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Abstract 

The availability of feed resources all year round is perceived as a prerequisite to improving 

livestock productivity, thereby promoting sustainable livelihoods. The mixed farming systems 

of East Africa require feed interventions which will maintain feed availability all year round to 

improve livestock productivity. However, introducing feed interventions requires due 

attention to the demand side of the interventions and the context of the farming system.  

This study focused on two key feed constraints and two adoption factors in the mixed farming 

system of East Africa. The two feed constraints of focus were feed quantity and seasonal feed 

scarcity, and the two adoption factors were land availability and water availability.  Four maps 

showing feed quantity, seasonal scarcity, land availability and water availability were 

produced using geographic information system (GIS). Thereafter, the four maps were overlaid 

to produce a single map showing 16 domains of feed availability and feed adoption factors 

for Kenya, Tanzania, and Uganda. From the sixteen (16) domains, four (4) highly contrasting 

domains were selected. The selected domains were ranked from very low to very high feed 

availability, with domain 16 representing very low, domain 7 representing low, domain 4 

representing medium and domain 2 representing very low. These four domains were found 

in Kenya and Tanzania indicating variations in feed availability within the counties. However, 

the only domain found in Uganda was domain 16 which indicates very low feed availability 

and 12 months of feed scarcity. Predictions of suitable feed interventions were made based 

on the domain properties using the FEAST/Techfit logic. 

 

Keywords: Feed quantity, Seasonal scarcity, Land availability, Water availability, Domains 
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1. Introduction 

 

Agricultural systems in low and middle-income countries are currently faced with tremendous 

challenges which are predicted to increase in the future. These challenges include the 

population, which is projected to grow globally from the current 7.3 billion to 9.7 billion in 

2050 and further reaching 11.6 billion in 2100 (Kc and Lutz, 2017). At the same time, about 

800 million people are currently food insecure (Fischer et al., 2002). Most of this growth in 

population is expected to emerge in Africa, where agriculture is a pillar of sustainable 

livelihoods and incomes (Misselhorn et al., 2012). Therefore, the agricultural system needs to 

double its productivity by 2050 to meet the demands of this populace and to maintain food 

security (Tscharntke et al., 2012). In addition, improved standards of living and rapid 

urbanization in developing countries have resulted in a substantial shift in diets, thereby 

leading to a greater demand for livestock products (Godfray et al., 2010, Thornton et al., 

2009). The population is moving from the consumption of basic staples to the consumption 

of more diverse meat-based diets (Kearney, 2010). Therefore, efforts to increase production 

of livestock products such as meat and milk to satisfy the increased demand will result in a 

higher demand for feeds and forages for livestock. However, the major threat is that this 

increase in demand for feed resources for livestock is occurring in the setting of climate 

change.  

Climate change will continue to alter rainfall distribution, lead to temperature increases and 

increase the occurrence of droughts and floods (IPCC, 2012). These climate variabilities will 

negatively impact livestock productivity by decreasing the quality and quantity of forage,  

thereby affecting the health and nutrition of livestock significantly (Fischer et al., 2002).  

Smallholder farmers in Sub-Saharan Africa, particularly East Africa are vulnerable to the 

negative impacts of climate change, primarily because they are in the tropics, their livelihoods 

and incomes depend on the productivity of livestock and they lack resources and policies 

which enhance their capacity to adapt to climate change (Morton, 2007, Bryan et al., 2013). 

Moreover, most of the adaptation methods assume a one-size fits all approach or a top-down 

approach, whereas different farmers in different geographic locations require varying 

adaptation methods. Therefore, farmers need adaptation methods which meet their specific 

requirements and context to reduce vulnerability and build resilience.  
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The objectives of the study were to: 

1. Evaluate the effects of current climate conditions on forage availability and quantity 

in the smallholder mixed farming systems. 

2. Assess the effects of the current climate on seasonal availability of forage in the 

smallholder mixed farming systems.  

3.  Determine areas vulnerable under current climate conditions. 

4. Recommend feed interventions suitable to address feed gaps under current climate 

conditions based on their match to system condition using the FEAST/Techfit sheets. 
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2. Literature Review 
 

Introduction 

A significant increase in livestock productivity is necessary in order to meet the growing 

demand for meat and dairy products. Therefore, an increase in the production and availability 

of high quality feeds and forages is crucial to enhance livestock productivity and improve the 

livelihoods of farmers in areas such as East Africa (Herrero et al., 2010). The population of 

East Africa, particularly Kenya, has been recording an exponential increase from the 1950’s 

and this increase is projected to continue up until 2050 and beyond (Figure 1). The World 

Bank has reported that most of the population will become concentrated in urban areas 

(Figure 2), which is an indication of urbanization and an increase in incomes (AASR, 2016). As 

the population grows and moves to urban areas, the FAO predicts (Figure 3) that consumption 

of livestock products will also increase (FAO, 2014). Therefore this calls for smallholder 

farmers in mixed farming systems to increase the production of feeds and forages to enhance 

the health and nutrition of livestock, thereby meeting the demand for meat, milk, and eggs 

whilst increasing their incomes (Kiptot et al., 2015). As there is a need to increase the 

production of feeds and forages, climate change, on the other hand, continues to negatively 

impact livestock productivity through the scarcity of feeds and forages, especially in the dry 

season (Nardone et al., 2010). The scarcity of feeds and forages is a challenge that is inevitable 

and propels the need to target new climate-resilient feed resources to improve livestock 

productivity.  



4 
 

 

Figure 1: Projections of urban population and urban-rural population split 

Source: (World Bank, 2016) 

 

Figure 2: Population density in Kenya 

Source: (Based on Kenya National Bureau of Statistics, 2009) (World Bank 2016) 
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Figure 3: Projected trends in Sub-Saharan Africa commodity production and consumption 

Source: (FAO, 2014) (Africa Agriculture Status Report, 2016 

2.1.  Impact of climate change on livestock systems 

Forage crops are vital for livestock productivity, nutrition, and health. However, climate 

change impacts livestock systems through factors that determine the quality and quantity of 

forage crops (Thornton et al., 2009). These factors include atmospheric CO2 concentration, 

precipitation, and temperature.   

2.1.1. Atmospheric carbon dioxide (CO2) concentration on forage crops 

  

The atmospheric concentration of CO2 is rising from a pre-industrial value of 280 ppm, has 

now topped 400 ppm and has been rising by about 2 ppm per year for the last decade. These 

atmospheric CO2 levels are projected to increase further in the coming years (Ciais et al., 

2014). The effect of the increasing CO2 concentration on plants is not clear-cut as research 

shows a wide variation in the long-term response of plant species (Lüscher et al., 1997). It 

should be noted that the rate of photosynthesis is not only regulated by CO2 but there are 

other environmental factors such as nutrient levels and water availability which interact with 

CO2 concentration to influence plant growth (Kramer, 1981, Kirschbaum, 1994). CO2 plays a 

primary role in photosynthesis, thereby stimulating crop growth and yield. As CO2 levels are 
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projected to rise, there is a need to review the correlation that may exist between crops and 

rising CO2 levels in combination with water availability and other climatic stresses as this may 

affect the productivity and availability of forage crops.   

Various plants respond to CO2 differently depending on their photosynthetic pathways. Thus, 

plants such as potatoes, sweet potatoes, wheat, rice, and legumes such as alfalfa possess a 

C3 pathway and are reported to be highly responsive to CO2 concentrations given sufficient 

water and nutrients (Poorter, 2003). Plants such as maize, sorghum, millet, sugarcane are 

instead reported to be less responsive to CO2 concentrations (Brown and Byrd, 1993, Kim et 

al., 2006). CO2 substantially increases herbage growth, dry matter production and yield in C3 

species but early research reported this effect to be minimal in C4 species (Ehleringer et al., 

1997). Thus this may shift the suitability of some forage species and lead to changes in pasture 

composition such as an imbalance in the ratio of grass and legumes (Thornton et al., 2009). 

However, tropical grasses such as Rhodes grass, Napier grass, and Brachiarra grass use the C4 

pathway and are reported to be highly responsive to elevated CO2 (Ghannoum et al., 2000). 

In both C3 and C4 plants, CO2 enrichment causes decreases in stomatal conductance and 

transpiration thereby improving water‐use efficiency (Lawlor and Mitchell, 1991), this 

encourages increased crop yield in conditions of mild water stress (Thornton et al., 2009). 

