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Long-term changes in land use, climate, and agricultural technol-
ogies may affect pest severity and management. The influences of
these major drivers can only be identified by analyzing long-term
data. This study examines panel data on land use, adoption of
genetically modified Bacillus thuringiensis (Bt) insect-resistant cot-
ton, weather, pest severity, and insecticide use on three major
cotton pests for 51 counties in China during 1991–2015. Bt cotton
had pervasive effects on the whole pest complex in cotton and its
management. Adoption resulted in major reductions in insecticide
use for bollworm control. The resulting restoration of aphid bio-
logical control decreased aphid severity. However, mirid bugs,
which have few effective natural enemies in cotton, increased in
severity with warming May and reduced insecticide spraying
against bollworm. The effects of landscape on pest severity were
pest specific. The severity of cotton aphid and mirid bugs de-
creased with higher land use diversity, but the severity of highly
polyphagous cotton bollworm was unrelated to land use diversity.
Shares of forest, water body, and unused land area were nega-
tively associated with the severity of mirid bugs, whereas cotton
bollworm responded positively to the shares of water body and
unused land area. Farmers sprayed insecticides at mild infestation
levels and responded aggressively to severe bollworm outbreaks.
Findings support the usefulness of Bt-based plant resistance as a
component of integrated pest management (IPM) but highlight
the potential for unexpected outcomes resulting from agro-
ecosystem feedback loops as well as the importance of climate.
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Despite tremendous improvements in breeding and other
technologies for robust yield increase, crop pests remain an

important cause of considerable yield loss, triggering the use of
insecticides that affect farm profit and the health of humans and
their environment. Cotton is the most heavily treated agricultural
commodity, accounting for one-third of all pesticide use globally,
and the widespread use of highly toxic insecticides in cotton poses
significant threats to human health and the environment (1).
Complex landscapes generally provide improved pest sup-

pression ecosystem services that support crop production and
reduce the need for external inputs compared with simplified
landscapes. Simplified landscapes tend to have fewer plant and
invertebrate species, larger fields, and less noncrop habitat where
natural enemies of crop pests may find important resources such
as nectar, pollen, other alternative foods, and shelter (2–4).
While natural habitat in agricultural landscapes has been shown
to increase pest control in many systems, the net effect of
landscape complexity on pest severity has been mixed, context
dependent, and system specific (2–4). The relative importance of

natural habitat for biological pest control can vary dramatically,
depending on type of crop, pest, predator, land management,
and landscape structure (5). This needs to be considered when
designing measures aimed at enhancing biocontrol services
through restoring or maintaining natural habitat (5).
Landscape-based ecosystem services interact with crop man-

agement (6). This interaction is characterized by feedback: If the
landscape-based ecosystem service of biocontrol is effective at
crop level, a farmer may refrain from using pesticides, and vice
versa. However, if pesticide use in crops is indiscriminate, it
should be expected that natural enemies may not be effective,
even if they are present in a landscape, while the biocontrol
service may be destroyed in the long term due to the interruption
of natural enemies’ life cycles. Because of this linkage, farmers
can develop a “lock-in” syndrome where continued heavy
spraying is necessary to compensate for the lack of enemies that
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this same spraying has caused, a syndrome described as a “pes-
ticide treadmill” (7). Restoration of natural enemy communities
by broadscale adoption of judicious pesticide use can revert this
syndrome (7, 8). The introduction of genetically engineered in-
sect resistance in crop opens an opportunity to escape from this
treadmill and integrate agroecology with biotechnology (9). The
impacts of crop management versus landscape-based ecosystem
services on pest severity have been little explored in empirical
studies because they require large-scale intensive data gathering
on land use and crop management.
Weather is an important factor affecting insect population and

movement. Positive physiological responses to increasing tem-
peratures allow for faster insect population growth and facilitate
movement, and milder winters allow for earlier commencement
of colonization of crops and a reduction in winter mortality (10–
14). Most analyses show that, in a warmer climate, pests may
become more abundant and may expand their geographical
range (15). Precipitation also affects crop–pest interactions (15).
Both direct and indirect effects of moisture stress on crops make
them more vulnerable to damage by pests, especially in the early
stages of growth (15). Therefore, improved understanding of
climate-induced risks on pest severity over extended periods is
essential for the discussion of climate adaptation policies related
to agriculture. China’s climate has warmed since the 1960s, with
stronger warming in the north and increased rainfall contrast
between northeastern and southern China (16–18). Weather
effects on agricultural pests need to be assessed in the light of
climate change, which is projected to bring significant warming
to large parts of China over the coming decades (19, 20).
China is the largest cotton producer in the world (21). It is also

