities of Albán (2,309

247 m), Silvania (1,900 and 2,000 m), Pacho (2,079 m), and Supatá (2,150 m) on the Eastern

248 flank of the Cordillera Oriental in the Andean region (Fig. 1).

249 Etymology—The specific epithet honors the Colombian botanist Gustavo Morales, who

250 discovered this new species, has spent most of his life enriching the knowledge of

251 Colombian botany, and has constantly fought for the conservation of plant resources,

especially passion flowers.

253 *Ecology—Passiflora gustaviana* was observed on hillsides, along roadsides and along

secondary cloud forest margins, climbing onto trees found in thickets, at elevations ranging

from 1,900 to 2,309 m above sea level in the department of Cundinamarca. This species

grows in areas with soils derived of volcanic ashes with middle organic matter content
levels, and with a sandy-clay-loam texture; the annual mean temperature is 16.2°C and the
annual rainfall is 1,241 mm (regular rainfall); and on average 4–5 sunshine hours per day
(Ideam 2016).

260 *Phenology*—This new species has been observed flowering in the months of March-April

to August-September, and fruiting from May-June to October-November. Carpenter bees

262 (*Xylocopa* sp.) were observed visiting open flowers and may be associated as a pollinator of263 the species.

264 Conservation Status—Passiflora gustaviana is known only from few collections and would 265 likely be classified as endangered (EN) based on two assessment criteria, B2a and D, if we 266 had fully conducted its conservation assessment using IUCN (2014) guidelines. Within category B, the new species is classified as B2a, as its area of occupancy is estimated as 267 less than 500 km<sup>2</sup> (20 km<sup>2</sup>), and its extended range of occurrence is less than 5,000 km<sup>2</sup> 268 (890.9 km<sup>2</sup>); habitats are severely fragmented and it is known to exist at five locations. 269 270 Regarding criterion D, the population size is estimated to be less than 50 mature 271 individuals, with just three plants observed during the collection trips.

272

273 Additional Collections Examined—COLOMBIA. Cundinamarca: Silvania, Cordillera

274 Oriental, vertiente occidental; estribaciones de la Cuchilla de la Cruz Grande, Km 5-6,

arriba de Fusagasugá, La Aguadita, 1,900-2,000 m, 28 May 1954, J.M. Idrobo & J.

276 Hernández 1660 (COL); Albán, frente a la estación del ferrocarril, 2,309 m, 1 Jul 1945, H.

277 García-Barriga 11610 (COL); Pacho, 2 km vía a Supatá, vereda la Esmeralda, 2,150 m, 20

278 June 2004, G. Morales, M. Quintero & C. González 2369 (JBB).

- 280 Additional Collections Examined of Passiflora popenovii—COLOMBIA. Cauca: El
- 281 Tambo, 1,700 m, 15 January 1938, K. von Sneiden 1444 (US); Gazaabarita, 14 January
- 1965, J.M. Idrobo 5636 (COL); entre el Tambo y el Alto del Rey, cultivada, 1,800 m, 11
- 283 January 1979, L.K. Escobar & D. Escobar-Uribe 1017 (HUA); corregimiento San Joaquín,
- vereda Pomoroso, finca los Naranjos, cultivada, 1,767 m, 6 February 2004, C. M. Caetano,
- 285 L. Barrios, M. Restrepo & J. Ocampo 009 (VALLE); Timbío, zona urbana Barrio Boyacá,
- cultivada, 1,875 m, 5 May 2002, C.A. *Chicangana 22* (CAUP); Vereda Santa María, n.v.
- 287 Granadillo de Quijos, 1,700 m, 1990, R. Durán & J. Otálora 01 (TOLI). Cundinamarca:
- Bogotá D.C., enredadera procedente de Timbío Cauca, cultivada, 2,550 m (4.66788 N;
- 289 74.09977 W), 16 August 2013, G. Morales 3630 (JBB). ECUADOR. Rio Jamboya, 2,000
- m, 1882, A. Mille 223 (US); Pichincha: Quito, L. Sodiro s.n (P); Tunguragua: Baños, 1,850
- 291 m (introduced), 3 June 1921, W. Popenoe 1271 (US, type); EL Oro, 24 January 1995, 1,400
- m, V. Eynden 218 (MO), Piñas, Sambotambo, cultivada, 2 September 1997, V. Eynden 927
- 293 (QCA).

295

#### 296 DISCUSSION

- A shorter list of 33 quantitative and 10 qualitative traits showed a high variability according
- to a morphological characterization analysis (Table 3). This analysis supports the
- 299 classification of *P. gustaviana* as a new species of *Passiflora*, subg. *Passiflora*, supersect.
- 300 *Laurifolia*, series *Laurifoliae* (Ocampo et al. 2011). *Passiflora gustaviana* is distinguishable
- 301 from other highland *Laurifoliae* species that occur in the Andean region in Colombia

| 302 | (>1,000 m.a.s.l.) such as <i>P. ambigua</i> , <i>P. pergrandis</i> Holm-Nielsen & Lawesson, and <i>P.</i> |
|-----|-----------------------------------------------------------------------------------------------------------|
| 303 | tolimana Harms by the position (on the middle) and shape (round) of the petiole glands,                   |
| 304 | large and slender peduncles (10.5–12.8 cm long), corona filaments in five series, operculum               |
| 305 | margin with short fimbriate filaments (purplish), and distinct size of the flowers (2.8-3.0               |
| 306 | cm long x 6–7.2 cm wide) and fruits (8.1–8.5 cm long x 6.5–6.7 cm diameter).                              |
| 307 | Additionally, the new species was compared to its putative closest relative P. popenovii,                 |
| 308 | using information gathered from specimens that were recorded during collection trips and                  |
| 309 | herbaria visits, as well as found within the literature (Killip 1938, 1960; Holm-Nielsen et al.           |
| 310 | 1988; Ulmer and MacDougal 2004). Passiflora gustaviana is related to P. popenovii, but                    |
| 311 | differs by its stem color (mature branch, purple vs. green); stipule length (8-13 mm vs. 10-              |
| 312 | 17 mm); leaf size (12.5–16.5 cm long $\times$ 5.0–7.9 cm wide vs. 10.0–12.5 cm long $\times$ 3.9–5.1      |
| 313 | cm wide); petiole glands (one pair vs. glandless); pedicel length (8-10 mm vs. 5-8 mm);                   |
| 314 | bract, sepal and petal size (see Table 3); bract color (light-green vs. reddish-purple), grands           |
| 315 | (glandless vs. 3-4 pairs); corona filaments (5-series vs. 6-series), outermost longest                    |
| 316 | filament length (3.6–3.9 cm vs. 3.0–4.4 cm), inner longest filament length (3–4 mm vs.                    |
| 317 | 4.0-5.5 mm), shape of the inner filament (minute-filiform vs. capillary) and color (purplish              |
| 318 | vs. white and purplish-blue at apex); also in its operculum margin (fimbriated and purplish               |
| 319 | vs. entire and white); staminal filaments length (9.0-10.0 mm vs. 6.8-8 mm); ovary                        |
| 320 | (glabrous vs. pubescent); color of mature fruits (yellow, mottled with irregular white dots               |
| 321 | vs. yellow-orange); percentage of total soluble solids content in fruit juice (13.5–14.3 % vs.            |
| 322 | 14.8-16.8 %); and flavor (slightly sweet-acidic vs. sweet).                                               |
| 323 | Passiflora gustaviana has only been encountered in the Department of Cundinamarca in                      |