Supporting this, Olesen and Bindi (2002) reported that the response of plants to high 

concentrations of CO2 enhances the efficient use of resources such as water, light, and 

nutrients in both C3 and C4 species. Downing et al. (2000)  further recorded that water use 

efficiency (WUE) in wheat has been found to increase by about 50 to 60% with the doubling 

of current CO2 concentration. Similarly, Drake et al. (1997) reported that the doubling of CO2 

concentration resulted in an average reduction of 20% of stomatal conductance. Taken 

together, this information suggests that the changes in the atmospheric CO2 concentration 

may have a positive impact on forage crops which possess the C3 pathway. The relative effects 

of CO2 concentration on wheat grain yield are shown in Figure 4 (Drake et al., 1997). 
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Figure 4: Effects of CO2 concentration on wheat grain yield under experimental conditions 

Taken from (Downing et al., 2000). 

Furthermore, research conducted earlier generally showed that C4 plants will not respond 

substantially to elevated CO2 conditions (Ehleringer et al., 1997). However, recent studies 

based on FACE have reported the opposite (Reich et al., 2018, Wang et al., 2011). Walker et 

al. (1999) reported an increase in biomass of C4 grasses which were subjected to less intensive 

cutting treatment under CO2 enrichment, while grasses under intensive cutting treatment 

were unresponsive. These findings not only show a positive relationship between CO2 and 

growth but also reveals the major role which can be played by grazing management in 

increasing current and future quantity of forage crops under elevated atmospheric CO2 levels. 

A review of responses of wild C3 and C4 Poaceae to elevated atmospheric CO2 reported an 

increase in leaf biomass and leaf area, with a total biomass of 33% and 44% for C3 and C4 

species respectively. Furthermore, an increase in tillering was observed in C3 and an increase 

in leaf area on C4 (Crush and Rowarth, 2007, Wand et al., 1999). Similarly, Xie et al. (2015) 

reported an increase in maize plant height, kernel yield per ear and an increase in WUE under 

elevated CO2 levels. In agreement, Owensby et al. (1997) reported a significant increase in 

above‐ground biomass in the C4 species of a tallgrass prairie which was subjected to elevated 

CO2 and this increase in biomass was attributed to the ability of C4 species to mitigate water 

loss under elevated CO2 during a dry year. These findings indicate the tolerance of C4 grasses 

to drought under high CO2 levels and suggest that C4 grasses may thrive in the drought 
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periods caused by climate change. However, elevated CO2 levels reduced leaf N content. 

Similarly, Milchunas et al. (2005) reported a decrease in the crude protein yield of B. gracilis 

which is a C4 species and an increase in the crude protein yield of S. comata which is a C3 

species. Milchunas et al. (2005) further reported that continued drought conditions under 

elevated CO2 reduced fiber yields of S. comata more than that of B. gracilis.  This is an 

indication that the increasing atmospheric CO2 levels are most likely to affect livestock 

production through reducing forage quality, thereby altering species composition. The mean 

total biomass production under elevated and ambient CO2 is shown in Figure 5 (Owensby et 

al., 1997).   

 

Figure 5: Mean total above-ground biomass for native tallgrass prairie exposed to elevated 
and ambient CO2 for the indicated years 

 

2.2.   Impact of climate change on temperature and rainfall distribution in relation to crop-

livestock productivity  

A range of climate models show median temperature increases between 3 °C and 4 °C in Africa 

by the end of the 21st Century (Bryan et al., 2013, Wolfram and David, 2010). In agreement 

with this, various authors have reported variabilities in temperature and precipitation 

distribution and intensity, especially in Sub Saharan Africa (Kotir, 2011, Hendrix and Glaser, 

2007). The rainfall pattern in SSA is influenced by large-scale intra-seasonal and inter-annual 

climate variability including occasional El Niño-Southern Oscillation (ENSO) events in the 

tropics which result in increased frequency of extreme weather events such as droughts and 
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floods. Though the interaction between climate change and ENSO is not clearly understood 

but reports show that climate change will largely influence the way in which ENSO functions 

in increasing occurrences of floods, droughts, and rainfall variabilities in future (Sheffield and 

Wood, 2008, Field, 2012).  Eastern equatorial Africa experiences a dominant ENSO influence 

in the short rainy season during October to November (Kotir, 2011). ENSO is associated with 

reduced rainfall and high temperatures in this region, and the influence of climate change on 

ENSO may increase these climate variabilities. Therefore, expected changes in rainfall 

distribution and temperature caused by the influence of climate change on ENSO will have a 

substantial impact on crop and livestock productivity as they affect the length of the crop 

growing season, crop growth, potential crop yield and soil water availability (Porter and 

Semenov, 2005), livestock health and nutrition (Thornton et al., 2007).  

As these climatic variabilities are expected to shift length of the growing period, shifts in the 

ranges of crop suitability, weeds, insects, and diseases are expected. These shifts may also 

risk feed and food availability, accessibility, utilization and stability  (Kotir, 2011). However, 

parts of the tropical highlands where cool temperatures constrain crop growth will benefit 

from the rising temperature as they likely enhance crop growth (Thornton and Herrero, 2014). 

Therefore, changes in rainfall distribution and increases in temperature and drought 

occurrences may shift the suitability of forages and decrease feed availability in some areas. 

Over and above all, suitability of forage species and feed availability will depend on the 

optimal temperature the forage species require for growth and reproduction. Climate change 

may lead to a decline of forage species which require low temperatures and extended periods 

of rainfall, thereby increasing the availability of feeds which can thrive under high 

temperatures and erratic rainfall.  

2.3. Impact of climate change on mixed farming systems 

Mixed farming systems are systems in which crops and livestock are integrated on the same 

farm, they are also termed mixed crop-livestock farming systems (Thornton and Herrero, 

2014). In these systems, crops sustain livestock productivity by providing feed in a form of 

crop residues, while livestock provides inputs such as manure and traction for subsequent 

crops (Duncan et al., 2016). Kruska et al. (2003b) defined the mixed system as “a livestock 

system in which more than 10 percent of the dry matter fed to animals comes from crop by-
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products, stubble or more than 10 percent of the total value of production comes from non-

livestock farming activities”. There are two types of mixed system and these are:  

i. Rainfed mixed farming systems - these are mixed systems in which more than 90% of 

the value of non-livestock farm production comes from rainfed land use. 

ii. Irrigated mixed farming systems, these are mixed systems in which more than 10% of 

the value of non-livestock farm production comes from irrigated land use (Kruska et 

al., 2003a).  

The mixed systems are a source of income for people in the developing world and they play 

a substantial role in enhancing food security as they provide most of the staples and feed 

resources and they are reported to produce 90 percent of the world’s milk supply and 80 per 

cent of the meat from ruminants (Herrero et al., 2013a). Changes in the climate affect 

smallholder mixed farming systems through increasing or decreasing the length of growing 

period (LGP). The length of the growing period is significant to production systems as it 

determines the duration in which cropping is possible, thereby affecting the spatial 

distribution of crops (Vrieling et al., 2013). Thornton et al. (2009) defined LGP as “the period 

in days during the year when rainfed available soil moisture supply is greater than half the 

potential evapotranspiration (PET)”. Different forage species found in the mixed systems 

require different LGP, hence varying species occur in different agro-ecological zones. Kruska 

et al. (2003b)  and Thornton et al. (2009) used the systems classification method of (Seré et 

al., 1996) which uses LGP to classify agro-ecological zones as the LGP  determines the type of 

agro-ecological zone and forage suitability. The categories resulting from the systems 

classification method are as follows:  

• arid/semi-arid is characterized by a length of growing period that is less than or equal 

to 180 days. 

• humid/sub-humid is characterized by a length of growing period greater than 180 

days. 

• tropical, with a daily mean temperature, during the growing period, of between 5 and 

20 °C.  

• temperate, is characterized by one or more months with monthly mean temperature, 

corrected to sea level, below 5°C. 
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As climate change will cause a change in the LGP, this will also cause a shift in these agro-

ecological zones leading to a complete change in forage suitability (Kurukulasuriya and 

Rosenthal, 2013). Thornton et al. (2002) showed that a decrease or an increase in the LGP will 

result in a movement of the boundary for growing forage species such as maize. The shift in 

LGP may present both opportunities and risk. For instance, Thornton et al. (2002) showed 

that the southern parts of Kenya and the northern parts of Tanzania were not suitable for 

maize cropping in the year 2000 but, an increase in the LGP in 2050 is predicted to be parallel 

to a reduction in rainfall variability and this will support the cropping of maize as a fodder 

crop, thereby presenting an opportunity for farmers to have adequate livestock feed. In 

contrast, some parts of Tanzania, Ethiopia, and Uganda were suitable for maize cropping in 

the year 2000 but, a decrease in LGP is predicted to completely phase out the suitability of 

maize, leaving a high need of feed resources (Thornton et al., 2002). Furthermore, higher 

temperatures in higher latitudes will increase the growing season and expand crop suitability. 

