The European Journal of Plant Science and Biotechnology ©2012 Global Science Books

Characterization of Brown Midrib Mutants of Sorghum (*Sorghum bicolor* (L.) Moench)

Pinnamaneni Srinivasa Rao^{1*} • Santosh Deshpande¹ • Michael Blümmel² • Belum V. S. Reddy¹ • Tom Hash¹

¹ International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, AP, India ² International Livestock Research Institute (ILRI), Patancheru 5002 324, AP, India

Corresponding author: * p.srinivasarao@cgiar.org

ABSTRACT

Twenty brown midrib (*bmr*) mutants of sorghum (*Sorghum bicolor* (L.) Moench) were evaluated for agronomic traits, forage quality traits and the relationships between these traits. Potential fodder quality was assessed by laboratory analysis. Significant differences were observed among the *bmr* mutants (*bmr*1, 3, 6, 7, 8 and two new mutants) for stover yield, plant height, stover nitrogen (N) content, *in vitro* organic matter digestibility (IVOMD), metabolizable energy (ME) content and acid detergent lignin (ADL) content. The *bmr* mutants such as IS 23253, IS 21549, IS 23789 and IS 23787 had high stover yield coupled with better forage quality, hence these mutants can be exploited in future *bmr* hybrid breeding programs. All of these had reduced cinnamyl alcohol dehydrogenase (CAD) activity except for the new and uncharacterized *bmr* mutant, IS 23253, whose allelic relationship is yet to be determined.

Keywords: Acid detergent lignin, allelic relationship, biomass, *in vitro* organic matter digestibility, nitrogen content, stover quality, stover yield

Abbreviations: ADL, acid detergent lignin; *bmr*, brown midrib; CAD, cinnamyl alcohol dehydrogenase; COMT, caffeic acid *O*-methyl-transferase; IVOMD, *in vitro* organic matter digestibility; ME, metabolizable energy; N, stover nitroge

INTRODUCTION

There has been a great interest in the recent past to develop new renewable sources of energy to partially replace petroleum while mitigating levels of greenhouse gases. Sorghum (Sorghum bicolor (L.) Moench) grown for grain, forage, or fuel, has been considered as model biomass feedstock, because it is a diploid C₄ species with heat and drought tolerance. The availability of brown midrib (bmr) mutations in sorghum that reduces lignin content and increase forage digestibility in animals also favours this crop as model crop (Cherney et al. 1991; Oliver et al. 2005; Srinivasa Rao et al. 2009, 2010). The value of a crop plant as forage is determined primarily by the degradability of the vegetative tissue and biomass production per time and area unit (Blümmel and Rao 2006). Degradability or digestibility is affected by the property of its cell wall structure as cellulose and hemicellulose in the cell wall provide a major energy source for ruminant animals. Increased forage digestibility is negatively correlated with lignin in many species and is also useful to increase conversion efficiency of biomass into ethanol (Dien *et al.* 2009).

Brown midrib (*bmr*) mutations, both in sorghum and maize, are phenotypically characterized by the presence of brown vascular tissues in the leaf blade and sheath, as well as in the stem. The *bmr* phenotype becomes obvious once plants have reached the four-leaf stage and tends to begin to fade as the plants approach physiological maturity (Porter *et al.* 1978). Although the intensity of the coloration cannot be taken as a measure of reduction in lignin, it is a clear indicator that the *bmr* gene(s) are present. Jung and Fahey (1983) suggested that *bmr* plants have lignin that is less polymerized and contains less phenolic monomers that can affect digestion. Brown midrib silage with or without protein supplements significantly increased milk yield of lactating cows (Frenchik *et al.* 1976; Keith *et al.* 1979; Stallings *et al.* 1982; Cherney *et al.* 1991; Oba and Allen 1999).