324 Colombia on the Eastern flank of Cordillera Oriental in the Andean region between 1,900

| 325                                                                                                   | to 2,309 m above sea level, along roadsides, in secondary forest margins and climbing onto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 326                                                                                                   | trees found in thickets. Passiflora popenovii was proposed as a new species by Killip in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 327                                                                                                   | 1922 based on a plant cultivated in the municipality of Baños at 1,850 m.a.s.l.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 328                                                                                                   | (Tungurahua, Ecuador), with seeds brought from the Eastern slopes of the Andes in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 329                                                                                                   | Ecuador by W. Popenoe (W. Popenoe 1271, US, type), but there is no record on whether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 330                                                                                                   | these seeds came from wild or cultivated plants. This species has only been found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 331                                                                                                   | cultivated in home gardens in the south-western part of Colombia (Cauca and Nariño                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 332                                                                                                   | Departments) and Ecuador (El Oro, Loja, Pichincha and Tungurahua Provinces) under the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 333                                                                                                   | vernacular names of Curubejo, granadilla de Quijos or granadilla Caucana, and where it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 334                                                                                                   | regularly propagated by cuttings (National Research Council 1989). Currently, its origin is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 335                                                                                                   | unknown and no wild representative of <i>P. popenovii</i> has been reported, so some authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 336                                                                                                   | consider it extinct outside of cultivation (Ocampo et al. 2007; Yockteng et al. 2011).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 337                                                                                                   | The discovery of this new rare endemic species increases to 12 the number of species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 337<br>338                                                                                            | The discovery of this new rare endemic species increases to 12 the number of species (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007,                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 338                                                                                                   | (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 338<br>339                                                                                            | (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007, 2010, 2011), and suggests that this country concenters the highest species diversity,                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 338<br>339<br>340                                                                                     | (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007, 2010, 2011), and suggests that this country concenters the highest species diversity, followed by Brazil. However, Colombia might still harbor many more unknown species,                                                                                                                                                                                                                                                                                                                                                               |
| 338<br>339<br>340<br>341                                                                              | (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007, 2010, 2011), and suggests that this country concenters the highest species diversity, followed by Brazil. However, Colombia might still harbor many more unknown species, given the low level of exploration in various zones of the Andes, the Caribbean, the                                                                                                                                                                                                                                                                          |
| 338<br>339<br>340<br>341<br>342                                                                       | (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007, 2010, 2011), and suggests that this country concenters the highest species diversity, followed by Brazil. However, Colombia might still harbor many more unknown species, given the low level of exploration in various zones of the Andes, the Caribbean, the Amazon, the Orinoquia and the Pacific (Ocampo et al. 2007, 2010, 2015). Additionally, the                                                                                                                                                                                |
| <ul> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> </ul>              | (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007, 2010, 2011), and suggests that this country concenters the highest species diversity, followed by Brazil. However, Colombia might still harbor many more unknown species, given the low level of exploration in various zones of the Andes, the Caribbean, the Amazon, the Orinoquia and the Pacific (Ocampo et al. 2007, 2010, 2015). Additionally, the discovery of this new species in Colombian territory brings into question the putative                                                                                         |
| <ul> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> </ul> | (Table 4) belonging to the series <i>Laurifoliae</i> reported in Colombia (Ocampo et al. 2007, 2010, 2011), and suggests that this country concenters the highest species diversity, followed by Brazil. However, Colombia might still harbor many more unknown species, given the low level of exploration in various zones of the Andes, the Caribbean, the Amazon, the Orinoquia and the Pacific (Ocampo et al. 2007, 2010, 2015). Additionally, the discovery of this new species in Colombian territory brings into question the putative Ecuadorian origin of <i>P. popenovii</i> due to its morphological proximity and similar |

349

367

| 350        | Passiflora is considered as a biodiversity indicator in Colombia as its species have multiple                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 351        | ecological interactions with many types of organisms (Ocampo et al. 2010), as such, it can                                                                                              |
| 352        | be considered to indirectly provide an ecosystem service through the regulation of                                                                                                      |
| 353        | populations of other species. However, the species distributions have been drastically                                                                                                  |
| 354        | affected mainly by the deforestation of rain and cloud forests in the Andean, Amazon, and                                                                                               |
| 355        | Pacific regions. This has occurred mainly due to extensive livestock production (pasturing),                                                                                            |
| 356        | plantations of illicit crops, hydroelectric dams, illegal gold mines, and agricultural practices                                                                                        |
| 357        | that currently support extensive coffee, sugar cane, rice, banana, and potato plantations                                                                                               |
| 358        | (Ocampo et al. 2007, 2010).                                                                                                                                                             |
| 359        | Indeed, the disappearance of <i>Passiflora</i> species from the ecosystem would entail the loss of                                                                                      |
| 360        | other organisms that depend on these, such as butterflies (Heliconius species) and many                                                                                                 |
| 361        | nectar feeding insects, mammals (bats), and birds (Yockteng et al. 2011). In this context,                                                                                              |
|            |                                                                                                                                                                                         |
| 362        | not only the species of the genus Passiflora, but also most of the Colombian Passifloraceae                                                                                             |
| 362<br>363 | not only the species of the genus <i>Passiflora</i> , but also most of the Colombian Passifloraceae (71%) are under some degree of threat according to the IUCN criteria (Ocampo et al. |
|            |                                                                                                                                                                                         |
| 363        | (71%) are under some degree of threat according to the IUCN criteria (Ocampo et al.                                                                                                     |

- 368 cryopreservation) are strategies that must be implemented in case critical habitats are
- 369 destroyed. These strategies have already begun to be implemented by the Botanical Garden

conservation. Ex situ conservation techniques at botanical gardens and seed banks (e.g.

of Bogotá "José Celestino Mutis", where individuals of the new species are undercultivation.