However, in lower latitudes, higher temperatures are expected to constrain forage 

production (Kurukulasuriya and Rosenthal, 2013). In agreement, Washington and Hawcroft 

(2012) reported a geographic expansion in the suitability of cassava while sweet potato 

showed a decrease in suitability in the East African region under warmer temperatures. The 

expansion of cassava suitability may be attributed to its nature of requiring higher 

temperatures for growth. Therefore, this implies that cassava may be an attractive feed 

option under climate change. Similarly, Odira (2016)  reported an expansion in the suitability 

area of sugarcane in western Kenya in 2050 under climate variabilities. Therefore, as it is 

projected that the quality of feeds will reduce under climate change, sugarcane in the form 

of molasses may be an attractive feed option to supplement feed quality. Taken together, this 

information suggests that farmers in mixed farming systems are most likely to build resilience 

through the adoption of feed options which their suitability will fall within the cropping 

boundary and positively respond to the high temperatures. Expected changes reported by 

Thornton et al. (2002)  in the length of the growing period are shown in Figure 6. Expected 

movement of cropping boundary caused by climate change is shown in Figure 7. 
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Figure 6: Predicted changes in the length of growing period from 2000 to 2005 

Source: (Thornton et al., 2002) 
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Figure 7: Predicted changes to cropping boundaries and limits of maize cultivation in Africa 
from 2000 to 2050 

Source: (Thornton et al., 2002) 

2.4. Factors affecting adoption of different feeds and forages 

There exists a knowledge gap with regards to the non-climatic or socioeconomic factors which 

determine the choice of livestock feeds and forages smallholder farmers adopt. Various 

researchers (Kiptot et al., 2015, Parwada et al., 2010, Deressa et al., 2009) have conducted 

case studies on the socioeconomic factors which determine the adoption of other climate 

change adaptation methods, such as conservation agriculture and agroforestry. Therefore the 

determinants or factors reported by previous research may be applicable to the adoption of 

new climate-resilient feeds and forages, as these also represent a climate change adaptation 

method.  

A participatory study was undertaken by Deressa et al. (2009) to gain knowledge on the 

factors which affect farmers choices of adaptation methods to climate change in the Nile 

Basin of Ethiopia. The authors recorded the existence of a set of socioeconomic factors 

affecting the farmers’ choices of adaptation methods to climate change, and these factors 

may be applicable to the adoption of feeds and forages by smallholder farmers in the mixed 

farming systems. These factors include: level of education, size of household, gender of the 
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head of household, age of the head of household, farm income, nonfarm income, livestock 

ownership, extension on crop and livestock, information on climate change, farmer-to-farmer 

extension, credit, number of relatives (i.e. social capital), farm size in hectares, distance to 

output market in kilometres, distance to input market in kilometres, local agroecology 

(lowlands), and local agroecology (Midlands), land availability and water availability.  

Likewise, Gyau et al. (2012) conducted a case study in Cameroon and recorded that adoption 

by smallholder farmers may be determined by factors such as market prices, the supply of 

seeds and seedlings, and land tenure. This was in line with the findings of a case study 

conducted by Parwada et al. (2010) in Zimbabwe on assessing the adoption of agroforestry 

technologies among smallholder farmers. Parwada et al. (2010) recorded factors such as level 

of awareness among farmers, land ownership, and land size, drought, labor and local 

institutions, employment status, and training. Supporting this information, Gyau et al. (2014) 

conducted a case study in Côte d’Ivoire on assessing the farmer attitudes and intentions 

towards trees in cocoa (Theobroma cacao L.) farms. The authors reported that adoption is 

influenced by extension and certification programs, diseases affecting cocoa, geographic 

zone, the age of the farmers, household size, the supply of seedlings and training which 

ensure maximum profitability. Furthermore, a 2015  study in Kenya assessed the preference 

and adoption of livestock feed practices among farmers in dairy management groups and 

reported that information sources (i.e., neighbours, radio, extension services), level of 

education, gender and belonging to a farmer group can substantially affect adoption of feeds 

and feed practices (Kiptot et al., 2015). 

2.41. Gender of the household head 

According to a study in Ghana, female-headed households are more likely to have little or no 

access to extension information compared to male-headed households. As a result, high 

adoption of beneficial interventions is observed on male-headed households (Doss and 

Morris, 2001) and this unequal access to information between males and females is attributed 

to traditional social barriers (Tenge et al., 2004). Moreover, a study in Uganda conducted by 

Katungi et al. (2008) showed that social capital is an important factor in information exchange 

and men generally have better access to social capital than women. Contrary to these 

findings, Nhemachena and Hassan (2007) recorded that households headed by women are 

more likely to adopt climate change adaptation methods and the authors attributed these 
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findings to the evidence that women do most of the agricultural work at a household to a 

region level, thereby having vast experience and information on profitable management 

practices. Therefore, these findings suggest that both women and men can play significant 

roles in the adoption of climate-resilient feeds and forages.  

Research indicates an interaction between education level and adoption decisions. Low level 

of education is associated with less access to information on beneficial interventions leading 

to a low rate of adoption of adaptation methods. On the other hand, high level of education 

is associated with high access to information leading to a high rate of adoption of adaptation 

methods (Asfaw and Admassie, 2004). Likewise, Fosu-Mensah et al. (2012) linked the 

education level of a household head to access to information on improved technologies and 

production challenges. Therefore, this information suggests that farmers adoption of feeds 

and forages as an adaptation method to climate change may vary according to farmers’ level 

of education. 

2.4.2. Land ownership (land tenure) 

Land ownership (tenure) plays a vital role in the adoption of adaptation methods (Fosu-

Mensah et al., 2012). Land renters are less likely to adopt adaptation methods that require 

longer-term investments such as conservation agriculture, crop diversification. On the other 

hand, landowners are most likely to adopt adaptations methods that only yield benefits in the 

longer term (Soule et al., 2000) and this may be applicable also in the adoption of climate-

resilient feeds and forages such as fodder trees and shrubs, fodder leaf meals and short 

duration fodder crops such as oats, maize, and sorghum. Likewise, a study conducted by 

Gebremedhin and Swinton (2003) in northern Ethiopia recorded that land ownership 

encourages long-term investments such as in stone terraces. Furthermore, land ownership 

positively affects the adoption of adaptation methods as the adaptation methods will directly 

provide long-term benefits to the owner (Prokopy et al., 2008). 

2.4.3. Access to credit 

The availability of credit enables farmers to purchase inputs needed for adaptation methods 

such as improved crop varieties or fertilizers (Le Dang et al., 2014). A meta-analysis conducted 

by Pattanayak et al. (2003) on adoption rates for agroforestry practices recorded that there 

is a positive correlation between resource endowments such as credit and the rate of 

adoption of adaptation methods. Likewise, Tambo and Abdoulaye (2013) reported that access 
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to credit or loan facility plays a vital role in the adoption of new technologies as it eases 

farmers from cash constraints and allows them to easily purchase inputs. These findings were 

in line with the findings of a study by Bryan et al. (2009) which concluded that the lack of 

access to credit by farmers slows down that rate of adoption of adaptation methods.  

2.4.4. Age of the household head 

Age of the household head is associated with years of farming experience (Deressa et al., 

2009).  (Maddison, 2007) cited that experience in farming increases the probability of uptake 

of adaptation measures to climate change and this was in agreement with (Deressa et al., 

2009) findings which reported that an increase in the number of years of experience increased 

farmers’ probability of adopting adaptation methods. On the contrary, Knowler and Bradshaw 

(2007) and Perz (2003)  cited that the age of a farmer has no significant effect on the adoption 

of conservation agriculture. On the other hand, Bekele and Drake (2003) argue that age of the 

farmer cannot be treated as a determinant in the adoption of conservation agriculture 

because older farmers may adopt conservation agriculture on the basis of farming experience, 

while younger farmers may invest in conservation agriculture due to their education 

awareness on the longer-term benefits. On the other hand, Rahman (2007) reported that 

older farmers may be skeptical and reluctant to adopt new technologies for pig farms in India. 

2.4.5 Access to extension services 

Various studies have reported that modern agricultural technologies are most likely to be 

adopted by households which have access to extension services (Abdulai and Huffman, 2005). 

