Optimizing the environmental footprint of livestock production

An Notenbaert and Polly Ericksen

TropAg2017 Conference, Brisbane, 20-22 November 2017
THE IMPORTANCE OF LIVESTOCK

For PEOPLE
- Employment, income
- Economy
- Food and nutrition
- Cultural value
- Resilience and risk management

And the PLANET
- Biggest land user
- Natural resources:
 - Manure, carbon in the soil, energy, ...
 - GHGe, water use/pollution, degradation, ...

OECD narratives mostly negative
Not much evidence from Low-Middle Income Countries

Sustainability is a big issue and needs to be managed
Optimize the environmental footprint

i.e.

“Goods” & “Bads”
THREE PILLARS IN THE RESEARCH PORTFOLIO

• Improved **foresight and assessments** (2-way GEC-livestock interactions) based on site-specific data

• Identify **solutions** and provide stakeholders with knowledge and incentives to implement solutions

• Foster an **enabling** policy and institutional environment

== GHGe, soil health/degradation, water, biodiversity ==
EXAMPLE 1: greenhouse gas emissions
Impacts of CC on Livestock

- **Hazards/stresses:**
 - ΔCO_2, temperature, precipitation
 - Variability and extreme events

- **Direct impact**
 - Heat stress

- **Indirect impact**
 - Water
 - Diseases
 - Biodiversity, Soil
 - Feed and forages
 - Livelihoods and systems

Heat stress change – 2010-2035:

Ecocrop modeling (Hymann et al.)
GHG emission baselines and SSA-specific emission factors

• Tier 2 estimates of ruminant Emission Factors

• Difference due to assumptions about energy intake
 • Feed shortage/seasonal LW loss
 • Caution: only one location

• Countries in stronger position for climate finance

<table>
<thead>
<tr>
<th>Report</th>
<th>Region</th>
<th>Males</th>
<th>Females</th>
<th>Calves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kg CH$_4$ yr$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPCC</td>
<td>Africa</td>
<td>49</td>
<td>41</td>
<td>17.3</td>
</tr>
<tr>
<td>Goopy et al. (2017)</td>
<td>Nyando, Kenya</td>
<td>34.4</td>
<td>24.6</td>
<td>16</td>
</tr>
</tbody>
</table>

IPCC approach

CH$_4$ = Energy intake \times Y_m ("methane conversion factor")
Integrating forages in African farming systems

On-station:
- Kenya, Tanzania, Uganda, Mozambique
- Demonstration plots and long-term trials
- Grasses/legumes
→ Towards advanced lines of breeding program

On-farm:
- Napier, Brachiaria, Desmodium in Tanzania
- Oats, Rye grass, Vetch in Central Kenya
- Grasses/legumes in Rwanda and Tanzania
EXAMPLE 2: Restoring degraded rangelands
Estimating SOC dynamics in a rangeland of Eastern Kenya - A DayCent model approach

- Soils as carbon sink
 - Mitigate CC
 - Improve soil fertility

- Rangeland sequestration potential
 - Improved management practices

- DayCent SOM model
 - Predicts SOC dynamics over time

MSc. thesis by Kate Blankson
1 Booklet (practical guidelines) on Sustainable Development of Lowland Pastures in NENA region
Exclosure improvement: *influence of context*
The CGIAR Research Program on Livestock aims to increase the productivity and profitability of livestock agri-food systems in sustainable ways, making meat, milk and eggs more available and affordable across the developing world.

livestock.cgiar.org

The program thanks all donors and organizations which globally support its work through their contributions to the CGIAR system.