one of the largest pesticide consumers worldwide. For instance,
China used 4.4 times more pesticides (in tons of active ingredi-
ents) than the United States in 2012 (22). An estimated 30–40%
of all pesticides applied in China are used on cotton, making it
the most heavily treated agricultural crop (1). Nearly 40% of the
pesticides used by Chinese cotton farmers contain active ingre-
dients that are classified as extremely or highly hazardous by the
World Health Organization (23), contributing to around 400–
500 cotton farmer deaths every year from pesticide poisoning
(24). Genetically modified Bacillus thuringiensis (Bt) insect-
resistant cotton was introduced in China’s agriculture in 1997,
and adoption progressed at different rates in different regions
depending on the timing of Bt cotton varieties approved for
commercialization and the availability of Bt cotton seed in local
markets (25). The practice of applying excessive amounts of
highly toxic pesticides has continued even after the adoption of
Bt cotton (26–28). Research has shown that microlevel behav-
ioral factors such as risk aversion (23) and lack of knowledge by
Chinese cotton farmers (29) are important factors driving pes-
ticide use, while others have suggested that Bt cotton seed
quality (23, 30) and secondary pests (31) are also at play.
The effects of insecticide use on both human health and eco-

logical systems need to be mitigated. Different agricultural, land
use, conservation, and climate adaptation policy measures may
address different drivers of pest severity and insecticide use (32).
For effective policy development, it is necessary to understand
how abiotic or biotic factors jointly and quantitatively drive pest
severity and pesticide use at broad geographic scales at which
experimentation is not feasible. Using a unique long-term panel
(i.e., longitudinal) dataset for 51 counties in eight provinces (Fig.
1), this study applies rigorous econometric methods to examine
the main drivers of cotton pest severity and insecticide use at the
county scale in China over a 25-y period, from 1991 to 2015. The
eight provinces included in the study (Anhui, Hebei, Henan,
Hubei, Jiangsu, Shaanxi, Shandong, and Shanxi) cover two of
China’s three major cotton production regions, the Yangtze River
valley and Yellow River valley regions, and accounted for one-half
of the national cotton production in 2010 (33).

We consider three major cotton pests: cotton aphid (Aphis
gossypii), mirid bugs (mainly including Apolygus lucorum, Adel-
phocoris suturalis, Adelphocoris lineolatus, and Adelphocoris fas-
ciaticollis), and cotton bollworm (Helicoverpa armigera). Together,
these three pests accounted for 81% and 75% of cotton crop loss
caused by arthropod pests in the presence of insect control in
1994 and 2001, respectively (34). We conclude with a discussion of
policy implications on sustainable solutions to pest management.

Results
Descriptive Analysis. Cotton acreage in the sampled counties
varied over time, with a steady decline from 1991 to 2001, a
restoration from 2001 until 2004, and a slowly decreasing trend
afterward (Fig. 2). The adoption rate of Bt cotton varied con-
siderably across provinces, with Anhui, Hubei, and Jiangsu in the
more southern Yangtze River valley region introducing Bt cotton
at a slower pace than the provinces in the Yellow River valley
region (Hebei, Henan, Shaanxi, Shandong, and Shanxi). Six of
the eight provinces had reached almost full adoption by 2008,
while all eight provinces had full adoption by 2015 (see Bt cotton
adoption rate by province in SI Appendix, Fig. S1).
Pest severity was measured using a five-point scale: (i) level I,

no pest or very low level of infestation; (ii) level II, slight; (iii)
level III, moderate; (iv) level IV, severe; and (v) level V, ex-
tremely severe infestation. Across the sampled counties, cotton
aphid severity showed considerable decline over the early 1990s
and remained largely constant from1995 until 2010, and declined
slowly thereafter (Fig. 3A). Cotton bollworm severity declined
remarkably from an average rating of 4.4 during 1991–1996 to
2.2 during 2005–2010, and continued to decrease afterward (Fig.
3A). In contrast, mirid bugs severity was low until around
1997 before it started to increase drastically, from an average
level of 1.1 during 1991–1996 to 3.1 during 2005–2010, after
which it slightly decreased (Fig. 3A).
Trends in insecticide use largely corresponded to those of

infestation levels of the respective pests at which the insecticides
were targeted (Fig. 3B). Severe bollworm outbreaks were met
with frequent sprays in the early 1990s, but overall treatment
declined from an average of 9.3 sprays during 1991–1996 to less
than 3 sprays per year after 2006. Largely untreated before 1997,
mirid bugs were on average sprayed as many as 3.7 times during
2005–2015. Overall, the severity of pests and frequency of in-
secticide sprays showed a slightly decreasing trend since 2008 for
all three pests.

Fig. 1. Locations of counties included in the study and land use diversity
(Shannon diversity) for 1990. Data used to make the map are reported in SI
Appendix, Table S6.
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Cultivated land was the dominant land use in the surveyed
counties throughout the period (1990–2015), accounting for over
55% of the total land area, followed by built-up land (26%),
water body (10%), forest (5%), grassland (4%), and unused land
(1%). Cultivated land, grassland, and unused land declined in
area proportions between 1990 and 2015, whereas the area
shares of built-up land, water, and forest increased (SI Appendix,
Table S1). Land use diversity changed marginally during the
period (SI Appendix, Table S1), but there was a large variation
across counties (Fig. 1).
Monthly average temperatures in May, June, and August in-

creased during 1991–2015 (Fig. 4A). Monthly total precipitation
decreased in June but increased in August during the same pe-
riod (Fig. 4B). The months of May and June became significantly
warmer over time, while June also became dryer (see estimated
time trends from regression analysis in SI Appendix, Table S2),
and these changes are likely to affect cotton production ad-
versely, by stimulating pests (15).