Extension services, therefore, play a significant role in influencing adoption decisions (Pannell 

et al., 2006). Moreover, the contact of extension workers with farmers commonly determines 

the farmers’ access to climate change adaptation information. Furthermore, access to 

information through extension services reduces farmers’ uncertainty on the performance of 

a new technology (Shiferaw and Holden, 1998). A study conducted in Ghana by Doss and 

Morris (2001) on the adoption of agricultural innovations by farm households, women were 

found to have less or no access to extension services leading to lower adoption rates than 

men. However, the author did not attribute these findings to gender issues. Rather these 

findings were attributed to the extension workers preferring to visit farmers working on large-

scale farms, and farmers who have already adopted improved technologies.  
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2.4.6. Labour availability 

A larger household size is assumed to allow farmers to adopt adaptation methods which are 

labor intensive due to the number of individuals who can share the labor (Hassan and 

Nhemachena, 2008, Dolisca et al., 2006). However, some members of a large household may 

be required to participate in off-farm activities to gain diverse incomes in a household, leaving 

fewer individuals to do on-farm activities (Tizale, 2007). Therefore, this information suggests 

that farmers with small household size are less likely to adopt labor-intensive adaptation 

methods. 

2.4.7. Access to markets 

Hassan and Nhemachena (2008) and Deressa et al. (2009) referred to “access to markets” as 

the distance to input market in kilometers and distance to output market in kilometers. 

Market access is one of the factors which play a significant role in the adoption of adaptation 

methods. For instance, a shorter distance to the input market enables farmers to easily 

acquire or buy seeds or seedlings.  

2.4.8. Level of farmers awareness of climate change 

Farmers perception of climate change contributes immensely to the adoption of climate 

change adaptation methods (Maddison, 2007). Nhemachena and Hassan (2007) reported that 

farmers who observed the long-term alterations in temperature and rainfall had a high 

probability to adopt adaptation methods as they were aware how these changes in the 

climate affected yield.  

2.4.9. Water availability 
 

Water availability plays a major role in the uptake of feed or forage technologies. This is well 

demonstrated in the rainfed farming systems, in cases whereby introduced feed options have 

a positive impact on livestock productivity but their uptake remain unsatisfactory due to 

water shortages following erratic rainfall (Ashley et al., 2018). In rainfed farming systems, the 

availability of water or soil moisture for growing forage is determined by rainfall distribution 

and amount. Therefore, erratic rainfall may prevent farmers from adopting feed interventions 

with high water requirements. Nevertheless, future climate projections show an increase in 

precipitation for Eastern Africa and a decrease in Southern Africa (Adhikari et al., 2015) 
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(Barros, 2014). This may enable the mixed farming systems in East Africa to uptake feed 

options which require water, thereby improve livestock productivity. 

2.4.10. Land availability 
 

In developing countries, land allocation for the cultivation of forage crops such as legumes to 

close the feed quantity gap for livestock feeding is given least priority among farmers due to 

the growing population which demands the land for growing crops for food, as well as building 

settlements (Geleta et al., 2013). As a result, land scarcity constrains livestock productivity as 

feed interventions with a higher land requirement are less attractive despite their positive 

impact on livestock productivity. Another variable caused by the changes in the climate which 

influences land availability is rainfall intensity. For instance, rainfall intensity is predicted to 

increase in East Africa (Nearing et al., 2004). Therefore, high rainfall intensity may degrade 

land through soil loss making the cultivation of forage impossible (Adhikari et al., 2015). In 

this context, land availability simply suggests the availability of productive land. Therefore, 

degraded land may not be as productive and may prevent the adoption of feed interventions 

which require land.  

2.5 Constraints to livestock productivity in mixed farming systems 
 

Livestock farming is a significant livelihood strategy for people in low and middle-income 

countries (Kaasschieter et al., 1992, Herrero et al., 2009). Livestock and livestock products are 

sold to gain household income. Livestock contributes to food and nutrition security through 

providing protein in a form of meat, milk, and eggs, and also provides traction and returns 

manure to the soil for future crops in the mixed farming systems (Randolph et al., 2007, 

Herrero et al., 2009, Lapar and Ehui, 2004). However, changes in the climate affect the 

livelihoods of people who depend on livestock through limiting livestock productivity. High 

temperatures and altered rainfall distribution cause shifts in rain-fed forage suitability, 

resulting to feed seasonality and fluctuations in feed quantity and quality (Nardone et al., 

2010).  

2.5.1. Seasonal scarcity and feed quantity 
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Ideally, forage production should match livestock feed requirements all year round for 

optimum livestock productivity. However, seasonal shortages of feed have been identified as 

a major constraint to livestock productivity (Smith, 2002, Abate et al., 1993). The rainy season 

and the warm season are associated with high biomass production which influences high feed 

availability and improved livestock productivity (Leonard, 2015). The dry season and the cool 

season are associated with low biomass production, which leads to high feed scarcity and 

decreased livestock productivity as the available feed fail to meet livestock nutrition 

requirements (Lukuyu et al., 2009). The resulting livestock nutrition stress negatively impacts 

smallholder farmers’ livelihoods as milk and other livestock products sales decline due to low 

productivity. The feed scarcity problem is worsened by lack of farmers’ knowledge on locally 

available feed interventions which can be adopted to increase or maintain productivity during 

the dry season or cool season (Lukuyu et al., 2011). Feed scarcity can be addressed through 

targeting feed option which can close the feed gap during the dry or cool season. For instance, 

hay-making and silage-making are attractive options which can be adopted in seasons 

characterized by high biomass production to close the feed gap in seasons with low biomass 

production (Simbaya, 2002). 

2.5.2. Feed quality 
 

The important feed resources for the mixed farming systems are crop residues and natural 

pastures. However, these feed resources are often characterized by a low nutritive value or 

quality in the dry season (Simbaya, 2002). Therefore, poor quality feed falls amongst the 

major constraints of livestock productivity. Crop residues are associated with high fiber and 

low protein, which fail to support optimal microbial growth and match livestock nutrition 

requirements for increased productivity (Ball et al., 2001). This is an indication that farmers 

need other feed options and interventions which will increase the feeding value of crop 

residues (Reed and Goe, 1989). Various studies (Wanapat et al., 2009, Sarnklong et al., 2010, 

Roothaert and Paterson, 1997) have reported on interventions which can be adopted to 

improve the quality of feed. These interventions include chemical treatment of crop residues 

using urea, supplementing feed with energy-rich supplements such as molasses, 

supplementation of feed using protein by-products such as blood and bone and legume leaf 

meal and the use of fodder trees and shrubs. These feed options improve the nutritive value 
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of feed by increasing digestibility, palatability and crude protein content (Israel and Pearson, 

2000). Taken together, adoption of feed with high protein content is likely to improve 

livestock productivity. 

2.6 What is the feed assessment tool (FEAST)? 
 

The Feed Assessment Tool (FEAST) is a tool developed by ILRI. It is a systematic method to 

assess the availability and use of feed resources. The tool helps in the design of site-specific 

interventions which enhance feed supply and utilization. The tool encompasses three 

components. The first component is a focused participatory rural appraisal (PRA) exercise 

which provides the following:  

i. an overview of a farming system   

- the range of farm sizes  

- farm labor availability 

- annual rainfall pattern 

- irrigation availability 

ii. a general description of livestock production  

- the types of animals raised 

- the purpose of keeping these animals 

- ease of access to credit 

- availability of necessary inputs  

iii. problem identification and potential opportunities 

The second component of the tool is an individual farmer survey which involves a short 

questionnaire which seeks farmers’ perception and quantitative information related to farm 

size, crop yield, portion of grazed feed, portion of purchased feed, seasonal feed scarcity, milk 

sale and livestock sales. The third component is data analysis. Data collected is entered to the 

FEAST template. The feast produces an output which consists of a short report with 

quantitative information on overall feed availability, quality and seasonality and this report is 

used to help inform intervention strategies. Thereafter, feed interventions which have a 

potential to mitigate feed constraints were added to FEAST and are named the Techfit sheets. 

Therefore, these Techfit sheets will guide the recommendations of this project. 
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2.6.1.  FEAST/Techfit approach 
 

Climate change affects the smallholder mixed farming systems through causing increased 

feed scarcity, and in some cases decrease in feed quality (Sejian et al., 2016). Current 

production systems are characterized by poorly fed animals which are fed opportunistically 

with feeds that are immediately available. Thus, feed represents a key limiting factor and it is 

often the most expensive input in livestock production (Geleta et al., 2013). Smallholder 

farmers need feed options which will close the feed gap and increase their income. 

The FEAST/Techfit approach presents candidate feed technologies or interventions which 

have a potential to mitigate feed constraints such as feed scarcity during the dry or cool 

season, feed scarcity during the growing season, feed quantity and feed quality. The Techfit 

module scores the candidate feed options from low to very high, depending on the 

intervention’s potential to mitigate feed constraints. Therefore, in this manner, feed options 

which have a high potential to mitigate feed scarcity during dry or cool periods are given a 

score of four, which represents “very high potential” and such feed options include: irrigated 

fodder (e.g. grasses, maize, sorghum), purchased crop residues or hay, fodder trees and 

shrubs, and commercial balanced compounded feeds (e.g. dairy meal), multi-nutrient 

supplements (e.g. urea molasses, mineral block licks), hay (machine hay making/ manual 

boxing), and silage and silage making (tube silage/ silos). 