372

| 373 | In conclusion, statistical analysis allowed for the classification and determination of a new         |
|-----|-------------------------------------------------------------------------------------------------------|
| 374 | species of Passiflora from 41 discriminant morphological descriptors, as well as its fruit            |
| 375 | properties, P. gustaviana constitutes a promising new genetic resource and ecosystem                  |
| 376 | service as a wild relative useful for the improvement of cultivated Passiflora species.               |
| 377 |                                                                                                       |
| 378 | ACKNOWLEDGEMENTS. The authors wish to thank the curators of the herbaria that                         |
| 379 | provided specimens for this study, as well as the Botanical Garden of Bogotá "José                    |
| 380 | Celestino Mutis" for its generosity and assistance with the cultivation of <i>P. gustaviana</i> . The |
| 381 | first author gratefully acknowledges the financial support of the Gines-Mera Fellowship               |
| 382 | Foundation (CIAT-CBN). This author would also especially like to thank Grupo de                       |
| 383 | Investigaciones en Recursos Fitogenéticos Neotropicales (GIRFIN/UNAL Palmira) for                     |
| 384 | their persistent and inspirational efforts to use and value our plant resources. Our most             |
| 385 | grateful appreciation and thanks to Hernán Dario Bernal and Jorge Julián Restrepo for their           |
| 386 | assistance during some collection trips carried out in Cundinamarca and Antioquia,                    |
| 387 | respectively. We also thank our anonymous reviewers, James Smith (our chief editor) and               |
| 388 | Natalie Orentlicher (for copy editing) for their contributions to the last version of the             |
| 389 | manuscript.                                                                                           |

390

# 391 LITERATURED CITED

| 392 | Bachman, S., J. Moat, A. Hill, J. de la Torre, and B. Scott. 2011. Supporting red list threat |
|-----|-----------------------------------------------------------------------------------------------|
| 393 | assessments with GeoCAT: Geospatial conservation assessment tool. Zookeys 150:                |
| 394 | 117–126.                                                                                      |
| 395 |                                                                                               |
| 396 | Feuillet, C. and J. M. MacDougal. 2003 [2004]. A new infrageneric classification of           |
| 397 | Passiflora L. (Passifloraceae). Passiflora 13: 34-38.                                         |
| 398 |                                                                                               |
| 399 | Hernández, A., P. M. Jørgensen, and M. M. Arbo. 2015. in Catálogo de plantas y líquenes       |
| 400 | de Colombia. eds. R. Bernal, S. R. Gradstein, and M. Celis. Bogotá: Instituto de              |
| 401 | Ciencias Naturales, Universidad Nacional de Colombia.                                         |
| 402 | http://catalogoplantasdecolombia.unal.edu.co. Last accessed January 1, 2017.                  |
| 403 |                                                                                               |
| 404 | Holm-Nielsen, L. B., P. M. Jørgensen, and J. E. Lawesson. 1988. Passifloraceae. Pp. 1-130     |
| 405 | in Flora of Ecuador 31, eds. G. Harling and B. Sparre. Göteborg and Stockholm:                |
| 406 | University of Göteborg and Swedish Museum of Natural History.                                 |
| 407 |                                                                                               |
| 408 | Ideam - Instituto de Hidrología, Meteorología y Estudios Ambientales. 2016. Atlas             |
| 409 | climatológico y de radiación solar de Colombia. Ministerio de Ambiente y Desarrollo           |
| 410 | Sostenible de Colombia [online]. Available from                                               |
| 411 | www.atlas.ideam.gov.co/presentacion/ [accessed 3 October 2016].                               |
| 412 |                                                                                               |
| 413 | IUCN. 2014. Guidelines for using the IUCN red list categories and Criteria. Version 11.       |
| 414 | Gland, Switzerland and Cambridge, U. K.: IUCN.                                                |
| 174 | Standy, Switzerland and Cambridge, C. IX. 10011.                                              |

| Δ | 1 | 5 |
|---|---|---|
| - | _ |   |

| 416 | Killip, E. P. 1922. Botany. Three new species from Ecuador and Venezuela. Journal of the     |
|-----|----------------------------------------------------------------------------------------------|
| 417 | Washington Academy Sciences 12: 330–332.                                                     |
| 418 |                                                                                              |
| 419 | Killip, E. P. 1938. The American species of Passiforaceae. Publications of the Field         |
| 420 | Museum of Natural History. Botanical Series 19: 1–613.                                       |
| 421 |                                                                                              |
| 422 | Killip, E. P. 1960. Supplemental notes to the American species of Passiflora with            |
| 423 | descriptions of new species. Contributions from the U.S. National Herbarium 35:              |
| 424 | 361–362.                                                                                     |
| 425 |                                                                                              |
| 426 | Krosnick, S. E., A. J. Ford, and J. V. Freudenstein. 2009. Taxonomic revision of Passiflora  |
| 427 | subgenus Tetrapathea including the monotypic genera Hollrungia and Tetrapathea               |
| 428 | (Passifloraceae), and a new species of Passiflora. Systematic Botany 34: 375-385.            |
| 429 | doi: 10.1600/036364409788606343.                                                             |
| 430 |                                                                                              |
| 431 | MacDougal, J. M. and C. Feuillet. 2004. Systematics. Pp. 27–31 in Passiflora:                |
| 432 | Passionflowers of the world, eds. T. Ulmer and J. M. MacDougal. Portland, Oregon:            |
| 433 | Timber Press.                                                                                |
| 434 |                                                                                              |
| 435 | National Research Council. 1989. Part V, Fruits, Passionfruits. Pp. 287-295 in Lost crops of |
| 436 | the Incas: Little-known of the Andes with promise for worldwide cultivation.                 |
| 437 | Washington, D.C.: National Academy Press. doi:10.1525/jlca.1992.4.1.41.1                     |