Similarly, the rate of *in vitro* organic matter digestibility (IVOMD) and rumen bacterium-mediated cell wall degradation of leaf blades from bmr-12 sorghum was shown to be significantly higher than those from their respective wild type isolines (Akin et al. 1986a, 1986b). Allelism tests on the sorghum bmr mutants derived through chemical mutagenesis showed that several of the mutations are allelic, and that the total number of independent bmr loci was smaller than the number of mutant lines assembled (Bittinger et al. 1981). The effect of the *bmr* mutations on forage quality depends on the genetic background of the line in which the mutation was introduced (Cherney *et al.* 1991; Pedersen *et al.* 2005). Therefore, the effect of each mutation on forage quality and agronomic characteristics needs to be determined. Since the development of diethyl sulphate (DES) induced generation of bmr lines (bmr1 through bmr19) of two (954114 and 954104) grain sorghum lines (Porter et al. 1978), additional bmr lines from the mutagenized population and a set of spontaneous bmr mutants were latter identified (Volger et al. 1994; Gupta 1995). Recently, bmr 6 plants were shown to have limited cinnamyl alcohol dehydrogenase (CAD) activity, the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols while bmr 12 plants have reduced activity of caffeic acid O-methyl transferase (COMT) that catalyzes the addition of a methyl group to 5-OH-conferyl alcohol in monolignol biosynthetic pathway (Bout and Vermerris 2003; Saballos et al. 2008, 2009; Sattler et al. 2010).

The agronomic characterization besides forage quality assessment of the *bmr* mutants will help to breed productive cultivars with high forage quality, however such studies were not reported yet in the literature. Hence, the objective of this study was to provide an agronomic and fodder quality assessment of the different *bmr* mutants.

Table	1	List	of	brown	midrib	mutants/	sources	used	in	the study.	

Germplasm	Brown midrib gene	Reference			
accession/ Genetic					
stock					
IS 21887	bmr 1	Porter et al. 1978			
IS 21888	bmr 3	Porter et al. 1978			
IS 21889	bmr 6	Porter et al. 1978			
IS 21890	bmr 7	Porter et al. 1978			
IS 21891	bmr 8	Porter et al. 1978			
IS 40602	bmr 12	Porter et al. 1978			
IS 23253 ^a	NA	ICRISAT Gene bank			
IS 11861 ^a	NA	ICRISAT Gene bank			
IS 21549	bmr 6	Gupta 1995			
IS 23765	bmr 6	Gupta 1995			
IS 23787	bmr 6	Gupta 1995			
IS 23789	bmr 6	Gupta 1995			
N 592	Rox Orange bmr 6	Pederson et al. 2006			
N 593	Rox Orange bmr 12	Pederson et al. 2006			
N 594	Kansas Collier bmr-6	Pederson et al. 2006			
N 595	Kansas Collier bmr 12	Pederson et al. 2006			
N 596	Early Hegari bmr 6	Pederson et al. 2006			
N 597	Early Hegari bmr 12	Pederson et al. 2006			
N 598	Atlas bmr 6	Pederson et al. 2006			
N 599	Atlas bmr 12	Pederson et al. 2008			
RSSV 9	SS variety	MPKV			
ICSV 93046	SS variety	ICRISAT			
^a Germplasm accession	n in ICRISAT gene bank, no	t yet reported; NA: not			

available; MPKV: Mahatma Phule Krishi Vidyapeeth

MATERIALS AND METHODS

Materials and experimental site

A total of twenty different bmr mutant sources, namely bmr1, 3, 6, 7, 8 and 12 developed at Purdue University, USA; two new bmr sources (IS 11861 and IS 23253) collected from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) genebank; four natural bmr mutants reported in Malawi (Gupta 1995); eight bmr 6 or bmr 12 introgressed lines developed at USDA (Pederson et al. 2006) along with two white midrib sweet sorghum varieties as controls viz, RSSV 9 and ICSV 93046 (Table 1) were evaluated during rainy and post rainy seasons of 2010 in a randomized complete block design (RCBD) with two replications at ICRISAT, Patancheru (latitude: 17° 27' N; longitude: 78° 28' E). Each cultivar was planted in 2 rows of 4 m length in 6 m² plots with a spacing of 75 cm between the rows and 15 cm within the row. Fertilizer dosage of 80 Kg ha⁻¹ nitrogen and 40 Kg ha⁻¹ P₂O₅ was applied with 50% of N as basal and the balance on 35 days after emergence as side-dressing. Hand weeding was done twice followed by hoeing and inter-cultivation.