Econometric Analysis Results.
Drivers of pest severity. Land use diversity, as measured by Shan-
non diversity (Materials and Methods, Econometric Analysis),
negatively affected cotton aphid and mirid bug severity (Table 1;
full regression results are reported in SI Appendix, Table S3). For
cotton aphid, pest severity tended to be higher when there was a
greater share of crop land devoted to cotton, ceteris paribus. In
addition, the proportion of built-up area was negatively corre-
lated with cotton aphid severity, relative to the proportion of
cultivated land. For mirid bugs, the proportions of forest, water
body, and unused land area were negatively correlated with
pest severity.
Land use diversity had no significant effect on the severity of

cotton bollworm (Table 1). The proportion of cotton area that
was genetically resistant to bollworm had a significant negative
impact on bollworm severity, indicating that this pest control
strategy was effective. The proportions of water body and unused
land area, compared with cultivated land, had significant positive
effects on bollworm.
The number of insecticide applications against bollworm had a

significant positive impact on cotton aphid severity but a negative
impact on mirid bug severity. This result indicates that the se-
verity of cotton aphid decreased as treatments against bollworm
declined over time, likely due to the restoration of aphid sup-
pression by natural enemies. In contrast, reduced insecticide use
against cotton bollworm benefited mirid bugs.

The marginal effect of a given explanatory variable calculated
from an ordered probit regression captures the change in the
probability of observing different classes of pest severity (levels
I–V) due to a unit change in the explanatory variable (SI Ap-
pendix, Latent-Variable Model for Ordered Regression). Table 2
reports the marginal effects of explanatory variables that were
found significant in the regressions reported in Table 1, evalu-
ated at the sample means of covariates. For instance, the prob-
ability of observing the most severe class of cotton aphid severity
(level V) increased by 5.5% (marginal effect of 0.0553) for a unit
of increase in land use diversity (i.e., if there is one more type of
land use in the county). Considering the marginal effect of land
area share, for instance, a 1% increase of forest area in the
county made it 28.3% more likely to have a nondamaging level of
mirid bug severity (level I) while a 1% increase in water body
area made it 16.1% more likely to have a nondamaging mirid bug
level (level I), but the latter change made a severe bollworm
outbreak (level IV) 8.4% more likely. These differences in sign
of significant coefficients point to diverging effects of land use on
mirid bugs and cotton bollworm, even though both are polyph-
agous and able to exploit multiple hosts across the landscape.
Weather, particularly temperature, had substantial effects on

the severity of cotton aphid and mirid bugs during the period of
1991–2015, compared with the other significant factors (Table
2). The likelihood of a severe cotton aphid infestation (level IV)
occurring was increased by 2.8% for 1 °C increase in the average
temperature in July and was decreased by 3.2% for 1 °C increase
in the average temperature in August. The likelihood of a low
aphid infestation (level II) was decreased by 3.9% and increased
by 4.4% for these same temperature changes, respectively. Mirid
bug severity was generally higher in years with higher May
temperature, with the chance of a no-outbreak year (level I)
lowered by 5.7% for each degree Celsius increase in May tem-
perature. Temperature in June was an important driver of cotton
bollworm severity, with the chance of having a severe infestation
(level IV) lowered by 5.7% for each degree Celsius increase.
The effect of pest severity on insecticide use intensity. Cotton farmers
applied on average 0.44, 1.10, 2.06, and 2.60 more insecticide
sprays for cotton aphid control, and 0.93, 1.64, 2.68, and 3.73 more
sprays for mirid bugs control at infestation levels II, III, IV, and V,
respectively, than at level I (Table 3; full regression results are
reported in SI Appendix, Table S4). For cotton bollworm, farmers
reacted vigorously in the event of an extremely severe infestation
(level V), applying on average 4.69 more sprays than at severity
level I. During the study period, farmers on average sprayed
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Zhang et al. PNAS Latest Articles | 3 of 10

A
G
RI
CU

LT
U
RA

L
SC

IE
N
CE

S
SU

ST
A
IN
A
BI
LI
TY

SC
IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721436115/-/DCSupplemental


1.65 times (±1.23), 0.38 times (±0.70), and 1.01 times (±1.07)
against cotton aphid, mirid bugs, and cotton bollworm at the
nondamaging infestation levels (level 1), respectively. The results
indicate that farmers use insecticides prophylactically for cotton
aphid and bollworm, but not for mirid bugs.