 Feed options which are scored very high for their potential to mitigate feed scarcity during 

the growing season include: short-duration /annual fodder crops (e.g. oats, maize, sorghum, 

vetch), grasses for cut and carry systems (cut from cultivated fodder field under rainfed 

conditions). Feed options which have a potential to mitigate feed quantity constraints include 

irrigated fodder (e.g. grasses, maize, sorghum), grasses for cut and carry systems (cut from 

cultivated fodder field under rainfed conditions) and short-duration / annual fodder crops 

(e.g. oats, maize, sorghum, vetch).  

Finally, feed options which have high potential to mitigate feed quality constraints include: 

energy-rich supplements (e.g. molasses), fodder trees and shrubs (e.g. Leucaena 

leucocephala), legume/fodder leaf meals (dried and ground), commercial balanced 

compounded feeds (e.g. dairy meal), complete mixed rations such as feed blocks and 

herbaceous legumes, monoculture or mixed with grasses. 
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2.6.2. Constraints and adoption factors revealed by Feast /Techfit approach 
 

The rate of adoption for feed options depends on a few key issues which are noteworthy. The 

first key issue is the potential of the feed interventions to solve or deal with the core feed 

constraints which farmers are faced with. For instance, in areas where feed quantity 

constrains livestock productivity, adoption of feed options such as legumes is likely to be low 

as legumes deal well with feed quality constraints (Huisman and Van der Poel, 1994) but do 

not provide enough herbage to secure high feed quantity. Additionally, in areas where 

seasonal scarcity limits livestock productivity, adoption of legumes is most likely to fail as 

legumes provide feed during the growing season, thereby leaving a feed gap after the growing 

season. 

The second key issue in the adoption of feed options pertains to whether the local farming 

system can provide the requirements of the feed intervention. For instance, annual fodder 

crops such as maize and sorghum provide the needed quantity and have the potential to 

mitigate feed scarcity during the growing season, but their adoption might be low as farmers 

might be put off by its high requirement for land. Additionally, fodder trees and shrubs 

provide high-quality feed (Norton, 1994) and have the potential to mitigate feed scarcity 

during the growing season but their adoption might be hampered by their high demand for 

labour. Furthermore, feed interventions which have long-term benefits such as fodder trees 

and shrubs are less likely to be adopted in areas where land tenure is an issue, as land may 

not be guaranteed in the following year. Therefore, this raises a policy implication as (Fosu-

Mensah et al., 2012) reported that landowners are more resilient to climate change due to 

their ability to invest in adaptation methods which yield long-term benefits. 

The third key issue which determines uptake of feed interventions is the measurable impact 

of the feed intervention on livestock productivity. Farmers are more likely to invest in feed 

options which have a detectable effect on productivity and profit. For example, 

supplementing poor quality feed with molasses is likely to be attractive to farmers as it 

improves daily weight gain, thereby increasing income on the sale of live and slaughtered 

animals due to the increase in weight gain (Ayoola and Ayoade, 1992).  

The FEAST/Techfit approach, therefore, provides a useful framework for predicting likely 

success of a range of feed options under different system conditions and different feed 
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constraint scenarios. This project assesses the potential to map uptake factors and feed 

constraints to generate feed availability maps which will be used to predict likely suitability of 

a range of climate resilient feed options. 

 

 

 

 

 

 

 

 

3. Methods and materials 

Mapping of feed constraints and system characteristics is key to matching feed interventions 

to local conditions in the face of current and future climate change. This study focused on two 

key feed constraints faced by farmers and two system characteristics in the smallholder mixed 

farming system of East Africa. The two feed constraints of focus were overall feed quantity 

and seasonal feed scarcity, and the two system characteristics were land availability and 

water availability.  

Four maps (feed quantity, seasonal scarcity, land availability, water availability) were 

produced using a geographic information system (GIS). Thereafter, the four maps were 

overlaid to produce a single map showing sixteen (16) domains of feed constraints and system 

characteristics for Kenya, Tanzania, and Uganda. From the sixteen domains, four highly 

contrasting domains were selected, and recommendations of suitable feed interventions 

were made based on the properties of the four selected domains using the FEAST/Techfit 

logic (Lukuyu and Duncan, 2014).  
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The study was conducted using ESRI ArcGIS 10.4 (ESRI, Redlands, CA) and R software (R Core 

Team, 2017), and variables listed in Table 1 were mapped at a spatial resolution of 1 

kilometer.  

Table 1: Proxies of feed constraints and adoption factors 

Factor/ Constraint  Proxy  Unit  

  
Feed quantity   Dry matter productivity Kg DM/km2/cow/day 

Feed scarcity   Dry matter productivity number of months/years  

Land availability   Population density crop area/person  

Water availability  Annual precipitation  millimeters (mm) 

 

3.1.   Data Sources  
 

Various sources provided the data sets which were needed to accomplish the study. Overall, 

the following sources of data were used: 

• Net Primary Productivity (Dry Matter Productivity) data from 2008 to 2010 was 

provided by Copernicus Global Land Services. 

• Land cover data from 2015 to 2016 which was used to delineate rangeland was 

provided by Copernicus Global land services. 

• Mixed farming system data was extracted from the livestock production systems data 

obtained from the International Livestock Research Institute (ILRI) Datasets Portal. 

• Pasture density layer was provided by the Food and Agriculture Organization (FAO) 

• Cattle density data used to determine annual feed production per animal was 

obtained from the Food and Agricultural Organization (FAO) Global Cattle Density. 

• Population density data was provided by Worldpop. 

• Crop area data was provided by the International Institute for Applied System Analysis 

(IIASA). 

• Rainfall distribution maps from 2008 to 2017 were provided by National Oceanic and 

Atmospheric Administration (NOAA). 

• Data for deriving flow accumulation was acquired from (Lehner et al., 2008). 

3.2. Mapping of feed constraints 
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3.2.1. Feed quantity 
 

Feed quantity was defined as the available feed per animal. To determine the available feed 

quantity per animal, cropland, and rangeland land cover types were delineated using 

Copernicus LC100 2015 v1.0.1 dataset. Based on this dataset, rangeland includes shrubs, 

herbaceous vegetation, bare/sparse vegetation and herbaceous wetland in the study area. 

For the purposes of this study, Dry Matter Productivity (DMP) spatial data spanning a period 

of 10 years (2008 - 2017) were downloaded from Copernicus Global Land service 

https://land.copernicus.eu/global/products/dmp. DMP is directly related to NPP (net primary 

Productivity) and it represents the overall growth rate of vegetation, expressed in kilograms 

of dry matter per hectare per day (kg DM/ha/day). The DMP data was used to identify the 

overall growth rate or dry biomass increase of the vegetation (Fetzel, 2016). The DMP data 

was corrected to estimate available livestock feed using pasture layer from FAO and a feed 

fraction from cropland which accounts for 24% (Herrero et al., 2013b). The pasture layer 

shows the fraction of land areas used as pasture land and the fraction of cropland used to 

support grazing animals. Finally, cattle density data from (Upson et al., 2016) was used to 

calculate the quantity of feed available per animal per year across the mixed farming systems 

as mapped by (Herrero et al., 2013b). Therefore, the output shows feed quantity in kilograms 

of dry matter per cow per day (kg DM cow/day) 

Data Processing for the feed quantity map 

First, the global netCDF DMP data layers were converted into GeoTIFF file format and clipped 

to the area of study (East Africa). To obtain actual or physical DMP values, the data layers 

were divided by 100. These steps were carried out on each (2008 - 2017) DMP data layer. 

Thereafter, the pasture occurrence and cattle density raster layers were clipped to the area 

of interest and subsequently resampled to a spatial resolution of 1 km. Furthermore, pasture 

occurrence data which originally has its values in percent was divided by 100   to have pasture 

proportions in decimal. To convert cattle density from square kilometer to hectares, the layer 

was multiplied by 100. The conversion was intentionally done so that the cattle density units 

reflect those of the DMP. Pasture quantity was calculated by multiplying long-term DMP trend 

layer by pasture fraction. The output was then divided by cattle density layer to get pasture 

quantity in kilograms of dry matter per cow per day (kg DM cow/day). Therefore, the final 

https://land.copernicus.eu/global/products/dmp
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output (Figure 8) shows feed quantity in kilograms of dry matter per cow per day (kg DM 

cow/day) 

Overall, to calculate the available feed quantity per animal, five important variables were 

considered;  

1. Long-term DMP trend: This is the mean of all (2008 - 2017) data layers converted to 

actual DMP values. This layer was derived using simple arithmetic mean in ArcGIS and 

resampled to a spatial resolution of 1km. 

