Crop genetic diversity can make farming systems more resilient, but many farmers still lack access to crop genetic resources (Tripp, 1997). For a long time, formal institutions would introduce new varieties to farmers in two ways. In the research phase, breeding programmes set up farmer field trials (FFT) to evaluate performance and measure farmer’s acceptance of the varieties being developed. In the extension phase, extension agents include new varieties in the package of seeds and inputs called mini-kit to promote new varieties. These approaches incorporated farmers’ views late in the stage of variety development and dissemination and hence specifically struggled in providing varieties that met the needs of a large number of smallholder farmers in marginal lands (Witcombe et al., 1998).

To overcome this, breeding and variety development strategies have become more participatory, and the number of methods to deploy diversity has increased (Witcombe et al., 1996; Eyzaguirre and Iwanaga, 1996; Sperling, and Scheidegger, 1996; van Etten, et al., 2016). However, confusion and many interpretations of the methods have made it difficult to choose the appropriate method and to communicate results consistently.

This guide provides details on the history, use, and pros and cons of four participatory diversity deployment methods (IRD, Diversity Kits, PVS, TRICOT) to help practitioners distinguish between the methods and choose ones that fit their needs.

1. Informal Research and Development (IRD) – informal method for testing and popularizing seed of choice based on individual farmer knowledge and expertise (Joshi and Sthapit, 1990). In this method:
 - Each household is given a seed packet (100g to 1 kg as per seed size) for a single variety as a gift
 - Packets are given out in clusters of villages to analyse performance in different conditions
 - No external inputs are included
 - An informational leaflet with varietal characteristics is often included
 - Name and address including geo-reference of seed recipient are recorded
 - Farmers are free to select where to grow the variety and how much input to provide
 - Feedback is collected informally through anecdotes, and in some cases via sample HH surveys

IRD was developed out of necessity at the Lumle Agriculture Research Centre in Nepal over three decades ago. At the time, researchers had to hike for days to get to remote villages and frequent visits to any particular site was not practical. Hence, they carried seeds of new and pipeline varieties to distribute whenever they visited. Feedback was collected during the next visit, a year or two later. The feedback was anecdotal, informal and utilized observation of how far the variety had spread, giving the name ‘informal research and development.’

2. Diversity Kits – distribution of seed packets with seeds of promising local and improved varieties to each household so that farmers can test them informally under their own conditions (Sthapit et al., 2006). In this method:
 - Seed packets (10 g to 1 kg as per seed size) are distributed, with 3 varieties per household for cereals and pseudo-cereals, and many varieties or multiple species per household for vegetables;
 - Farmers informally test the varieties compared to their local check and safe-guard seed;
 - Feedback about acceptance or rejection and the reason are collected via sample survey;
 - In total, 50-500 sets of kits are distributed randomly in a village.

By providing wider access to farmer varieties – identified through diversity fairs and blocks – diversity kits promote use and conservation of...
agricultural biodiversity. Diversity kits deploy a portfolio of farmer varieties, from within and outside the village, and encourage farmers to select, exchange, and disseminate best varieties for a certain location based on local environment and cultural preferences.

3. Participatory Varietal Selection (PVS) – selection of fixed genotypes by farmers in their target environments using their own selection criteria (Joshi and Witcombe, 1996). In this method;

- Farmers’ requirements in a variety are identified using PRA
- Researcher searches and identifies candidate varieties (best landrace, escaped variety, released, and pre-released varieties) that could meet the farmers’ requirements
- Candidate varieties are tested in farmers’ fields using mother and baby trials
- Farmer preferred varieties are scaled up, often deployed as IRD kits.

Testing of candidate varieties to identify the ones preferred by farmers is done using designed field experiments. There are 2-3 mother trials in a village and 25-50 baby trials for each variety. Mother trials compare all varieties in an RCBD with 2-3 replications, and analysis of variance is computed to compare means. Baby trials allow each household to compare one or two varieties with their best local as the check. Researchers organize a farm walk at harvest to compare existing and improved varieties by participatory preference ranking, often conducted separately with male and female farmers. Farmers exchange knowledge about the traits of tested varieties in a focus group discussion (FGD). From the baby trials, individual household’s perception (in terms of better, same, or worse) on yield and important traits of the candidate variety versus the local check are compared.

4. Triadic Comparison of Technologies (TRICOT) Method – involves distributing a pool of pipeline varieties in combination of three to individual farmers who test them under farm conditions and compare their overall performances (van Etten et al., 2016; Steinke et al., 2017). The process includes;

- Seed assembly and distribution is similar to IRD and Diversity Kits
- Blind trial of 3 varieties per household (farmers are not given variety names until they send feedback)
- Farmers rank performance of the 3 varieties; check variety is included but not known to farmers
- Farmers self-report feedback using mobile phones
- In total, large number of kits (1500 - 2000) are distributed randomly in a village
- iButton data loggers are used to record environmental data in the test environment
- ClimMob software is used for data analysis using the Bradley-Terry model for ranking 3 varieties.