| 4 | 3 | 8 |
|---|---|---|
| - | - | J |

| 439 | Ocampo, J., G. Coppens d'Eeckenbrugge, M. Restrepo, A. Jarvis, M. Salazar, and C.            |
|-----|----------------------------------------------------------------------------------------------|
| 440 | Caetano. 2007. Diversity of Colombian Passifloraceae: Biogeography and an updated            |
| 441 | list for conservation. Biota Colombiana 8: 1-45. doi:                                        |
| 442 | http://www.redalyc.org/pdf/491/49180101.pdf                                                  |
| 443 |                                                                                              |
| 444 | Ocampo, J., G. Coppens d'Eeckenbrugge, and A. Jarvis. 2010. Distribution of the genus        |
| 445 | Passiflora L. diversity in Colombia and its potential as an indicator for biodiversity       |
| 446 | management in the Coffee growing zone. Diversity 2: 1158–1180. doi:                          |
| 447 | 10.3390/d2111158.                                                                            |
| 448 |                                                                                              |
| 449 | Ocampo, J., M. Molinari, and Y. Kuethe. 2011. Diversidad y distribución de las especies de   |
| 450 | la serie Laurifoliae (Passiflora L.) en el Neotrópico. Cali, Colombia: Memorias VI           |
| 451 | Congreso Colombiano de Botánica.                                                             |
| 452 |                                                                                              |
| 453 | Ocampo, J., J. J. Restrepo, and W. Giraldo. 2015. Rediscovery of Passiflora danielii Killip, |
| 454 | 1960 (subgenus Passiflora): a threatened narrow endemic species of Colombia.                 |
| 455 | Check List 11: 1589. doi: http://dx.doi.org/10.15560/11.2.1589.                              |
| 456 |                                                                                              |
| 457 | Ocampo, J. and G. Coppens d'Eeckenbrugge. 2017. Morphological characterization in the        |
| 458 | genus Passiflora L.: An approach to understanding its complex variability. Plant             |
| 459 | Systematics and Evolution 303: 531-558. doi: 10.1007/s00606-017-1390-2                       |
| 460 |                                                                                              |

| 461 | Pardo, C. E. and P. C. del Campo. 2007. Combinación de métodos factoriales y de análisis |
|-----|------------------------------------------------------------------------------------------|
| 462 | de conglomerados en R: el paquete FactoClass. Revista Colombiana de Estadística          |
| 463 | 30: 231–245.                                                                             |
| 464 | Rome, M. and G. Coppens d'Eeckenbrugge. 2017. Delimitation of the series Laurifoliae in  |
| 465 | the genus Passiflora (Passifloraceae). Phytotaxa 308: 245–252.                           |
| 466 | The Royal Horticultural Society - R.H.S. 2001. Royal Horticultural Society colour chart  |
| 467 | (named A, B, C and D). London, U. K.: Royal Horticultural Society.                       |
| 468 |                                                                                          |
| 469 | Tillett, S. 1988. Passionis Passifloris II. Terminología. Ernstia 48:1–40.               |
| 470 |                                                                                          |
| 471 | Ulmer, T. and J. M. MacDougal. 2004. Passiflora: Passionflowers of the world. Portland,  |
| 472 | Oregon: Timber Press.                                                                    |
| 473 |                                                                                          |
| 474 | Vásquez, R. 1998. Las especies de Passiflora subgénero Granadilla series Laurifoliae     |
| 475 | (Passifloraceae) en Bolivia. Revista de la Sociedad Boliviana de Botánica 2: 36-45.      |
| 476 |                                                                                          |
| 477 | Verborgh, R., and M. de Wilde. 2013. Using OpenRefine. Birmingham, U.K.: Packt           |
| 478 | Publishing Ltd. http://openrefine.org/                                                   |
| 479 |                                                                                          |
| 480 | Snow, N., and J. M. MacDougal. 1993. New chromosme reports in Passiflora                 |
| 481 | (Passifloraceae). Systematic Botany 18:261–273.                                          |
|     |                                                                                          |

| 483 | Yockteng, R., G. Coppens d'Eeckenbrugge, and T. Souza-Chies. 2011. Passiflora. Pp. 129-    |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 484 | 171 in Wild crop relatives: Genomic and breeding resources. Tropical and                   |  |  |  |  |  |  |  |  |
| 485 | subtropical fruits. ed. K. Chittaranjan. Berlin: Springer Verlag.                          |  |  |  |  |  |  |  |  |
| 486 |                                                                                            |  |  |  |  |  |  |  |  |
| 487 | Yotoko, SC., M. C. Dornelas, P. D. Togni, T. C. Fonseca, F. M. Salzano, S. L. Bonatto, and |  |  |  |  |  |  |  |  |
| 488 | F. B. Freitas. 2011. Does variation in genome sizes reflect adaptive or neutral            |  |  |  |  |  |  |  |  |
| 489 | processes? new clues from <i>Passiflora</i> . <i>PLoS ONE</i> 6: e18212.                   |  |  |  |  |  |  |  |  |
| 490 | doi:10.1371/journal.pone.0018212.t001                                                      |  |  |  |  |  |  |  |  |
| 491 |                                                                                            |  |  |  |  |  |  |  |  |
| 492 |                                                                                            |  |  |  |  |  |  |  |  |

493 TABLE 1. List of 93 morphological descriptors evaluated in this study. Scales for qualitative characteristics: B
494 (binary), O (Ordinal), and N (Nominal).