A sub-set of six *bmr* germplasm lines (*bmr*1, 3, 6, 7, 8 and 12) available with ICRISAT genebank (No. 1 to 6 in **Table 1**) were also used in order to study the allelic relationship among these *bmr* mutants, and evaluated in a replicated RCBD trial to compare their forage quality (as explained in following paragraph) with that of a standard grain sorghum B-line, BTx623. For allelism testing, the six *bmr* lines were crossed in all possible combinations (excluding reciprocals) using hand emasculation during rainy seasons of 2008 and 2009. The F₁ seeds were sown during late post-rainy seasons of 2008 to study the inheritance of *bmr* loci. The F₂ populations were sown during late post-rainy season of 2009. Presence or absence of brown coloration of midrib, both for F₁ and F₂ plants, was used for scoring.

Measurements and biochemical analysis

The days to 50% flowering (DF) was recorded at 50% anthesis; plant height (PHT) was measured to the top of the mature panicle before harvest in each plot. Ten mature plants were randomly selected from the centre four rows of each plot, and the panicles were cut for estimations of grain yield. Stover quality analyses were conducted on samples harvested from each plot. All samples were analyzed by near infrared spectroscopy (NIRS; FOSS Forage

Analyzer 5000 with software package Win SI) calibrated for this experiment against conventional chemical and *in vitro* analyses. Stover nitrogen (N) was determined by Auto Analyzer and acid detergent lignin (ADL) content was analyzed according to Goering and Van Soest (1970). The IVOMD and metabolizable energy (ME) contents were determined and calculated according to Menke and Steingass (1988) as modified by Blümmel and Ørskov (1993).

Statistical analysis

General linear model (GLM) was used for analysis of variance and to calculate significant differences among improved varieties (SAS computer program 1988). GraphPad Prism (1994) software was used for simple linear regression analysis between traits. To confirm the inheritance, chi-square test was used to test the data for goodness of fit.

RESULTS AND DISCUSSION

Allelic relationship and inheritance

The F_1 plants from crosses of *bmr*1 with *bmr*3, 8 and *bmr*3 with *bmr*8 were uniformly possessing brown midrib. The results were as per previously established allelic groups (Bittinger et al. 1981; Saballos et al. 2008). The F₁ crosses involving bmr6 with bmr1, 3, 8 were with normal midrib indicating non-complementary interaction. Further, the F₁ plants from cross *bmr*6 and *bmr*12 were all white in colour, and also the phenotype of *bmr* 6 is taller than originally reported (Porter et al. 1978). As bmr 6 and bmr12 were already established as two distinct loci (Saballos et al. 2008), it can be suspected that seed stock of bmr6 accession available at ICRISAT genebank is not true bmr6. Similar inconsistencies were observed for germplasm line with bmr7. All the crosses of *bmr* 7 with *bmr*1, 3, 8 were uniformly brown, while crosses of bmr7 with bmr 6, 12 were with normal midrib. To confirm discrepancies in allelic relationship of bmr6 and bmr7, we selfed typical F1 plants derived from crossing of bmr6 with bmr1, 8, 12; and bmr7 cross with bmr3. All the crosses produced individuals in expected ratio (nine wild type: 7 bmr) (Gupta 1995; Saballos et al. 2008), except for cross $bmr6 \times bmr12$ (data not shown). All the F_2 plants were scored from this cross were with brown midrib. Similarly, bmr7 cross with bmr3 produced a ratio of 9 wild type: 7 bmr for two complementary loci; further confirming the *bmr*7 source used in the study as not true-to-type.

Although these *bmr* loci were not in similar genetic background, the replicated RCBD trial of these germplasm lines revealed significant higher IVMOD values in *bmr* lines than check grain sorghum entry (data not shown). The germplasm lines described as *bmr* 6 and *bmr* 12, had non-significant differences in IVMOD values.

ANOVA for agronomic and biochemical traits

The combined ANOVA (**Table 2**) reveals highly significant variability for all the traits among the *bmr* sources, and their interaction with season were also highly significant except for nitrogen content and neutral detergent fibre. The genotype × season interaction is highly significant because of photoperiod sensitivity as indicated by the significant differences in flowering behavior during rainy and post rainy season. Most of the lines took 2 to 21 days more to reach 50% flowering stage, particularly so in the four Malawian spontaneous *bmr* mutants where the difference is more than two weeks (data not shown).