Discussion
Cotton aphids exploit a variety of host plants, but cotton is the
single most important host. Our results indicate that counties
with a greater proportion of cotton in total cultivated land had
higher severities of cotton aphid. Increases in land use diversity
in a county decreased cotton aphid severity, and increases in
built-up area (urbanization) were associated with lower cotton
aphid severity. The role of urban areas in supporting a diverse
predator community in the cotton ecosystem in northern China
was also found (35).
Mirids exploit a wide variety of crop hosts including cotton (31),

fruit trees, and over 200 other host species (36). Therefore, it is
anticipated that mirid bugs will profit rather than suffer from di-
verse land uses (31). However, land use diversity negatively af-
fected mirid bug severity, while greater area proportions of forest,
water body, and unused land were associated with lower mirid bug
severity. These findings contradict results of earlier analyses in-
dicating that diverse land use, through the provision of multiple

host habitats, stimulates mirid bugs in the Chinese context (31).
Results of the current county-level analysis, based on the largest
database collected thus far, indicate that in the Chinese context
advantages of diversifying the cropping landscape are more im-
portant for mirid bug control than disadvantages.
Land use diversity had no effect on cotton bollworm severity.

However, the area proportions of water body and unused land
were positively associated with cotton bollworm severity, which
may signal the importance of a broad range of host plants during
different seasons for the survival and population dynamics at the
landscape level of this generalist herbivore. Another key result of
this analysis is that cotton bollworm depends negatively on Bt
cotton proportion. However, the estimated average (negative)
effect of Bt cotton area proportion for the period of 1991–2010
(n = 1,020; mean, −0.013; SD, 0.003) was significantly lower than
that for the period of 1991–2015 (n = 1,028; mean, −0.012; SD,
0.003) (t test, P value of 0.0000). This signals a slight decline in
the effectiveness of Bt cotton in suppressing cotton bollworm in
recent years, likely due to resistance development. Zhang et al.
(37) detected cotton bollworm resistance in laboratory bioassays
but noted that control failures of Bt cotton have not been
reported in China. These early warnings may spur proactive
countermeasures, including a switch to transgenic cotton pro-
ducing two or more toxins distinct from Cry1A toxins (37).
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the sample, 1991–2015.
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Our results show that the adoption of Bt cotton has not only
effectively brought down severity levels of the cotton bollworm
but also led to significant spillover effects on cotton aphid and
mirid bugs because of reduced insecticide use against bollworm.
Specifically, reducing insecticide use against bollworm had
helped to conserve aphid natural enemies, which subsequently
regulated cotton aphid populations. This finding is consistent
with that of Lu et al. (38), who found that there was a marked
increase in the abundance of three types of generalist arthropod
predators (ladybirds, lacewings, and spiders) and a decreased
abundance of aphid pests associated with widespread adoption
of Bt cotton and lower insecticide use in this crop. Previous
studies identified insecticide use in cotton as an important factor
affecting the population levels of cotton aphid during the 1990s
and 2000s in China (34, 39, 40). Before the 1970s, cotton aphids
were kept well under control by natural enemies and treating
seeds with insecticides (34). During the 1970s and 1980s, aphid
damage to cotton became more serious and frequent because
insecticide use against cotton bollworm was wiping out most
natural enemies of cotton aphid (32, 39, 41–43). Natural enemies
play an essential role in population suppression of cotton aphid
(44–47), and measures that allow conservation of predators in
cotton fields can greatly help to control the pest.

In contrast, reduced insecticide use against bollworm was re-
sponsible for increasing mirid bug severity in cotton. This is
plausible, because common insecticides that are used to control
bollworm can effectively suppress mirid bug populations, while at
the same time the effect of natural enemies on mirid bugs is very
limited (48). Our analysis of long-term panel data confirms the
report of Lu et al. (31), based on a much smaller dataset, that
mirid bugs increased in importance as a pest in cotton because of
increased adoption of Bt cotton and associated reduction in
insecticide use.
Findings of this study have the following policy implications.

First, landscape structure plays an important role in providing
biological pest control ecosystem services and our analysis at
the county level confirms this. However, the role of land use
diversity in providing pest control services is likely to be idio-
syncratic, depending on the biological features of and interac-
tions among species, and should not be considered a “silver
bullet” for managing all insect pest problems. Policies that aim
at enhancing natural habitat and biodiversity conservation
should anticipate the possibility of varying impacts on different
insect species. Second, the large-scale expansion of Bt cotton in
China has played a critical role in regulating cotton bollworm.
However, the associated reduction in insecticide use against
cotton bollworm has also led to effects on other cotton pests
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such as cotton aphid and mirid bugs. Such linkage among different
pest species and unintended effects of management practices need
to be accounted for when designing agricultural policies and insect
management methods. Third, weather is an important driver of
the system and the projected climate warming is likely to heighten
pest outbreak risks. Compared with Bt cotton whose adoption
nearly saturated about a decade ago, weather is gaining its mo-
mentum as an important threat. Policy makers and agricultural
practitioners need to consider the impact of climate change on
pest management and implications for chemical insecticide use.
Fourth, cotton farmers sprayed against cotton aphid and bollworm
even at nondamaging levels of infestation. This prophylactic
spraying has been attributed to farmers’ risk-averse attitude and
lack of knowledge (23, 29).
Alarmingly, Huang et al. (49) showed that one additional ki-