| Organ    | Qualitative characters (51)       | Quantitative characters (42) |
|----------|-----------------------------------|------------------------------|
| Stem     | Pubescence (N)                    | Internode length (mm)        |
|          | Color (N)                         |                              |
| Tendril  | Pubescence (N)                    |                              |
|          | Color (N)                         |                              |
|          | Anthocyanin (O)                   |                              |
| Stipule  | Permanence (B)                    | Length (mm)                  |
| •        | Color (N)                         | Width (mm)                   |
|          | Pubescence (N)                    |                              |
|          | Shape (N)                         |                              |
|          | Margin (N)                        |                              |
|          | Anthocyanin (O)                   |                              |
|          | Color (N)                         |                              |
| Leaf     | Margin (N)                        | Petiole length (mm)          |
|          | Base shape (N)                    | Petiole nectaries (number)   |
|          | Apex shape (N)                    | Lobe length (mm)             |
|          | Presence of acumen (B)            | Lobe width (mm)              |
|          | Pubescence – adaxial (N)          | Margin nectaries (number)    |
|          | Pubescence – abaxial (N)          |                              |
|          | Anthocyanin – lamina (O)          |                              |
|          | Anthocyanin – nerves (O)          |                              |
|          | Color – adaxial (N)               |                              |
|          | Presence of laminar nectaries (B) |                              |
| Peduncle | Pubescence (N)                    | Length (mm)                  |
|          | Color (N)                         | Diameter (mm)                |
|          | Anthocyanin (O)                   | Pedicel length (mm)          |
| Bract    | Permanence (B)                    | Length (mm)                  |
|          | Pubescence (N)                    | Width (mm)                   |
|          | Color (N)                         | Margin nectaries (number)    |

|        | Anthocyanin (O)                |                                                   |
|--------|--------------------------------|---------------------------------------------------|
|        | Shape (N)                      |                                                   |
| Flower | Color sepals (N)               | Length (mm)                                       |
|        | Sepal awn (B)                  | Width (mm)                                        |
|        | Color petals (N)               | Sepal length (mm)                                 |
|        | Color filaments at base (N)    | Sepal width (mm)                                  |
|        | Color of filaments at apex (N) | Petal length (mm)                                 |
|        | Color hypanthium (N)           | Petal width (mm)                                  |
|        | Hypanthium pubescence (N)      | Outer filaments series of corona - radii (number) |
|        | Color androgynophore (N)       | Outer longest filament of corona length (mm)      |
|        | Color staminal filaments (N)   | Inner filaments series of corona – pali (number)  |
|        | Color of ovary (N)             | Inner longest filament of corona length (mm)      |
|        | Ovary pubescence (N)           | Hypanthium length (mm)                            |
|        | Color of styles (N)            | Hypanthium diameter at base (mm)                  |
|        | Color operculum (N)            | Hypanthium diameter at above (mm)                 |
|        | Color operculum margin (N)     | Nectary chamber length (mm)                       |
|        |                                | Nectary chamber diameter (mm)                     |
|        |                                | Operculum length (mm)                             |
|        |                                | Androgynophore length (mm)                        |
|        |                                | Gynophore length (mm)                             |
|        |                                | Staminal filaments length (mm)                    |
|        |                                | Ovary length (mm)                                 |
|        |                                | Styles length (mm)                                |
| Fruit  | Shape (N)                      | Weight (g)                                        |
|        | Color fruit immature (N)       | Length (mm)                                       |
|        | Color fruit mature (N)         | Diameter (mm)                                     |
|        | Pubescence (N)                 | Seeds per fruit (number)                          |
|        | Color aril (N)                 | Total soluble solids (°Brix %)                    |
| Seed   | Shape seed (N)                 | Length (mm)                                       |
|        | Color seed (N)                 | Width (mm)                                        |

<sup>495</sup> 

- 496 TABLE 2. Factor loadings from the principal component analysis (*varimax normalized* rotation) carried out on
- 497 37 quantitative descriptors. Bold values (Eigenvalues) contribute most to proportion of variance explained

| Descriptors                         | Components |        |        |  |  |  |  |
|-------------------------------------|------------|--------|--------|--|--|--|--|
|                                     | 1          | 2      | 3      |  |  |  |  |
| Internodes length                   | 0.870      | -0.144 | 0.427  |  |  |  |  |
| Stipule length                      | -0.826     | -0.437 | 0.329  |  |  |  |  |
| Lobe length                         | 0.888      | 0.387  | -0.009 |  |  |  |  |
| Lobe width                          | 0.926      | 0.276  | 0.069  |  |  |  |  |
| Petiole length                      | 0.688      | 0.633  | 0.337  |  |  |  |  |
| Petiole nectaries                   | 0.999      | -0.014 | 0.027  |  |  |  |  |
| Penduncle length                    | 0.392      | -0.678 | -0.606 |  |  |  |  |
| Pedicel length                      | 0.005      | 0.809  | 0.580  |  |  |  |  |
| Bract length                        | 0.962      | -0.265 | -0.058 |  |  |  |  |
| Bract width                         | 0.948      | -0.307 | 0.024  |  |  |  |  |
| Flower length                       | -0.729     | -0.192 | 0.588  |  |  |  |  |
| Flower width                        | 0.097      | -0.626 | 0.418  |  |  |  |  |
| Outermost filament of corona length | -0.175     | 0.928  | -0.095 |  |  |  |  |
| Inner filaments series of corona    | -0.998     | -0.012 | 0.039  |  |  |  |  |
|                                     |            |        |        |  |  |  |  |

| Inner longest filament of corona length | -0.999 | 0.014  | -0.027 |
|-----------------------------------------|--------|--------|--------|
| Petal length                            | 0.346  | 0.918  | 0.175  |
| Petal width                             | 0.849  | 0.470  | 0.229  |
| Sepal length                            | 0.905  | 0.400  | 0.093  |
| Sepal width                             | 0.232  | 0.917  | 0.323  |
| Nectary chamber length                  | 0.815  | 0.105  | 0.561  |
| Nectary chamber diameter                | 0.944  | -0.327 | -0.013 |
| Hypanthium length                       | 0.179  | 0.940  | -0.100 |
| Hypanthium diameter at base             | 0.960  | -0.271 | -0.017 |
| Hypanthium diameter above               | 0.984  | -0.156 | -0.049 |
| Operculum length                        | 0.348  | 0.365  | 0.845  |
| Androgynophore length                   | 0.782  | 0.464  | 0.403  |
| Staminal filaments length               | -0.999 | 0.014  | -0.027 |
| Ovary length                            | -0.869 | -0.461 | -0.042 |
| Styles length                           | -0.204 | 0.949  | 0.232  |
| Fruit weigth                            | 0.999  | 0.023  | 0.011  |
| Fruit length                            | 0.924  | 0.215  | 0.080  |
| Fruit diameter                          | 0.936  | 0.301  | 0.041  |
| Number seeds per fruit                  | -0.650 | -0.067 | -0.395 |
| Total solid solubles content (°Brix)    | -0.898 | 0.015  | -0.275 |
| Seed length                             | 0.986  | -0.113 | 0.068  |
| % Total variance                        | 62.425 | 25.964 | 7.740  |
| Eigenvalue                              | 23.097 | 9.607  | 2.864  |