The means performance of *bmr* mutants for DF, PHT, N, ME, IVOMD and ADL are presented in **Table 3**. The range among the *bmr* mutants for DF is 53 to 88 days; fresh fodder yield is 7.21 to 31.6 t ha⁻¹; stover yield is 2.48 to 11.61 t ha⁻¹ indicating huge genetic variability that can be directly exploited to derive productive cultivars. The *bmr* 6 and 12 introgressed Early Hegari lines are earliest to flower at 53-55 days while the new *bmr* source IS 11861 reaches DF by 88 days. The background effects of same mutant *bmr* 6 are

Table 2 Combined ANOVA table for brown midrib source varieties for fresh fodder yield (t ha	i ⁻¹), stover yield (t ha	a ⁻¹), nitrogen content (N), acid	detergent
lignin (ADL), metabolizable energy (ME) MJ kg-1, in vitro organic matter organic matter digest	stibility (IVOMD) as	nd agronomic traits.	

Source of variation	df	Plant height	Days to 50%	Fresh fodder	Stover yield	N (%)	ADL (%)	ME (MJ kg ⁻¹)	IVOMD (%)
		(m)	flowering	yield (t ha ⁻¹)	(t ha ⁻¹)				
Replication	1	0.12	5.50	0.06	0.30	0.03	0.2	0.2	1.2
Season	1	2.63	0.00	1074.1	10.50	0.15	1.8	11.2	31.6
Genotype	21	1.21 **	273.70 **	218.97 **	22.79 **	0.15 **	2.1**	1.0 **	32.5 **
Genotype x season	21	0.21 **	166.04 **	122.17 **	10.25 **	0.06	0.5 **	0.3 **	9.2 **

^a df = degrees of freedom; * Significant at P≤0.05; ** Significant at P≤0.01

Table 3 Mean performance of brown midrib sources for fresh fodder yield (t ha^{-1}), stover yield (t ha^{-1}), nitrogen content (N), acid detergent lignin (ADL), metabolizable energy (ME) MJ kg⁻¹, *in vitro* organic matter organic matter digestibility (IVOMD) and agronomic traits.

Germplasm accession/	Plant height	Days to 50%	Fresh fodder	Stover yield	N (%)	ADL (%)	ME (MJ kg ⁻¹)	IVOMD (%)
Line	(m)	flowering	yield (t ha ⁻¹)	(t ha ⁻¹)				
IS 21887	0.9	70	7.39	2.67	1.26	4.25	7.89	52.58
IS 21888	0.9	69	8.04	2.48	1.66	6.09	6.75	47.10
IS 21889	1.3	77	12.45	4.65	1.13	3.89	7.71	52.55
IS 21890	1.6	70	7.70	3.53	0.86	3.39	8.24	55.40
IS 21891	1.0	69	7.21	2.98	1.11	4.40	7.97	53.72
IS 40602	1.3	82	12.59	4.54	1.48	4.75	7.48	51.37
IS 23253	2.3	71	22.57	5.56	0.99	3.39	8.61	56.02
IS 11861	2.9	88	28.44	11.61	0.91	5.01	7.73	50.93
IS 21549	2.0	78	23.69	9.81	1.03	4.16	8.29	54.59
IS 23765	1.7	81	15.37	6.12	0.99	4.08	7.93	55.10
IS 23787	2.5	70	31.60	9.11	1.06	4.19	8.04	54.21
IS 23789	2.5	71	22.20	5.21	0.87	3.02	8.98	58.18
N 592	2.1	64	22.73	7.54	1.01	4.27	8.19	54.48
N 593	2.2	68	10.20	4.00	0.94	3.54	7.75	51.00
N 594	1.8	70	14.68	4.80	1.04	4.04	7.96	53.78
N595	1.9	68	10.67	3.65	0.98	3.78	8.42	54.21
N596	1.3	53	7.89	3.83	1.17	4.40	7.78	51.25
N597	1.5	55	17.57	3.58	1.11	5.83	6.91	46.45
N 598	2.2	68	18.24	5.50	1.05	4.72	7.70	51.06
N599	1.8	66	15.52	5.72	1.37	4.02	8.17	53.72
RSSV 9	2.3	66	26.64	7.60	1.14	4.62	7.46	50.71
ICSV 93046	2.3	82	13.16	5.32	1.03	5.35	7.21	48.44
Mean	1.8	71	16.21	5.45	1.10	4.31	7.88	52.63
Minimum	0.9	53	7.21	2.48	0.86	3.02	6.75	46.45
Maximum	2.9	88	31.60	11.61	1.66	6.09	8.98	58.18
LSD (p<0.005)	0.237	3.523	3.222	1.917	0.398	0.875	0.481	2.022
CV %	6.3	2.5	10.1	17.8	18.2	10.3	3	2.022