2. Feed fraction:  Fraction of total primary production that is used as feed. For cropland, 

we use 24%, for pastureland, we use the pasture fraction layer which shows the 

relative proportion of available feed on the land surface considering the land use type 

(Van Velthuizen et al., 2007). This variable is significant as a weighting factor to long-

term DMP pixel values. It defines what proportion of DMP given the land use type is 

available for grazing and browsing. 

3. Cattle density: This represents the number of animals per hectare. The gridded data 

is created through spatial disaggregation of sub-national statistical data based on 

empirical relationships between cattle densities and environmental variables in 

similar areas (Robinson et al., 2014)   

4. Land cover: This is a dataset which was used to delineate rangeland and cropland land 

cover types.  

5. Livestock production systems layer: This is the layer which was used to extract the 

mixed farming systems of East Africa. 
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Figure 8: Feed quantity map 

3.2.2. Seasonal feed scarcity 
 

Feed scarcity was defined as the number of months with feed quantity less than the 

requirements of one tropical livestock unit (TLU). Feed scarcity was derived by comparing 

long-term (2008 - 2017) monthly DMP trend against standard feed requirement of one TLU 

(6.5 kg DM cow/day). To achieve this, long-term actual monthly DMP trend was first 

calculated through simple mean. This was done across the months (January - December) and 

along the years (2008 - 2017). The output of this process was 12 long-term average monthly 
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DMP gridded data layers. Each of these were then multiplied by pasture fraction to obtain 

long-term monthly pasture quantity. Feed quantity in kilograms of dry matter per cow per 

day (kg DM cow/day) for each of the 12 long-term months was finally derived by deriving 

long-term monthly pasture quantity by cattle density layer.  

Data processing for the seasonal feed scarcity map 

Comparison of long-term monthly pasture quantity per cow against the standard daily feed 

intake was done using ArcGIS Con tool. In this study, cell values of feed quantity per animal 

that were greater than 6.25 kg DM cow per day were assigned a value 1 and those below 

were assigned a value 0. This process was repeated on each long-term monthly pasture 

quantity per cow raster dataset while adding the output together. The result of this entire 

process is a single feed scarcity gridded data layer with ordinal values running from 0 to 12. 

Twelve (12) representing all year scarcity and zero (0) representing no scarcity (Figure 9). 
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Figure 9: Seasonal feed scarcity map 

 

3.3. Mapping of system characteristics 

3.3.1. Land availability 
 

Land availability was defined as the cropland area available per person. Population density 

data available from WorldPop (http://www.worldpop.org.uk/data/) and cropland data 

mapped by (Ramankutty et al., 2010) were used to calculate the crop area available per 

person. 

Data processing for the land availability map 

Cropland data was resampled to 0.008333333-degree pixel size for a fine spatial resolution. 

Thereafter, the cropland area was divided by population density using a raster calculator. The 

output (Figure 10) shows the area of cropland available per person within each pixel.  

http://www.worldpop.org.uk/data/
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Figure 10: Land availability map 

 

Furthermore, soil loss was calculated as a proxy indicator for risk of future land degradation 

which may reduce available land for forage production. The calculation was done using the 

standard RUSLE equation as described by (Artiola et al., 2004) where: 

• A=2.24R*K*LS*C*P 

• A = the estimated average annual soil loss (metric tons per hectare) 

• R = the rainfall and runoff erosivity index, describing the intensity and duration of 

rainfall over the study site over a maximum 30-minute intensity rainfall event. The R 

factor was derived from Global R and clipped to the study area.  

• K = the soil erodibility factor. K is related to soil physical and chemical properties that 

determine how easily soil particles can be dislodged. It is related to soil texture, 
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aggregate stability, and soil permeability or ability to absorb water. It ranges from 1 

(very easily eroded) to 0.01 (very stable soil). 

• LS = describes the length and steepness of a slope.  This impacts the velocity of water 

runoff and therefore erosivity. For determining LS in this model Wischmeier and 

Smith's LS factor formula was calculated in the ArcMap 10.6 raster calculator with the 

following input: 

Pow(([FlowLength]/22.13),[m_factor]/10)*(((Sin([Slope_degrees]/deg)*Sin([Slope_

degrees] / deg))*65.41)+(Sin([Slope_degrees] / deg)*4.56)+0.065) 

• C = land cover factors that influence soil surface runoff were calculated based on the 

amount of protection from runoff provided by different cover classes, from bare soil 

(c-value of 1), to forested land (c-value of 0.001).   

• P = the p-factor describes supporting practices to avoid erosion. Values range from 0-

1, where 1 is the absence of any erosion control practices.  Given the large area at 

which this study is based, erosion control factors were assumed absent.  Individual 

case studies for smaller swaths of land can tease out individual practice benefits.  

3.3.2. Water availability 
 

Water availability was defined as the amount of rainfall and flow accumulation in each area. 

For rainfall distribution, precipitation data was downloaded from NOAA 

(http://www.cpc.ncep.noaa.gov/) giving the daily precipitation throughout East Africa 

(Novella and Thiaw, 2013).  annual precipitation and a long-term average annual precipitation 

(2008-2017) was calculated using the daily precipitation estimates.  For flow accumulation, 

flow accumulation layer with a resolution of 15 arc seconds derived from a Digital Elevation 

Model (DEM) was downloaded from Google Earth Engine, then an extraction was performed 

in ArcMap10.6 to clip the layer to East Africa. The flow accumulation layer details the amount 

of upstream area that drains into each cell.  Drainage direction details which cells flow into 

the target cell. The number of accumulated cells measures the upstream catchment area.   

Data processing for the water availability map 

Daily precipitation data was brought into R as raster data and were clipped to the extent of 

the study, then averaged together in the raster calculator. Using the ArcMap10.6 model 

builder, iterative raster processes resampled the cell values to align, and calculated monthly 

http://www.cpc.ncep.noaa.gov/
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averages. The output (Figure 11) shows a total time frame precipitation average for the years 

2008 to 2017, as well as the sum of the monthly average per watershed.  

 

Figure 11: Water availability map 

 

3.4. Mapping spatial domains 

For this study, sixteen (16) spatial domains were mapped using R software  (Team, 2017). A 

random Forest model was used to calculate proximity values based on raster attributes of the 

four variables which are feed quantity, feed scarcity, land availability and water availability, 

then clustered the values using k-means technique. Thereafter, clusters were used to train 

another random Forest model for classification. The output (Figure 12) was a map showing 

16 clusters. 
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4. Results 

Overlaying the four maps (feed quantity, seasonal scarcity, land availability and water 

availability) produced a single map showing 16 domains. The map showing the 16 domains is 

presented in Figure 12. For the purposes of this master’s project, only four (4) highly 

contrasting domains were picked to portray availability of feed resources and predict the 

adoption of new climate-resilient feed interventions in the mixed farming systems of Kenya, 

Tanzania and Uganda. A summary of the descriptive statistics of domains is presented in Table 

2. These statistics were extracted from the domains map and were used to interpret the 

domains and rank them from very low to very high. 
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Figure 12: Map showing domains 
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Table 2: Summary statistics (mean) per domain 

Domains  Feed quantity 
(kg 
DM/km2/cow/day) 

Seasonal 
scarcity 
(months/year) 

Land availability 
(hectares/person) 

Water 
availability 
(mm) 
 

2 5278.33 3 0.7 882 
 

4 1351.02 6 3.6 479 
 

7 259.15 11 0.1 1348 
 

16 9.36 12 0.1 554 

   *These values were extracted from the statistics of the domains map 

 

4.1. Interpretations of the four (4) selected domains as shown in Table 2 

Domain 2: Very high feed quantity 

• 3 months of seasonal scarcity/ Low land availability/High water availability 

Domain 4: Medium feed quantity 

• 6 months of seasonal scarcity/ Very high land availability/ Medium water availability 

Domain 7: Low feed quantity 

• 11 months of seasonal scarcity/ Low land availability/ Very high-water availability 

Domain 16: Very low feed quantity 

• 12 months of seasonal scarcity/ Very low land availability/ Medium water availability 

Table 3: Domains interpretations 

Domains Feed 
quantity 

Seasonal 
scarcity 

Land 
availability 

Water 
availability             

Domains 
abbreviations 
 

2 Very high  3 months Low High 
 
 

VHF 
 

4 Medium  6 months Very high  Medium               
 
 

MF 

7 Low  11 months Very low Very high             
 
 

LF  

16 Very low 12 months Very low  Medium  VLF 
*Domains rankings range from very low to very high (very low; low; medium; high; very high 
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Table 4: Counties, Regions, Districts found within the four domains 

*Kenya-counties; Tanzania-regions; Uganda-districts 

 

Domain 2 (Kenya, Tanzania) 

Feed quantity in this domain is abundant. This domain experiences only three months of feed 

scarcity. This domain has enough feed resources to meet the feed requirements of one TLU 

for nine months in a year. In contrast, this domain recorded low land availability and also 

recorded high water availability. As shown in Table 4, In Kenya this domain was found in Kitui, 

Mkueni, Embu, Muranga, Kirinyaga, Meru, Nakuru. In Tanzania, this domain was found in one 

region which is Morogoro.  