499 TABLE 3.Summary and comparison of morphological characters between *P. gustaviana* (*Pg*) and *P. popenovii* 

500 (*Pp*).

| Organs   | Descriptors                             |       | Passiflora gustaviana            |         |          |          |              | Passiflora popenovii |         |      |            |           | Duncan's test<br>(p≤0.05) |           |    |    |
|----------|-----------------------------------------|-------|----------------------------------|---------|----------|----------|--------------|----------------------|---------|------|------------|-----------|---------------------------|-----------|----|----|
|          |                                         |       | Minimum                          | N       | Aaximum  | Mean     | Std.Dev.     | Coef.Var.            | Minimum | 1    | Maximum    | Mean      | Std.Dev.                  | Coef.Var. | Pg | Pp |
| Stem     | Internodes length                       | mm    | 32.0                             | -       | 80.0     | 61.6     | 13.9         | 22.6                 | 22.0    | -    | 46.0       | 35.4      | 5.5                       | 15.6      | а  | b  |
|          | Stem color (mature branch)              |       |                                  |         | I        | ourple   |              |                      |         |      |            | green     |                           |           |    |    |
| Stipules | Stipule length                          | mm    | 8.0                              | -       | 13.0     | 10.2     | 1.4          | 13.7                 | 10.0    | -    | 17.0       | 11.9      | 1.5                       | 12.5      | а  | b  |
| eaves    | Lobe length                             | mm    | 125.0                            | -       | 165.0    | 143.4    | 15.6         | 10.9                 | 100.0   | -    | 125.0      | 116.2     | 8.1                       | 6.9       | а  | b  |
|          | Lobe width                              | mm    | 50.0                             | -       | 79.0     | 63.1     | 9.3          | 14.7                 | 39.0    | -    | 51.0       | 46.1      | 3.9                       | 8.4       | а  | b  |
|          | Petiolar glands                         |       |                                  |         | or       | ne pair  |              |                      | absent  | - (r | arely with | a scarlik | e gland ne                | ar base)  |    |    |
| edicel   | Pedicel length                          | mm    | 8.0                              |         | 10.0     | 9.2      | 0.8          | 8.3                  | 5.0     |      | 9.0        | 6.9       | 1.2                       | 18.1      | а  | b  |
| lowers   | Flower length                           | mm    | 28.0                             | -       | 30.0     | 29.0     | 0.9          | 3.3                  | 30.0    | -    | 31.0       | 30.5      | 0.5                       | 1.7       | а  | b  |
|          | Flower width                            | mm    | 60.0                             |         | 72.0     | 65.5     | 4.3          | 6.5                  | 60.0    |      | 80.0       | 71.7      | 7.1                       | 9.9       | а  | b  |
|          | Bract length                            | mm    | 35.0                             | -       | 40.0     | 37.2     | 1.3          | 3.5                  | 20.0    | -    | 30.0       | 23.4      | 2.7                       | 11.7      | а  | b  |
|          | Bract width                             | mm    | 20.0                             | -       | 24.0     | 21.9     | 1.2          | 5.4                  | 11.0    | -    | 18.0       | 14.8      | 1.9                       | 12.9      | а  | b  |
|          | Bract glands                            |       |                                  |         | gk       | andless  |              |                      |         |      | g          | landular  |                           |           |    |    |
|          | Color bract                             |       |                                  |         | ligh     | nt-green |              |                      |         |      | redo       | lish-purp | ole                       |           |    |    |
|          | Petal length                            | mm    | 38.0                             |         | 41.0     | 39.1     | 1.0          | 2.5                  | 25.0    |      | 44.0       | 36.0      | 5.5                       | 15.2      | а  | b  |
|          | Petal width                             | mm    | 14.0                             | -       | 18.0     | 15.8     | 1.1          | 7.0                  | 10.0    | -    | 15.0       | 11.8      | 1.7                       | 14.3      | a  | b  |
|          | Sepal length                            | mm    | 40.0                             | -       | 45.0     | 43.0     | 1.3          | 3.1                  | 36.0    | -    | 42.0       | 40.0      | 1.7                       | 4.2       | a  | b  |
|          | Sepal width                             | mm    | 20.0                             |         | 23.0     | 21.8     | 0.9          | 4.1                  | 16.0    |      | 24.0       | 20.6      | 3.2                       | 15.4      | a  | b  |
|          | Outer longest filament of corona length | mm    | 36.0                             |         | 39.0     | 37.8     | 0.9          | 2.4                  | 30.0    |      | 44.0       | 39.0      | 4.2                       | 10.8      | a  | b  |
|          | Inner filaments series of corona        |       |                                  |         |          | seriate  |              |                      |         |      |            | -seriate  |                           |           |    |    |
|          | Inner longest filament of corona length | mm    | 3.0                              |         | 4.0      | 3.4      | 0.5          | 13.6                 | 4.0     |      | 5.5        | 4.5       | 0.5                       | 12.3      | а  | b  |
|          | Shape inner filaments                   |       |                                  |         | minute-f |          |              |                      |         |      |            | apillary  |                           |           |    |    |
|          | Color of inner filaments                |       |                                  |         |          | urplish  |              |                      |         | wl   |            |           | ue at apex                |           |    |    |
|          | Hypanthium length                       | mm    | 12.4                             |         | 14.0     | 13.1     | 0.5          | 3.8                  | 8.2     |      | 11.5       | 9.9       | 1.2                       | 11.8      | а  | b  |
|          | Hypanthium diameter at base             | mm    | 20.0                             | -       | 21.0     | 20.7     | 0.4          | 2.2                  | 12.0    | -    | 16.0       | 13.5      | 1.4                       | 10.3      | a  | b  |
|          | Hypanthium diameter above               | mm    | 22.0                             | -       | 24.0     | 23.1     | 0.7          | 3.1                  | 14.0    | -    | 19.0       | 15.9      | 1.4                       | 8.6       | a  | b  |
|          | Nectary chamber length                  | mm    | 7.0                              | -       | 9.0      | 8.2      | 0.6          | 7.0                  | 3.0     | -    | 5.6        | 4.4       | 0.6                       | 14.1      | a  | b  |
|          | Nectary chamber diameter                | mm    | 20.0                             | -       | 21.0     | 20.7     | 0.4          | 2.2                  | 12.0    | -    | 17.0       | 14.3      | 1.6                       | 10.9      | a  | b  |
|          | Operculum length                        | mm    | 3.6                              |         | 4.3      | 4.1      | 0.2          | 5.6                  | 3.0     |      | 5.0        | 3.9       | 0.6                       | 14.4      | a  | b  |
|          | Operculum margin                        |       | fimbriated-purplish entire-white |         |          |          |              |                      |         |      |            |           |                           |           |    |    |
|          | Color operculum margin                  |       |                                  |         |          | urplish  |              |                      |         |      |            | white     |                           |           |    |    |
|          | Androgynophore length                   | mm    | 16.0                             | -       | 17.0     | 16.6     | 0.3          | 2.0                  | 9.0     | -    | 16.0       | 12.5      | 2.1                       | 16.8      | а  | b  |
|          | Staminal filaments length               | mm    | 6.8                              | -       | 7.1      | 6.9      | 0.1          | 1.3                  | 6.0     | -    | 9.9        | 8.4       | 1.2                       | 14.5      | a  | b  |
|          | Ovary length                            | mm    | 5.0                              | -       | 6.0      | 5.7      | 0.3          | 5.4                  | 6.0     | _    | 7.8        | 6.8       | 0.9                       | 12.3      | a  | b  |
|          | Ovary pubescense                        |       |                                  |         |          | abrous   |              |                      |         |      |            | ibescent  |                           |           |    |    |
|          | Styles length                           | mm    | 6.0                              |         | 7.0      | 6.3      | 0.3          | 5.1                  | 5.0     |      | 9.0        | 6.9       | 1.6                       | 22.9      | а  | b  |
| ruits    | Fruit weigth                            | g     | 199.0                            | _       | 210.0    | 203.3    | 3.1          | 1.5                  | 78.0    | -    | 120.0      | 100.4     | 12.7                      | 12.7      | a  | b  |
|          | Fruit length                            | mm    | 81.0                             | _       | 85.0     | 82.8     | 1.2          | 1.5                  | 63.0    | _    | 88.0       | 69.9      | 5.6                       | 8.0       | a  | b  |
|          | Fruit diameter                          | mm    | 65.0                             | _       | 67.0     | 66.3     | 0.6          | 0.9                  | 50.0    | -    | 63.0       | 54.3      | 3.2                       | 5.9       | a  | b  |
|          | Color mature fruits                     | 1     |                                  | ellow 1 |          |          | ılar white d |                      | 2010    |      |            | ow-oran   |                           |           |    | 0  |
| eeds     | Seeds per fruit                         | #     | 78.0                             | _       | 84.0     | 80.1     | 1.6          | 2.0                  | 74.0    | _    | 117.0      | 97.9      | 13.4                      | 13.7      | а  | b  |
| us       | Seed length                             | mm    | 9.0                              |         | 10.0     | 9.3      | 2.2          | 1.6                  | 7.0     |      | 8.0        | 7.2       | 4.8                       | 5.1       | a  | b  |
| Aril     | Total soluble solids                    | °Brix | 13.5                             | _       | 14.3     | 14.0     | 0.2          | 1.8                  | 14.8    | _    | 16.8       | 15.4      | 0.5                       | 3.2       | a  | b  |