LSD: Least significant difference; CV: Coefficient of variation

evident even for DF as it ranged from 53 days in Early Hegari (N596) to 70 days in Kansas Collier (N594), indicating the earlier reports of Cox and Cherney (2001) and Oliver *et al.* (2005). Similarly, background effects were noticed in *bmr* 12 introgressed lines also.

The range for many of the forage quality traits among the studied *bmr* mutants is high, i.e. 0.86-1.66% for N; 3.02-6.09% ADL and 46.45-58.18% for IVOMD (Table 3). Among the white midrib controls, ICSV 93046 recorded 5.35% ADL and 48.44% IVOMD while RSSV 9 had 4.62 ADL and 51.71% IVOMD. The fresh fodder yield is significantly higher in IS 23787 (bmr6) at 31.6 t ha⁻¹ while new *bmr* mutant collected from the ICRISAT gene bank IS 11861 with 28.44 t ha⁻¹ is at par with the best white midrib control RSSV 9 (26.64 t ha⁻¹). The stover yield is highest in IS 11861 (11.61 t ha⁻¹) followed by IS 21549 (9.81 t ha⁻¹) and IS 23787 (9.11 t ha⁻¹) compared to the white midrib control, RSSV9 (7.6 t ha⁻¹). For IVOMD, the *bmr* mutant lines IS 21890 (*bmr*7), IS 21891 (*bmr*8), IS 23253 (*bmr* gene not known), IS 21549 (bmr6), IS 23765 (bmr6), IS 23787 (bmr6), IS 23789 (bmr6), N 592 (Rox Orange bmr6), N 594 (Kansas Collier bmr6), N595 (Kansas Collier bmr12) and N599 (Atlas bmr12) had a range of 53.72% to 58.12% and are superior to the white midrib control RSSV 9 (50.71%). The bmr mutant lines, IS 23789 (bmr6), IS 23765 (bmr6); IS 23253 (new bmr source) and IS 21890 (bmr7) had recorded over 55% IVOMD while IS 21888 (bmr3) and N597 (Early Hegari with bmr12) had lowest IVOMD of 47.1 and 46.45%, respectively. These two bmr lines had highest ADL of about 6%, similar to the observations of earlier reports (Cherney et al. 1991; Oliver et al. 2005;

Pedersen *et al.* 2006). Most of the mutants with low IVOMD have recorded over 4% ADL content. The four Malawian *bmr* mutants have recorded ADL between 3.02 and 4.19% and the IVOMD varied between 54.21 to 58.18%. Hence these mutants are of particular importance for the breeders owing to their better forage quality coupled with high stover yield of over 6 t ha⁻¹.

The effect of the *bmr* mutations on forage quality varies depending on the genetic background of the line in which the mutation is introduced (Cherney *et al.* 1991; Pedersen *et al.* 2006; Palmer *et al.* 2008). This suggests the need to either identify a suitable genetic background that allows for optimal impact of the mutation.