Countries Domain Interpretation Counties, Regions, Districts 

Kenya 

 

         2 Very high feed Kitui, Mkueni, Embu, Muranga, Kirinyaga, 

Meru, Nakuru 

           4 Medium feed Taita-Taveta 

           7 Low feed Bungoma, Vihiga, Kisii, Bomet 

           16 Very low feed Siaya, Kakamega, Bungoma, Homa Bay 

 

Tanzania          2 Very high feed Morogoro 

           4 Medium feed Dodoma, Singida, Tabora, Simuyu, Iringa, 

Morogoro 

           7 Low feed - 

           16 Very low feed Mara, Mbeya, Njombe, Ruvuma 

Uganda           2 Very high feed - 

           4 Medium feed - 

           7 Low feed - 

           16 Very low feed Tororo, Maguye, Jinja, Kamuli, Wakiso, 

Kampala, Mukono, Bushenyi, Hoima, Masindi, 

Pade, Gulu, Nebbi, Arua 
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The FEAST-Techfit sheet (Table 5) reveals that the practice of producing irrigated fodder is a 

suitable feed intervention given its low land requirement and its high potential to mitigate 

feed quantity problems and feed scarcity during the cool or dry season. Nevertheless, 

irrigated fodder production does not mitigate feed scarcity problems during the growing 

season. Therefore, integrating the use of energy-rich supplements such as molasses and the 

use of protein by-products such as legume leaf meal with the option of irrigated fodder 

production is a suitable feed intervention to close the three-month feed scarcity gap. 

Domain 4 (Kenya, Tanzania) 

This area is characterized by adequate feed availability. In a year, this area experiences six 

months of feed scarcity and six months of feed abundance. This is an indication that half of 

the year, livestock productivity is high due to the availability of feed resources which meet 

animal’s nutrition requirements. Furthermore, this area shows the availability of very high 

land which can support forage production. On average, for the past ten years there has been 

adequate rainfall to support forage production. Hence water availability was reported to be 

adequate or medium in this domain. As shown in Table 4, In Kenya this domain was found in 

Taita-Taveta county only where as in Tanzania the domain was found in six regions and those 

are Dodoma, Singida, Tabora, Simuyu, Iringa and Morogoro.  

According to the FEAST Techfit sheet (Table 5), short-duration or annual fodder crops such as 

oats, maize, sorghum and vetch are suitable feed interventions for this domain considering 

that this domain has very high land which can be allocated to forage production and adequate 

water availability. However, annual fodder crops only solve problems of feed quantity and 

feed scarcity during the growing season, leaving a feed scarcity problem during the cool and 

dry season. Therefore, fodder trees and shrubs such as Calliandra calothyrsus and Leucaena 

diversifolia are suitable feed interventions which can be integrated with the use of annual 

fodder crops given the potential of fodder trees to close the feed scarcity gap during the dry 

season or cool season. Furthermore, the water and the land available to farmers in this 

domain match the requirements of fodder trees and shrubs and this will enable farmers to 

adopt these two feed interventions. 
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Domain 7 (Kenya) 

This domain has low feed quantity and experiences eleven months of feed scarcity. This 

implies that there is only one month where feed quantity is enough to satisfy the 

requirements of one TLU in a year leaving a feed gap in all the other eleven months. Apart 

from the high feed scarcity problem, this area has no land for forage production. However, 

high rainfall has been experienced in the past ten years, resulting in the area having very high 

water to support forage production. As shown in Table 4, this domain was only found in Kenya 

where it includes counties such as Bungoma, Vihiga, Kisii and Bomet. 

Feed interventions suitable for the mixed farming systems in domain 7 are those which do 

not require land and have a high potential to mitigate feed quantity and feed scarcity. The 

FEAST-Techfit (Table 5) reveals that the practice of supplementing feed with protein by-

products such as legume leaf meal and oilseed is a suitable feed intervention for this domain 

given its characteristics of having no land for forage production. However, supplementing 

feed with protein by-products does not deal with the feed quantity constraint. Therefore, the 

feed quantity gap can be prevented by adopting the use of thinnings, tops and leaf strips of 

crops which are cultivated on-farm such as maize, sorghum, cassava, depending on the crop 

in season. As this domain receives very high rainfall, the practice of rainwater harvesting may 

be essential as it may enable farmers to adopt irrigated fodder production to close the feed 

quantity gap.  

Domain 16 (Kenya, Tanzania, Uganda) 

Table 3 indicates that the mixed farming systems located in Domain 16, are characterized by 

very low feed quantity and all year feed scarcity. This is an indication that livestock production 

is very poor in this area. Over and above the feed scarcity constrain, the area shows low land 

availability for forage production. However, it has recorded adequate amount of rainfall 

which may enable farmers to adopt other feed options which have a potential to improve 

livestock productivity. As shown in Table 4, this domain is largely found in the Ugandan 

districts (Tororo, Maguye, Jinja, Kamuli, Wakiso, Kampala, Mukono, Bushenyi, Hoima, 

Masindi, Pade, Gulu, Nebbi and Arua) compared to Kenyan counties (Kitui, Mkueni, Embu and 

Muranga, Kirinyaga, Meru, Nakuru) and Tanzanian regions (Mara, Mbeya, Njombe and 

Ruvuma).  
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According to the FEAST-Techfit scores shown in Table 5, suitable feed interventions for this 

domain include the practice of rehabilitation of degraded grazing land given the potential of 

land rehabilitation to restore land and improve forage growth for sustainable livelihoods. 

Supplementation of feed with energy-rich supplements such as molasses may be a suitable 

intervention for this domain given its nature of requiring no land and its high potential to 

mitigate feed scarcity during the dry or cool season and feed scarcity during the growing 

season.  However, molasses deals well with feed scarcity and feed quality but has a low 

potential to solve feed quantity problems. Therefore, a suitable feed intervention to close the 

feed quantity gap is for farmers to adopt the use of purchased crop residues or hay given the 

potential of crop residues and hay to mitigate feed quantity constraints and its suitability to 

this domain’s systems characteristics. Furthermore, the use of thinnings, tops, and leaf strips 

of crops such as maize, sorghum, and cassava are also a suitable option to mitigate feed 

quantity constraints and it is a cheap option with no requirements for more land and can be 

accessed on farm.  

FEAST-Techfit feed interventions 

Table 5 presents a summary of feed interventions with FEAST-Techfit scores. The scores show 

the potential of each feed intervention to prevent feed constraints and the factors which 

influence the uptake of each feed intervention. The Techfit module scores the candidate feed 

options from low to very high, depending on the intervention’s potential to mitigate feed 

constraints. Therefore, Table 5 was used to predict suitable interventions according to 

domain properties or interpretations. 
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Table 5: Summary of recommended feed interventions with FEAST-Techfit scores 

Feed Interventions Potential to mitigate feed 
constraints 
Scores run from 0 to 4 where 
0=none; 1=low; 2=medium; 
3=high; 4=very high 

Requirements of feed 
interventions/ Adoption 
factors 
Scores run from 4 to 1 
where 4=none; 3=medium; 
2=high; 1=very high 

 Seasonal 
scarcity 
(dry/cool 
season) 

Seasonal 
scarcity 
(growing 
season) 

Feed 
quantity 

Land Water/Rainfall 

Rehabilitation of 
communal/degraded 
grazing land 

        2          2       3        3               4 

Supplementation with 
energy-rich 
supplements e.g. 
molasses 

        3          3       1        4               4 

Purchase crop 
residues or hay 

       4          2       3       4               4 

Thinnings, tops, leaf 
strips e.g. maize, 
sorghum, cassava etc 

       2          3       3       4               4 

Short-duration / 
annual fodder crops 
e.g.  Oats, maize, 
sorghum, vetch 

       2          4       4       2               2 

Grasses (cut from 
cultivated fodder field 
under rainfed) 

       2          4       4       2               2 

Irrigated fodder 
production (grasses, 
maize, sorghum) 

       4         2       4       3               1 

Supplementation 
using protein by-
products e.g. legume 
leaf meal  

      3         3       1      4               4 

Silage – silage making       4         2       3       1               4 

Fodder trees and 
shrubs 

      4         2        2       3               3 

*Potential to mitigate score run from 0 to 4 where 0=none; 1=low; 2=medium; 3=high; 4=very high 

*Requirements of feed interventions score run from 4 to 1 where 4=none;3=medium; 2 = high; 1 = very high 
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Table 6 shows suitable feed interventions based on domains feed constraints and system 

characteristics. 