#### 502

#### 503 TABLE 4. List of *Laurifoliae* species inventoried in Colombia according to Ocampo et al. (2007, 2010, 2011).

| Species                                    | Elevation<br>m.a.s.l. | Distribution in the<br>Biogeographic regions | Observations                                                                                 |
|--------------------------------------------|-----------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|
| P. ambigua Hemsl, 1902                     | 10 - 1,500            | Andean, Caribbean, Orinoquian, Pacific       | Edible fruit                                                                                 |
| P. sp. nov.                                | 1,800 - 1,880         | Andean                                       | Endemic, D. Sánchez et al. 1378 and L. K. Escob<br>F. J. Roldán 8662 (COL, CUVC, HUA, MEDEL) |
| P. gleasonii Killip, 1924                  | 130 - 172             | Amazonian                                    | Unknown fruit, endemic                                                                       |
| P. guazumaefolia Juss., 1805               | 6 - 70                | Caribbean, Orinoquian                        | Edible fruit, synonymous P. theobromifolia DC.                                               |
| P. gustaviana Ocampo & Molinari, 2017      | 1,924 - 2,309         | Andean                                       | Edible fruit, endemic                                                                        |
| P. killipiana Cuatr., 1960                 | 216                   | Amazonian, Orinoquian                        | Edible fruit, endemic                                                                        |
| P. laurifolia L., 1753                     | 79 - 237              | Amazonian, Orinoquian                        | Edible fruit, synonymous P. tinifolia Juss.                                                  |
| P. nitida HBK., 1817                       | 0 - 826               | Amazonia, Andean, Orinoquian, Pacific        | Edible fruit, synonymous P. nymphaeoides H. Ka                                               |
| P. pergrandis Holm-Niels. & Lawesson, 1987 | 1,020 - 1,417         | Andean                                       | Edible fruit                                                                                 |
| P. popenovii Killip, 1938                  | 1,500 - 1,900         | Andean                                       | Edible fruit, cultivated in home gardens                                                     |
| P. riparia Mart ex. Mast., 1872            | 180 - 300             | Amazonian, Orinoquian                        | Edible fruit                                                                                 |
| P. tolimana Harms, 1894                    | 250 - 1,800           | Andean, Orinoquian                           | Edible fruit, synonymous <i>P. metae</i> M. Bonilla, C. Aguirre & C. Caetano                 |

504

## 505 FIG. 1. Geographical distribution of *P. gustaviana* (red dots) on Eastern Cordillera in the Colombia's Andean

### 506 region from herbarium and field collections.



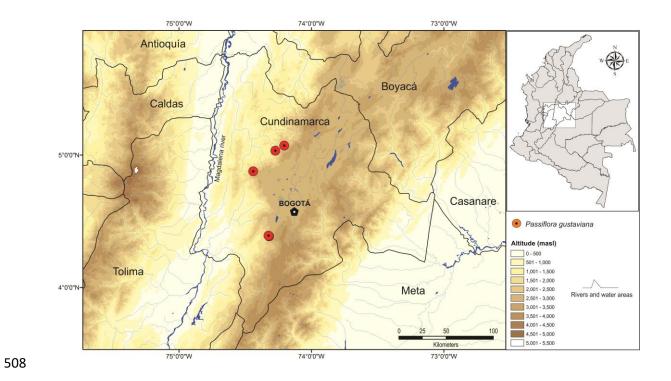



FIG. 2. Plot of the scores obtained by *P. gustaviana* and *P. popenovii* accessions for the principal planequantitative variation components of the PCA.