logram of insecticide per hectare from the current usage level by
cotton farmers in North China Plain would reduce farmers’ in-

come by 63.14 CNY/ha, indicating that the “true” marginal value
of insecticides is negative. Furthermore, there is a clear lack of
awareness among farmers on the value of natural enemies for
crop protection, both in China (49, 50) and in other developing
countries (e.g., refs. 51 and 52). Better transfer of information to
farmers can support the health of crops, the environment, and
farmers themselves. Policies that encourage farmers to account
for the human health and environmental costs of insecticides
would help to incentivize the use of natural enemies to regulate
pest problems. Further research is needed to identify how poli-
cies may be designed to encourage the use of ecosystem services
as a public good in farming communities and reduce the reliance
on chemical insecticides (52). To understand the true (net) costs
and benefits of alternative pest management approaches, the
overall use of insecticides in cotton and associated economic and
environmental costs to farmers and society need to be better
disentangled.

Table 1. Estimated coefficients for the severity of cotton aphid, mirid bugs, and cotton bollworm

Cotton aphid Mirid bugs Cotton bollworm

Explanatory variables (1)† (2)†,‡ (1)† (2)†,‡ (1)† (2)†,‡

Land use diversity (Shannon diversity) −2.486** −2.071* −0.705
(1.129) (1.213) (1.208)

Share of cotton area in total
cultivated area, %

0.008* 0.011** 0.001 0.002 −0.008 −0.006

(0.005) (0.005) (0.005) (0.005) (0.006) (0.006)
Share of Bt cotton area in total

cotton area, %
0.003 0.003 0.001 0.001 −0.012*** −0.012***

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)
No. of insecticide sprays against

cotton bollworm
0.068*** 0.063*** −0.044* −0.043*

(0.021) (0.017) (0.025) (0.024)
Percentage of forest area, % 0.018 −0.763* 0.035

(0.380) (0.461) (0.323)
Percentage of grassland area, % 0.030 −0.152 0.097

(0.125) (0.152) (0.148)
Percentage of built-up area, % −0.071* 0.003 −0.022

(0.039) (0.030) (0.026)
Percentage of water body area, % −0.066 −0.435*** 0.312***

(0.141) (0.159) (0.113)
Percentage of unused land area, % −0.029 −0.274** 0.135*

(0.098) (0.109) (0.073)
Monthly mean temperature: May 0.058 0.073 0.154*** 0.159** −0.014 −0.007

(0.046) (0.048) (0.052) (0.066) (0.055) (0.053)
Monthly mean temperature: June 0.005 0.008 0.049 0.052 −0.212*** −0.201***

(0.048) (0.054) (0.066) (0.068) (0.062) (0.069)
Monthly mean temperature: July 0.129* 0.135** −0.088 −0.087 0.027 0.033

(0.066) (0.067) (0.066) (0.061) (0.069) (0.073)
Monthly mean temperature: August −0.145** −0.156** −0.066 −0.067 −0.012 −0.023

(0.067) (0.075) (0.079) (0.063) (0.069) (0.059)
Monthly total precipitation: May 0.002* 0.002* −0.000 −0.000 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Monthly total precipitation: June 0.000 0.000 0.000 0.000 −0.001* −0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Monthly total precipitation: July 0.001 0.001 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
Monthly total precipitation: August −0.000 −0.000 −0.001** −0.001* −0.000 −0.000

(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)
Observations 1,228 1,228 1,228 1,228 1,228 1,228
Log likelihood −1,328 −1,324 −1,003 −998.2 −1,202 −1,197

Notes: (i) SEs are in parentheses: ***P < 0.01, **P < 0.05, and *P < 0.1. (ii) Estimated coefficients for dummy variables for counties and years are
reported in SI Appendix, Table S3. (iii) Monthly mean temperature has units of degrees Celsius. Monthly total precipitation has units of millimeters.
†Variables representing land use are different between models 1 and 2. Model 1 uses Shannon diversity to characterize land use diversity, whereas
model 2 uses data on proportion of land use for six land use classes (one omitted from the model because the fractions sum to 1).
‡The reference land use class is cultivated land.
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We note some limitations of our study. Our land use data are
based on six main categories of land use/land cover. A more
disaggregated land use classification that enables the identifica-
tion of main crop types would allow for deeper analysis. Addi-
tionally, as data become more available, it will be useful to
explicitly address the effects of varying cropping systems and the
use of other inputs in cotton on pest severity.

Materials and Methods
Data.We compiled a unique long-term panel dataset that consists of data on
(i) pest severity and insecticide applications per annum per county by pest
species, (ii) land cover/use, and (iii) monthly average temperature and total
precipitation data. The counties in the database are the 51 most important
cotton growing counties, by production, in the Yangtze River valley and
Yellow River valley cotton production regions, while the data covered the
years 1991–2015, with complete coverage of counties in all years when
cotton was cultivated. Between 2011 and 2013, eight counties in our sample
stopped cultivating cotton. The number increased to 11 and 12 counties in
2014 and 2015, respectively, resulting in 47 missing records (8 × 3 + 11 + 12).
Despite the decline in cotton area in the eight provinces since 2011 due to
increasing labor cost and decreasing cotton price (53), the two production

regions still accounted for 37% of the national cotton production or one-
half of national cotton acreage in 2016 (54).