TRICOT is a modification of PVS in terms of i) collecting comparison data on 3 varieties instead of 2, ii) getting blind feedback by giving number rather than names to varieties being tested, and iii) using mobile technology and apps to automate the process of data collection and analysis. Crowdsourcing (citizen science) engages a large number of volunteers (unpaid citizen scientists) to collect, enter or analyze a large set of data. Farmers provide feedback by mobile phone, which is integrated to provide variety recommendations for dissemination through community seed banks and farmer-to-farmer exchanges. The blind testing helps reduce farmer bias in evaluating varieties. However,
practitioners in Nepal have reported a trade-off between reducing bias and the lack of name recognition of the preferred variety when it comes to dissemination.

Decision Tool for Method Selection

A summary of methodological differences of participatory and conventional methods is given in Table 1. Figure 1 summarizes possible interventions that can be taken based on production constraints including selection of appropriate variety sourcing methods discussed in this guide. IRD, Diversity Kits and TRICOT methods are preferred when sufficient varietal diversity does not exist or diversity is not easily accessible to farmers. The choice of variety sourcing methods also depends on pros and cons of the method (Table 2) and institutional capacity and constraints.

PVS, diversity kits, IRD, and TRICOT accelerate the adoption of new varieties, increase crop genetic diversity, and provide information on acceptability in different locations.

![Table 1. Differences between Conventional (FFT, Minikit) and Participatory Methods (PVS, Diversity Kit, IRD, and TRICOT)](attachment:image)

(Source: Sthapit et al., 2017 in press)
Table 2. Comparison of Pros and Cons of Participatory Methods (PVS, IRD, and Diversity Kits)

<table>
<thead>
<tr>
<th>Pros</th>
<th>IRD</th>
<th>Diversity Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Testing available materials based upon need assessment. Helps to set new breeding goals & identifies suitable parents.</td>
<td>• Provides access to new varieties.</td>
<td>• Provide fast access to diverse portfolio of farmer varieties and landraces.</td>
</tr>
<tr>
<td>• Variety spread is rapid as need assessment is taken into account and farmers get the seeds during the testing phase rather than only after release.</td>
<td>• Simple, informal R & D approach; flexible data collection requirement. Farmers’ feedback collected informally by anecdote; hence even crowdsourcing approach of data collection through mobile phone can be used.</td>
<td>• Practical where seed must be carried by porters & seed availability is limited.</td>
</tr>
<tr>
<td>• Early feedback from end-users</td>
<td>• Appropriate and cost-effective in geographically challenging areas</td>
<td>• Promotes local-level seed selection and exchange, evolutionary breeding on-farm</td>
</tr>
<tr>
<td>• Social scientists can identify preferred varieties, reasons for preference, and constraints to adoption</td>
<td>• Covers many farmers across large and diverse geographical area</td>
<td>• Ensures resilient seed system</td>
</tr>
<tr>
<td>• Allows evaluation of multiple traits and trade-offs between traits; identifies new farmer-important traits</td>
<td>• Low cost and rapid varietal uptake, if variety is found to be suitable can be managed by local organizations</td>
<td>• Can be managed by local institutions</td>
</tr>
<tr>
<td>• Widely accepted & used by CGIAR and NARS institutions globally</td>
<td>• Requires timely distribution of IRD kits and follow-up sample survey</td>
<td>• Identifies markets for new varieties</td>
</tr>
<tr>
<td>• Relatively high cost and involvement of researchers and farmers</td>
<td>• Challenging to obtain sufficient quantity of truthfully labelled or certified seed</td>
<td>• Can serve as crowdsourcing data if farmers self-report by mobile</td>
</tr>
<tr>
<td>• High level of advanced planning and coordination</td>
<td>• Requires high labour cost of packaging</td>
<td>• Knowledge-intensive to select varieties for kits and monitor village-level use trends</td>
</tr>
<tr>
<td>• Mother trials require tightly timed visits during cropping cycle</td>
<td>• Requires timely distribution of IRD kits and follow-up sample survey</td>
<td>• Differing methods used in practice due to simple terminology</td>
</tr>
</tbody>
</table>

References:
- Joshi A, and Witcombe JR (1996) Farmer participatory crop improvement II: participatory varietal selection, a case study in India. Experimental Agriculture 32: 461-478
- Sperling L and Scheidegger UC (1996) Results, methods and institutional issues in participatory selection: The case of beans in Rwanda. Critical Reviews in Plant Sciences

ACKNOWLEDGEMENT

The GEF/UNEP supported project, ‘Integrating Traditional Crop Genetic Diversity into Technology: Using a Biodiversity Portfolio Approach to Buffer against Unpredictable Environmental Change in the Nepal Himalayas’ is being implemented in Nepal. The project is coordinated by the Bioversity International and Department of Agriculture (DoA) and Local Initiatives for Biodiversity, Research and Development (LI-BIRD).

For more information: Integrating Traditional Crop Genetic Diversity for Mountain Food Security GEF UNEP Project Management Unit, Bioversity International National Gene Bank, Nepal Agricultural Research Council Khumaltar, Lalitpur, Nepal Tel. +977 5003071 Web www.himalayancrops.org Contact Bhuwon Sthapit (b.sthapit@cgiar.org) and Devendra Gauchan (d.gauchan@cgiar.org), Bioversity International