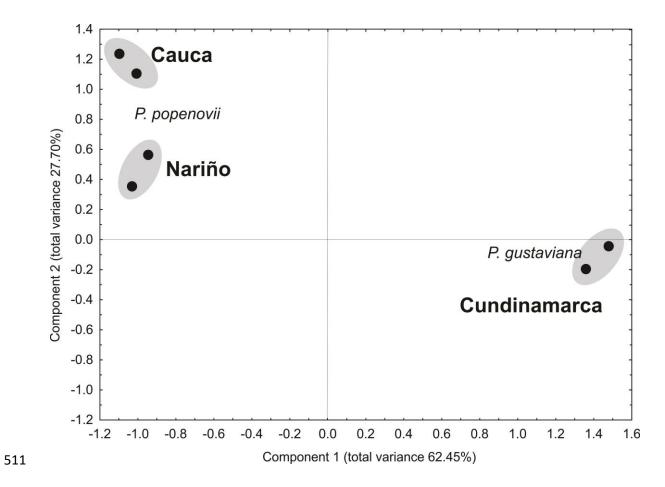



FIG. 3. *Passiflora gustaviana* Ocampo & Molinari. Drawing of a mature plant. A. Stipules, young bud, tendril,
petiole, petiolar glands and leaf. B. Stipule. C. Flower, pendent. D. Longitudinal section of a flower. E. Fruit,
mature. F. Seed. Drawn by Jairo Larrahondo, of the type (*Gustavo Morales 3190*, JBB).

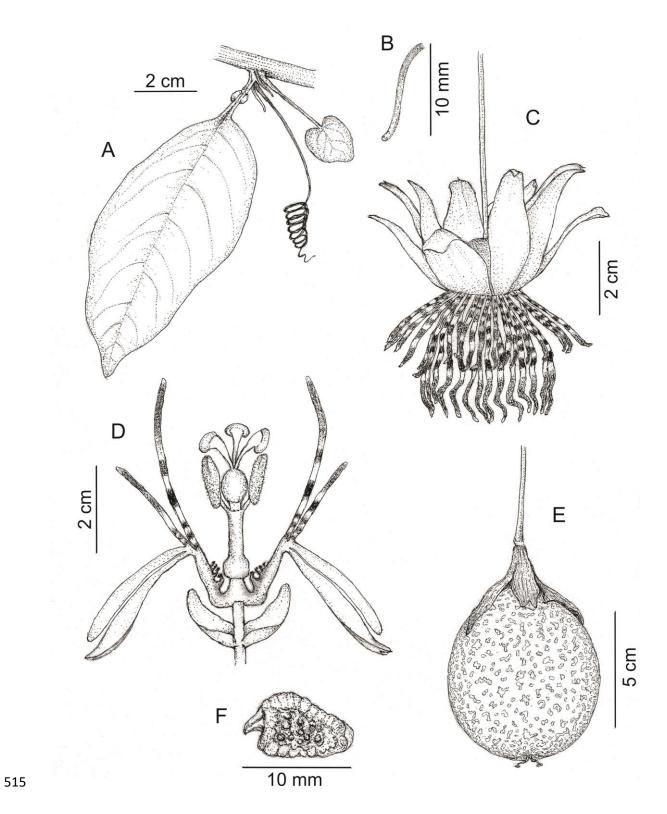
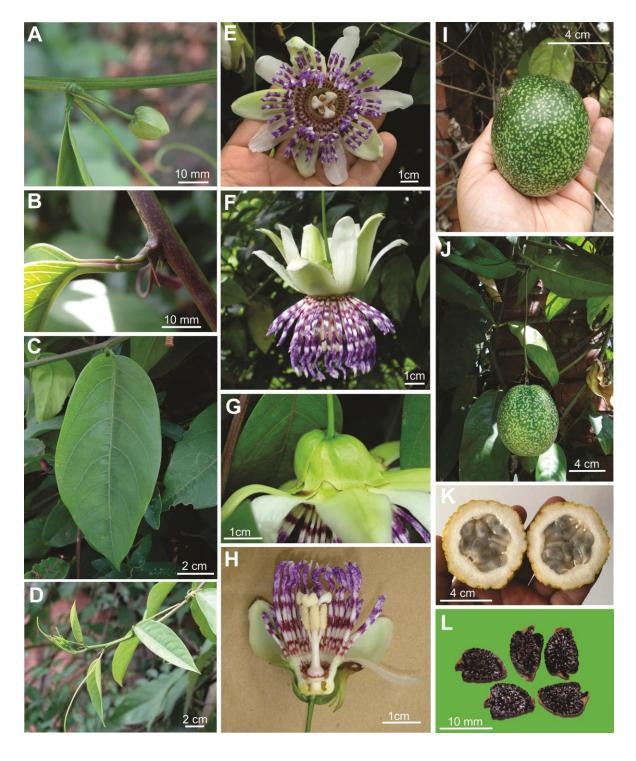




FIG. 4. *Passiflora gustaviana* Ocampo & Molinari. Photographs of a mature plant. A, stipules, young bud and
tendril. B, petiole and petiolar glands. C, mature leaf. D, terminal branch, E, frontal view of a flower. F, flower,

- 518 pendent. G, floral bracts. H, longitudinal section of a flower. I, fruit, immature. J, fruit, becoming mature. K,
- 519 fruit mature, cross section showing mesocarp and pulp. L, seeds. Photographs by John Ocampo and Gustavo
- 520 Morales, of the type (*Gustavo Morales 3190*, JBB).