The national cotton pests monitoring network, maintained by the Ministry of
Agriculture, mandates the main cotton-producing counties to collect yearly data
on pest infestation levels and insecticide applications for key cotton pests fol-
lowing national standardized monitoring and categorization methods (50).
Tailored scoutingmethods were used for different pests. In each county, 10–20
fields were selected for pest monitoring in each year. Insect populations were
recorded every 3–10 d from early June to late August each year (31, 38), and
the seasonal average abundance across the surveyed fields was used for scoring
using a five-point scale of levels I–V (55). Data on the number of insecticide ap-
plications targeted at specific pests were collected by interviewing farmers at each
scouting to estimate yearly pest-specific total number of sprays for each county.
While the detailed data collection methods and protocols should inspire confi-
dence in the data, the reliability of our pest level data depends on the accuracy,
knowledge, and honesty of the respondents, as is the case with any non–first-hand
data. The results of analysis are robust because of (i) the large number of counties
and years in the dataset, and (ii) the use of a fixed-effect panel data model
(Econometric Analysis), which controls for unobserved county-level heterogeneity.

County-level land use data were drawn from a national land cover/use
database developed by the Chinese Academy of Sciences, using satellite
remote-sensing data from the Landsat Thematic Mapper/Enhanced Thematic
Mapper images (56, 57). The database offers the most comprehensive

Table 2. Estimated marginal effects† of selected explanatory variables in models for pest severity

Model 1, with Shannon diversity Model 2, with area proportions of different land uses

Variables I II III IV V I II III IV V

Cotton aphid
Land use diversity (Shannon

diversity)
0.2084* 0.7449** −0.3523** −0.5458** −0.0553**

Share of cotton area in total
cultivated area, %

−0.0007 −0.0024* 0.0011 0.0017* 0.0002 −0.0009** −0.0032** 0.0015** 0.0023** 0.0002**

No. of insecticide sprays
against cotton bollworm

−0.0057*** −0.0204*** 0.0096*** 0.0149*** 0.0015*** −0.0053*** −0.0189*** 0.0090*** 0.0138*** 0.0014***

Percentage of built-up
area, %

0.0060*** 0.0214** −0.0102** −0.0157*** −0.0015**

Monthly mean temperature:
July

−0.0108** −0.0388* 0.0183* 0.0284* 0.0029* −0.0113** −0.0405*** 0.0193** 0.0296*** 0.0029**

Monthly mean temperature:
August

0.0122** 0.0436** −0.0206** −0.0319** −0.0032** 0.0131** 0.0467** −0.0222** −0.0342** −0.0034**

Monthly total precipitation:
May

−0.0001* −0.0005* 0.0002* 0.0003* 0.0000 −0.0001** −0.0005** 0.0002* 0.0003** 0.0000*

Mirid bugs
Land use diversity (Shannon

diversity)
0.7713* −0.2792* −0.4219* −0.0690* −0.0012

No. of insecticide sprays
against cotton bollworm

0.0162** −0.0059* −0.0088** −0.0014** −0.0000 0.0159* −0.0060* −0.0086** −0.0014* −0.0000

Percentage of forest area, % 0.2831** −0.1061** −0.1525** −0.0241** −0.0004*
Percentage of water body

area, %
0.1606*** −0.0602*** −0.0865*** −0.0137*** −0.0002**

Percentage of unused land
area, %

0.1028*** −0.0385*** −0.0554*** −0.0087*** −0.0001**

Monthly mean temperature:
May

−0.0565*** 0.0205*** 0.0309*** 0.0051*** 0.0001* −0.0587*** 0.0220*** 0.0316*** 0.0050*** 0.0001*

Monthly total precipitation:
August

0.0004** −0.0001** −0.0002** −0.0000** −0.0000 0.0004** −0.0001** −0.0002** −0.0000** −0.0000

Cotton bollworm
Share of Bt cotton area in

total cotton area, %
0.0004** 0.0030*** 0.0006* −0.0033*** −0.0007*** 0.0004*** 0.0030*** 0.0006** −0.0033*** −0.0007***

Percentage of water body
area, %

−0.0102*** −0.0770*** −0.0142** 0.0838*** 0.0175***

Percentage of unused land
area, %

−0.0044** −0.0334** −0.0061* 0.0363** 0.0076**

Monthly mean temperature:
June

0.0071** 0.0524*** 0.0095* −0.0567*** −0.0123*** 0.0065*** 0.0496*** 0.0091* −0.0539*** −0.0113***

Monthly total precipitation:
June

0.0000* 0.0002* 0.0000 −0.0003* −0.0001*

Notes: (i ) †The marginal effect of a given explanatory variable calculated from an ordered probit regression captures the change in the probability of observing different classes of
pest severity (levels I–V) due to a unit change in the explanatory variable. (ii) I, II, III, IV, and V in the first row refer to pest infestation levels I–V. (iii ) ***P < 0.01, **P < 0.05, and *P < 0.1.
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coverage of China’s land use/cover and has been used in a number of
published studies (e.g., refs. 58–60). Six main land use classes are used in this
study: cultivated land, forest, grassland, water body, built-up land, and
unused land (description of land use classes is provided in SI Appendix, Table
S5). We extracted land use data for 6 y (1990–2015 at 5-y intervals) and
computed the proportional area for each land use as well as the Shannon
index for land use diversity for each county in each year (data for 1990 and
2015 are provided in SI Appendix, Table S6). Land use proportions in in-
termediate years (e.g., 1991, 1992, 1993, 1994, 1996, etc.) were calculated by
linear interpolation between the data.