Correlation among agronomic and forage quality traits

The correlation coefficients of agronomic characters with candidate forage digestibility traits in *bmr* mutants is shown in **Table 4**. Plant height (m) has significant negative correlation with N (-0.62) (**Fig. 1A**), while it has positive correlation with fresh fodder yield (0.75) and stover yield (0.79) as expected. The DF has positive correlation with stover yield, i.e. late maturing lines yields more stover and it had no correlation between stover yield neither with IVOMD (**Fig. 1B**). There is no significant correlation between stover yield neither with IVOMD (**Fig. 1C**) nor N (**Fig. 1D**). This aspect needs to be exploited to improve stover yield without compromising on stover N. High stover N is positively correlated with protein content. The IVOMD has significant negative correlation with ADL (-0.88) while it has recorded significant positive

Table 4 Correlation of agronomic traits (days to 50% flowering, plant height, fresh fodder yield and stover yield) with candidate forage digestibility traits [nitrogen content (N), acid detergent lignin (ADL), metabolizable energy (ME) MJ kg⁻¹, *in vitro* organic matter organic matter digestibility (IVOMD)] in source lines.

source mies.								
Trait	ADL (%)	Days to 50% flowering	Stover yield (t ha ⁻¹)	Fresh fodder (t ha ⁻¹)	IVOMD (%)	ME (MJ kg ⁻¹)	N (%)	Plant height (m)
ADL (%)	-							
Days to 50 % Flowering	0.01	-						
Stover yield (t ha ⁻¹)	0.00	0.44*	-					
Fresh fodder (t ha ⁻¹)	-0.04	0.21	0.87**	-				
IVOMD (%)	-0.88**	0.14	0.21	0.23	-			
ME (MJ kg ⁻¹)	-0.89**	0.05	0.22	0.26	0.95**	-		
N (%)	0.57*	-0.10	-0.34	-0.33	-0.48*	-0.56**	-	
Plant height (m)	-0.23	0.29	0.75**	0.79**	0.26	0.37	-0.62**	-

* Significant at P≤0.05; ** Significant at P≤0.01

Fig. 1 Relationships between agronomic and forage quality traits. (A) Relationships between plant height and nitrogen content of stover in *bmr* mutants. (B) Relationships between days to 50% flowering and stover *in vitro* digestibility in *bmr* mutants. (C) Relationships between stover yield and nitrogen content in *bmr* mutants. (D) Relationships between stover yield and nitrogen content in *bmr* mutants.

correlation with ME (0.95) as reported in the number of previous studies (Rook *et al.* 1977; Cherney *et al.* 1991; Oliver *et al.* 2005).

CONCLUSION

There is enormous variability for agronomic traits (DF, PHT and stover yield) and also for forage quality traits (ADL, ME and IVOMD) among the 20 *bmr* mutants. The high biomass yielding *bmr* mutants with better forage quality, such as IS 23253, IS 21549, IS 23789 and IS 23787, can be exploited by converting them to male sterile by introgressing *ms3* genes for developing high biomass yielding hybrids without compromising the forage quality involving locally adapted cultivars.

ACKNOWLEDGEMENTS

The authors wish to express their sincere thanks for financial assistance from the European Commission through SWEETFUEL grant 22742 and International Fund for Agriculture Development (IFAD) through Grant no. 974.

REFERENCES

Akin AE, Hanna WW, Rigsby LL (1986a) Normal-12 and brown midrib-12 sorghum I. variations in tissue digestibility. *Agronomy Journal* 78, 827-832

- Akin AE, Hanna WW, Snook ME, Himmelsbach DS, Barton FE II, Windham WR (1986b) Normal-12 and brown midrib-12 sorghum II. Chemical variations and digestibility. *Agronomy Journal* 78, 832-837
- Bittinger TS, Cantrel RP, Axtell JD (1981) Allelism tests of the brown midrib mutants of sorghum. *Journal of Heredity* 72, 147-148
- Blümmel M, Ørskov ER (1993) Comparison of in vitro gas production and

nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology 40, 109-119

- Blümmel M, Rao PP (2006) Economic value of sorghum stover traded as fodder for urban and peri-urban dairy production in Hyderabad, India. International Sorghum and Millets Newsletter 47, 97-100
- Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. *Molecular Genetics and Genomics* 269, 205-214
- Cherney JH, Cherney JR, Akin DE, Axtell JD (1991) Potential of brown midrib, low lignin mutants for improving forage quality. Advances in Agronomy 46, 157-198
- Cox WJ, Cherney DL (2001) Influence of brown midrib, leafy, and transgenic hybrids on corn forage production. Agronomy Journal 93, 790-796
- Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenergy Research 2, 153-164
- Frenchik GE, Johnson DG, Murphy JM, Otterby DE (1976) Brown midrib corn silage in dairy cattle rations. *Journal of Dairy Science* 59, 2126-2129
- Goering B, Van Soset PJ (1970) Forage fiber analysis. Agriculture Handbook No. 379: 1-20, Agricultural Research Service, USDA, Washington, D.C.
- GraphPad Prism (1994) GraphPad Software, San Diego, CA, USA Gupta SC (1995) Allelic relationships and inheritance of brown midrib trait in sorghum. *The Journal of Heredity* 86 (1), 72-74
- Jung HG, Fahey Jr. GC (1983) Interactions among phenolic monomers and in vitro fermentations. Journal of Dairy Science 66, 1255
- Keith EA, Colenbrander VF, Lechtenberg VL, Bauman LF (1979) Nutritional value of brown midrib corn silage for lactating dairy cows. *Journal of Dairy Science* 62, 788-792
- Menke KH, Steingass H (1988) Estimation of the energy feed value obtained from chemical analysis and *in vitro* gas production using rumen fluid. *Animal Research and Development* 28, 7-55
- **Oba M, Allen MS** (1999) Effects of brown midrib-3 mutation in corn silage on organic matter intake and productivity of high yielding dairy cows. *Journal* of Dairy Science **82**, 135-142
- Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ, Jose HD (2005) Comparative effects of the sorghum *bmr*-6 and *bmr*-12 genes: II. Grain yield, stover yield, and stover quality in grain sorghum. *Crop Science* **45**, 2240-2245
- Palmer NA, Sattler SE, Saathoff AJ, Funnel D, Pederson JF, Sarath G (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. *Planta* 229, 115-127

Pederson JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin on plant

fitness. Crop Science 45, 812-819

- Pedersen JF, Funnell DL, Toy JJ, Oliver AL, Grant RJ (2006) Registration of seven forage sorghum genetic stocks near-isogenic for the brown midrib genes *bmr*-6 and *bmr*-12. Crop Science 46, 490-491
- Pederson JF, Toy JJ, Funnell DL, Sattler SE, Oliver AL, Grant RA (2008) Registration of BN611, AN612, BN612 and RN613 sorghum genetic stocks with stacked *bmr*-6 and *bmr*-12 genes. *Journal of Plant Registration* 2, 258-262
- Porter KS, Axtell JD, Lichtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition and *in vitro* organic matter disappearance of chemically induced born midrib mutants of sorghum. *Crop Science* 18, 205
- Rook JA, Muller LD, Shank DB (1977) Intake and digestibility of brown midrib corn silage by lactating dairy cows. *Journal of Dairy Science* 60, 1894-1904
- Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genome wide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib 6 gene. Genetics 181, 783-795
- Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum [Sorghum bicolor (L.) Moench]. Bioenergy Research 1, 193-204
- SAS (Statistical Analysis System). (1988) Release 6.03 Edition. SAS Institute, Cary New York, USA
- Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. *Plant Science* 178, 229-238
- Srinivasa Rao P, Rao SS, Seetharama N, Umakanth AV, Sanjana Reddy P, Reddy BVS, Gowda CLL (2009) Sweet sorghum for biofuel and strategies for its improvement. *Information Bulletin No.* 77, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India, 80 pp
- Srinivasa Rao P, Deshpande S, Prakasham RS, Reddy BVS (2010) Composition and characterization of *bmr* sorghums In: Srinivasa Rao, Prakasham RS, Deshpande S (Eds) *Brown Midrib Sorghum - Current Status and Potential as Novel Ligno-Cellulosic Feedstock of Bioenergy*, Lap Lambert Academic Publishing Gmbh and Co KG, Germany, pp 9-36
- Stallings CC, Donaldson BM, Thomas JW, Rosman EC (1982) In vivo evaluation of brown midrib corn silage by sheep and lactating dairy cows. Journal of Dairy Science 65, 1945-1949
- Vogler R, Ejeta G, Johnson K, Axtell J (1994) Characterization of a new brown midrib sorghum line. Agronomy Abstracts, ASA, Madison, p 124