Table 6: Domains and suitable feed interventions 

Domains Feed constraints System characteristics Suitable  

feed interventions 

         2 Very high feed quantity/ 

3 months of seasonal 

scarcity 

Low land availability/ 

High water availability 

-Irrigated fodder production. 

-Supplementation with energy-

rich supplements such as 

molasses.  

-Supplementation with protein 

by-products such as legume leaf 

meal. 

        4 Medium feed quantity/ 

6 months of seasonal 

scarcity 

Very high land availability/ 

Medium water availability 

-Short-duration or annual fodder 

crops such as oats, maize, 

sorghum, vetch. 

-Fodder trees and shrubs 

         7 Low feed quantity/ 11 

months of seasonal 

scarcity 

Low land availability/ Very 

high-water availability 

-Supplementation with protein 

by-products such as legume leaf 

meal and oilseed. 

-Thinnings, tops and leaf strips of 

crops such as maize, sorghum, 

cassava 

-Irrigated fodder production 

        16 Very low feed quantity/ 

12 months of seasonal 

scarcity 

Very low land availability/ 

Medium water availability 

-Rehabilitation of degraded 

grazing land 

-Supplementation with energy-

rich supplements such as 

molasses 

-Purchased crop residues or hay 
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5. Discussion 
 

Rapid urbanization and Improved standards of living in developing countries have resulted in 

a substantial shift in diets, leading to a greater demand for livestock products (Herrero et al., 

2009). However, farmers are not successful in responding to the demand due to poor 

livestock productivity instigated by feed constraints. Therefore, due attention needs to be 

paid to the feed constraints faced by farmers and system characteristics which exist in the 

mixed farming system in order to improve livestock productivity. The main aim of producing 

a map showing the sixteen (16) domains, was to identify specific counties in Kenya, specific 

regions in Tanzania and specific districts in Uganda with feed constraints in order to predict 

suitable feed interventions which deal with the feed constraints thereby improving livestock 

productivity. 

Domain 7 and 16 represents the areas in which available feed resource fail to match the daily 

feed requirements of one TLU all year round. This also indicates that livestock productivity in 

these areas is poor and farmers are not only failing to respond to the demand of livestock 

products, but are also failing to make enough income out this livelihood strategy (Randolph 

et al., 2007). These results are in line with the findings of Kavana and Msangi (2005) and 

Katongole et al. (2012) who reported poor livestock productivity due to feed constrains  in 

Eastern Tanzania and Uganda (Kampala). 

Considering the system characteristics of all the domains, it is evident that water availability 

has not been a problem in these mixed farming systems for the past ten years (2008-2017) 

and there has been water to support forage in the area. However, land availability for overall 

forage production is a significant constrain to forage availability in the study area. Therefore, 

the feed constraints reported in the domains may be attributed to unavailability of land, given 

that land plays a major role in forage production and adoption. The unavailability of land may 

be attributed to land degradation and soil loss caused by the increase in rainfall as predicted 

by climate change models in East Africa (Nearing et al., 2004) . In this study, available land 

was defined as productive land. Therefore, degraded land was not calculated as part of land 

available for forage production. As a result, the study shows low land availability and this 

raises a need to rehabilitate degraded land as it reduces land allocated to forage production. 

(Claessens et al., 2008, Taddese, 2001).  
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Given that all the domains show unavailability of land which might be compounded amongst 

other factors by land degradation, farmers need a policy intervention which promotes 

rehabilitation of land in order to restore degraded communal land, thereby improving forage 

production to meet livestock nutrition requirements. In addition, the domains show high 

rainfall availability, and rainfall is a significant resource which can enable farmers to harvest 

rainfall water to support forage production. This has an implication that farmers in this 

domain require policy interventions which will enable them to practice rainwater harvesting 

and also enable farmers to easily access irrigation systems which suit their local context. 

 Domain 4 was the only one which showed high land availability, thus the availability of land 

can enable farmers to adopt a range of feed interventions with land requirements such as 

short annual fodder crops (maize and sorghum) and fodder trees and shrubs. However, 

farmers may not be in a position to access seeds due to long distances to markets. Thus, this 

domain requires a policy intervention which will ease access to seeds given that the scarcity 

of seeds has a potential to limit the uptake of the two feed interventions. In addition, policy 

interventions which can play a major role in the uptake of feed interventions such as fodder 

trees and shrubs, are those which target extension workers to equip farmers with skills such 

as nursery establishment, tree pruning, and seed collection campaigns given that forage tree 

establishment for livestock feed is a knowledge-intensive practice (Franzel et al., 2014). 

 Furthermore, practices such as supplementing feed with molasses were found to be suitable 

for almost all the domains given the character of molasses of requiring no land. Molasses is 

known for its potential to increase livestock productivity (Tegegne et al., 1992). However, 

purchasing it adds to the production cost and this is a factor which may lead to its poor 

adoption by smallholder farmers. Apart from the production cost, the use of molasses 

requires specific knowledge for its successful use. Therefore, there is a need of a policy 

intervention which will enable farmers to access molasses without excessively adding to the 

production cost as well as policy interventions which will target extension workers to train 

farmers on the correct use of molasses as a supplement.  

Due to time constraints this study focussed on two feed constraints and two system 

characteristics from the FEAST while the FEAST approach focussed on three feed constraints 

and six system characteristics. The three feed constraints were feed quantity, seasonal 

scarcity and feed quality and the six system characteristics were land, water, labour, credit, 
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input delivery and knowledge. Therefore, the feed interventions predicted in this study were 

not based on all the feed constraints and system characteristics included on the FEAST 

approach. Thus, there is a possibility of the domains changing if all the feed constraints from 

FEAST can be considered in the analysis. There is also a possibility of the predicted feed 

interventions changing if the system characteristics such as credit and labour can be added 

into the analysis. Therefore, this leaves possibilities of improving this study. Furthermore, the 

FEAST approach defined water availability as proximity and access to standing water such as 

dams and boreholes. However, due to lack of spatial data which shows standing water, this 

study defined water availability as available water per watershed. As a result, monthly 

precipitation data sets were used to produce the water availability map.  

To expand the findings of this study, other researchers may look into other types of livestock 

when mapping feed availability, as this study considered cattle density only. Accounting for 

the produced commodity in a certain domain can allow for more specific feed intervention 

recommendations, therefore, future researchers can improve the findings of this study by 

comparing the Techfit feed interventions to applicability to commodity (Dairy, fattening, 

breeding). It can also be interesting for other academics to map the same domains under a 

climate change context to find out how will the domains shift under future climate conditions 

so as to predicts feed interventions which will be suitable under projected future climate 

conditions. 
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6. Conclusion 
 

The four selected domains were found in both Kenya and Tanzania and this indicates the 

variations in feed availability within different counties as some counties have high feed 

quantity and some have low feed quantity. However, Uganda reported the opposite given 

that domain 16 was the only domain found in all the mixed farming systems indicating twelve 

months of feed scarcity, very low feed quantity and no land for forage production. The other 

two domains which represent high (domain 2) medium (domain 4) feed quantity were not 

found in Uganda. This is an indication that livestock productivity is poor and there is an urgent 

need to introduce feed interventions which match Uganda’s land and water availability 

context. 

The domains’ map shows that feed scarcity is one of the factors which constrain livestock 

productivity, thereby compromising livelihoods in the mixed farming systems of Kenya, 

Tanzania, and Uganda. The suitable feed interventions predicted in this study can be 

instrumental in closing the feed scarcity gap and improve livestock productivity for better 

livelihoods.  

However, it is very important to understand that there is not one feed intervention which is 

ideal to solving all the feed scarcity issues which exist in an area but, integrating the two or 

three feed interventions recommended for each domain may eliminate all the feed scarcity 

constraints which exist within a certain domain. For instance, one feed intervention may deal 

with seasonality and the other may deal with quantity, thus, their combined effect can 

eliminate the feed constraint according to their mitigation potential. 
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Appendix 2:  Feed quantity domains statistics (the four domains were selected based on the 

mean values) 
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Appendix 3: Seasonal Scarcity domains statistics 

 

 

Appendix 4: Land availability domains 
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Appendix 5: Water availability domains statistics 

 

 