Daily temperature and precipitation data from meteorological stations
(China Meteorological Data Service Center, data.cma.cn/) were used to
derive monthly data for May, June, July, and August for each year. For

counties without a meteorological station, we used data collected at the
nearest station.

Econometric Analysis. We adopt a two-step approach to analyze the main
drivers of cotton pest severity and insecticide use for 51 counties in China
over a 25-y period. First, we identify how land use, crop management, and
weather affect pest severity using a fixed-effect ordered probit regression
model (61). We then estimate the relationship between pest infesta-
tion levels and the frequency of insecticide applications with a fixed-effect
linear regression model. As Larsen (32) showed, landscape simplifica-
tion has inconsistent effects on insecticide use over years. Therefore,
multiyear studies are key to unlocking the true drivers of variation in
insecticide application.

Table 3. Estimated coefficients for the frequency of insecticide sprays against cotton aphid,
mirid bugs, and cotton bollworm

No. of insecticide applications against each pest

Explanatory variables Cotton aphid Mirid bugs Cotton bollworm

Infestation level: category II 0.438*** 0.929*** 0.540*
(0.159) (0.173) (0.281)

Infestation level: category III 1.095*** 1.641*** 1.440***
(0.248) (0.185) (0.331)

Infestation level: category IV 2.059*** 2.679*** 2.343***
(0.324) (0.282) (0.404)

Infestation level: category V 2.598*** 3.731*** 4.685***
(0.373) (0.585) (0.451)

Share of Bt cotton area in total cotton area, % 0.004 0.008*** −0.017***
(0.003) (0.003) (0.005)

Constant 1.943*** −0.223* 5.314***
(0.380) (0.126) (0.737)

Observations 1,228 1,228 1,228
R2 0.704 0.771 0.779
Adjusted R2 0.684 0.755 0.764

Notes: (i) SEs are in parentheses. ***P < 0.01, **P < 0.05, and *P < 0.1. (ii) Infestation level I is the reference
category for the infestation level explanatory variables. (iii) Estimated coefficients for dummy variables for
counties and years are reported in SI Appendix, Table S4.

Table 4. Sample means of variables

Variable No. of observations Mean SD Min Max

Infestation level: cotton aphid 1,228 2.77 1.14 1 5
Infestation level: mirid bugs 1,228 2.14 1.19 1 5
Infestation level: cotton bollworm 1,228 3.05 1.31 1 5
No. of insecticide applications: cotton aphid 1,228 3.25 2.16 0 17
No. of insecticide applications: mirid bugs 1,228 2.17 2.17 0 14
No. of insecticide applications: cotton bollworm 1,228 5.07 4.11 0 33
Share of cotton area in total cultivated area, % 1,228 19.82 13.25 0.05 67.29
Share of Bt cotton area in total cotton area, % 1,228 57.55 45.50 0 100
Percentage of cultivated area, % 1,326 54.64 10.07 18.72 72.66
Percentage of forest area, % 1,326 5.02 9.41 0.03 60.52
Percentage of grassland area, % 1,326 4.27 6.69 0 33.18
Percentage of built-up area, % 1,326 25.61 7.52 7.79 56.58
Percentage of water body area, % 1,326 9.53 8.44 0.88 37.45
Percentage of unused land area, % 1,326 0.92 3.06 0 25.79
Land use diversity (Shannon diversity) 1,326 2.98 0.59 2.04 4.18
Monthly mean temperature, °C

May 1,275 20.46 1.82 14.31 24.75
June 1,275 24.79 1.90 18.1 28.6
July 1,275 26.93 1.79 20.28 31.28
August 1,275 25.67 1.87 20 30.78

Monthly total precipitation, mm
May 1,275 76.68 67.50 0 390.5
June 1,275 108.16 95.67 1.30 645.7
July 1,275 169.27 113.60 5.7 806.3
August 1,275 146.63 105.90 0.70 639.2
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Like Larsen (32), we use a fixed-effect panel data approach to control for
unobserved heterogeneity between counties and periods. Throughout, we
follow the econometric use of the term fixed effects to describe models with
dummy variables for each county (cross-sectional unit) or period. The fixed-
effect panel data approach allows our multiyear analysis to identify the
effects of explanatory variables using year-to-year variation within counties.
In comparing a unit with itself, the potential for confounding due to
omitted variables is minimized because time-invariant characteristics, such as
slope, soil quality, location, and cultural norms or agricultural traditions,
drop out of the model (32). The approach addresses county-specific het-
erogeneity that is difficult to observe. As a result, the estimation results are
robust against bias caused by these unobserved factors. Furthermore, the
inclusion of dummy variables for years account for time effects shared by all
counties in a given year such as national pesticide regulation or weather
anomalies (32).

Our two-step analysis approach differs from two previous studies exam-
ining the relationship between landscape simplification and insecticide use in
the United States—those by Meehan et al. (62) and Larsen (32)—in three
main respects. First, the use of the proportion of cropland in a county
treated with insecticides as an indicator for insecticide use is reasonable for
the US context but does not apply to the Chinese context because virtually
all agricultural land is treated with pesticides, although at varying degree.
We therefore use as a variable for the intensity of pesticide use the average
number of sprays per year. Second, while Meehan et al. (60) and Larsen (32)
focused on the proportion of county in cropland as a proxy for landscape
simplification, we consider both land use diversity and proportions for dif-
ferent land uses to examine the effect of these land uses on pest severity.
Third, we consider the effects of weather and the interactions among the
three key pests of cotton, via Bt cotton-induced change in the frequency of
insecticide use against cotton bollworm.

The nonlinear ordered probit regression is appropriate for examining the
determinants of pest severity because severity is measured by five infestation
levels, that is, ordered categorical outcomes. The ordered probit regression
for pest severity of each pest is estimatedwith two specifications, which differ
in how the effects of land use are captured. In the first specification, Shannon
diversity index, H, as defined in Eq. 1, is used to quantify land use diversity,
denoted by L (63, 64):

H=−
Xm

i=1

Pi ln Pi , [1]

where Pi is the area proportion of land use i, and m is the total number of
land uses (65). To capture the true diversity represented by the value of the
index, we translate it back to the scale of “effective number of land uses”
(65) using L= expðHÞ, which is used in the subsequent analysis. The resulting
regression model is as follows:

Sit = β0 + β1Lit + β2Cit + β3Rit + β4IBit + β5−8TMay−Aug,  it + β9−12PMay−Aug,  it

+ β13−62Di + β63−86Et + «it , [2]

where i and t are indices denoting county and year, respectively; Sit denotes
pest severity measured with an ordinal variable of five infestation levels; Lit

is the land use diversity in county i in year t; Cit is the proportion of cotton in
the total agricultural area in county i in year t; Rit is the proportion of the
cotton area grown with Bt cotton in county i in year t; IBit is the average
number of insecticide applications against cotton bollworm per field in
county i in year t (in the cotton aphid and mirid bug models only); TMay−Aug,it

is a set of four explanatory variables representing May, June, July, and Au-
gust average temperature (in degrees Celsius) in county i in year t; PMay−Aug,it

is a set of four explanatory variables representing monthly total pre-
cipitation (in millimeters) in May, June, July, and August in county i in year t;
Di is a set of 50 county dummy variables (one county dropped from the
regression as a reference) to represent county specific effects; and Et is a set
of 24-y dummy variables (with one year dropped from the regression
as a reference) to represent year-specific effects. «it is a random error term.
Table 4 reports the descriptive statistics of all of the variables.

In the second specification, instead of a single explanatory variable for
land use diversity, Lit, we include percentages of area for five different land
uses (the sixth, cultivated land area, being one minus the other five). The
share of cultivated land area in total land area is excluded from regressions
as a reference, and regression coefficients are thus estimated for the effects
of increasing the shares of forest, grassland, water body, built-up area, and
unused land, relative to the share of cultivated area. The empirical model for
pest severity (Eq. 2) is estimated separately for each of the three pests:
cotton aphid, mirid bugs, and cotton bollworm.

To examine the effects of pest severity on the frequency of sprays targeted
at each pest, Iit, we estimate a fixed-effect linear regression model using the
ordinary least squares estimation method. We include share of Bt cotton in
total cotton area (Rit) and dummy variables for counties (Di) and years (Et).
Since here pest severity is a categorical explanatory variable, we use four
dummy variables for infestation levels II, III, IV, and V (Slevel II, it, Slevel III, it,
Slevel IV, it, and Slevel V, it) in the regression, with level I being the reference.
The model equation is as follows:

Iit = β0 + β1Rit + β2Slevel  II,it + β3Slevel  III,it + β4Slevel  IV,it + β5Slevel  V,it
+ β6−55Di + β56−79Et + «it . [3]

Repeated observations over time may have correlated disturbance terms.
Although estimates from the fixed-effects model would remain unbiased and
consistent (59), such autocorrelation in the error terms could result in arti-
ficially small SEs (66). Here, we used cluster-robust SEs clustered at the
county to allow for arbitrary autocorrelation between observations within
the same county when estimating Eqs. 2 and 3. For nonlinear ordered probit
regressions on pest severity, nonparametric bootstrap estimation was used
to obtain the correct SEs, taking into account clustering. All data analyses
were conducted in Stata 15 (StataCorp).
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