Managing acid soils for reclaiming livelihoods in Ethiopia

Why it is critical

41% of cultivated land In Ethiopia is affected by soil acidity¹

28% of cultivated land is highly acidic $(3.5 \text{ million ha})^1$

9 billion birr* per year is lost in foregone wheat production i.e. 17,000 birr every single minute²

Crop diversity is reduced as farmers restrict to acid-tolerant crops such as barley and potatoes

Abandoning of land and migration has been observed in areas of extreme acidity

Cost of inaction can be high impacting food security and income of smallholder farmers adversely.

Picture above shows the difference between farmers' practice with no lime (left) compared to ISFM with lime (right). Photo: GIZ-ISFM

*1birr= 0.035 USD

What are the benefits

Increased yield (In cereals)

30-40% increase with liming alone **50-100%** increase when combined with ISFM

Healthier soils and crops

Increased nutrient availability | Improved | **grain quality**

Improved soil microbial activity

Reduced fertilizer costs

Decreased Aluminum and Magnesium toxicity Greater **pesticide** effectiveness

Ю-но

How it can be addressed

3 complementary approaches are often

- employed in the management of acid soils:
- Liming application of calcium and magnesium-rich materials from local sources
- Integrated Soil Fertility Management (ISFM)
- Acid-tolerant crops and varieties

The approach is dictated by rainfall patterns, soil properties as well as economic considerations.

(Source: 1. Getachew Agegnehu et al. 2018; 2. James Warner et al. 2018)

Citation: Amede Tilahun, Schulz S, Warner J and Tefera Solomon. 2019. Managing acid soils for reclaiming livelihoods in Ethiopia. ICRISAT-GIZ, Addis Ababa.

Implemented by

General status of Ethiopian soils

Low in available Nitrogen and **Phosphorus**

pH values mostly in the range of 4.5 to 6.5

High-altitude eroded soils and leached soils in the low-lying areas

- Acidic in reaction
- Poor in exchangeable cations
- Low in base saturation

Indicators of soil acidity

Soil acidification is the result of a complex set of processes caused both naturally and by human activity. It limits plant growth because of conditions that increase base element deficiencies, Phosphorus-fixation and toxicities of Aluminum, Manganese and Hydrogen ions.

Wet climate

LEACHING OF BASE ELEMENTS: High rainfall leaches the soil of base elements that prevent soil acidity such as:

- Calcium (Ca) Magnesium (Mg)
- Sodium (Na) Potassium (K)

ALUMINUM TOXICITY: Soluble nutrients such as Ca and Mg are replaced by Aluminum (Al).

PHOSPHORUS-FIXATION: Fixation occurs when P reacts with other minerals to form insoluble compounds and becomes unavailable to crops.

High-yielding crops

REMOVAL OF BASE ELEMENTS

BY CROPS: Crops absorb Ca, Mg, and K for their nutritional requirements during growth. As crop yields increase, more of these lime-like nutrients are removed from the field. Harvesting crops, especially forage cops, results in higher removal of the base elements.

Acid parent material

SOILS LOW IN LIME: Soils derived from weathered granite are likely to be more acidic than those derived from shale or limestone.

MINERAL TOXICITY: The principal hydrous oxides of the soils are Al and Iron (Fe). When soil pH decreases, these oxides through step-wise hydrolysis release Hydrogen (H+) ions resulting into further acidification.

Symptoms of soil acidity in crops

Poor plant vigor

Uneven crop growth

Use of ammonium fertilizer

HYDROGEN ION TOXICITY:

Transformation of some Nitrogen fertilizers into nitrate (NO₂) releases Hydrogen ions (H+) to create soil acidity.

REMOVAL OF BASE ELEMENTS: In effect, nitrogen fertilizer increases soil acidity by increasing crop yields, thereby increasing the number of basic elements being removed.

Persistence of

acid-tolerant

Poor nodulation

Stunted root growth

of legumes

Decomposing organic matter

HYDROGEN ION TOXICITY:

Soil organic matter or humus contains reactive carboxylic, enolic and phenolic groups that behave as weak acids. During their dissociation they release H+ ions. The formation of Carbon dioxide and organic acids during the decomposition also result in replacement of bases on exchange with H+ ions.

>80% of the landmasses originating from Nitisols are acidic

Steps taken by the Ethiopian Government and partners

GTP (Growth & Transformation Plan)

The lime initiative laid the foundation for much broader dissemination and impact of agricultural lime in Ethiopia through:

Successfully created awareness of, and demand for, agricultural lime among smallholder farmers in acid soil areas of the highlands.

application and in conducting demonstrations and popularizations.

Goal for 2020 226.000 ha of acid soils to be treated

Plan for next five years 450.000-900.000 tons

of lime needs to be produced, distributed and applied to acid soils to meet the goal

Benefits of liming

- Increases soil pH and availability of Phosphorus, Molybdenum and Nitrogen
- Eliminates toxicity of Aluminum and Manganese.

Faba bean with lime.

(%) Yellow/red leaf discoloration Increased disease incidence

Examples of well-known areas severely affected include:

Oromia

- Gimbi
- Hosaena
- Nejo Sodo

SNNPR (Southern Nations, Nationalities and Peoples' Region)

- Endibir
 - Chencha

Amhara

• Hagere-Mariam • Awi Zone

Source: Sahlemedhin and Ahmed, 1983: Mesfin, 2007

Capacity building

Trained development agents and district agricultural experts in critical skills of soil sampling, lime

Infrastructure

Establishment of lime crushers in selected locations. There are currently five lime crushers in three locations, with a total annual capacity of just under 20,000 tons.

Infrastructure needed 5 to 10 times the current crusher capacity

would be needed

Faba bean without lime.

Diagnosing soil acidity

Periodical soil testing is needed when growing high-yielding crops. Testing identifies soil acidity early enough to change the pH

Steps include: 1. Soil sampling 2. Monitoring soil pH 3. Reaching target pH

What the pH score says

Liming acidic soils calls for application of calciumand magnesium-rich materials to soil in the form of:

Marl | Chalk | Limestone | Hydrated lime

Decision guide for soil acidity management

Soil acidity	
management	
approaches	
Sur all and a let	
adamation for the second	1 A Carton
1	6 MARS
	and the state of the state

Farms i are	n high rainfall as can be	Extremely acidic (<4.5pH)	Moderately acidic (4.5-5.5 pH)	Slightly acidic (5.5-6.5 pH)
Indicato	ors checklist			
•	Type of farm	Abandoned farms	Low-yielding agricultural farms	Productive farm
	Crop system	Rarely grows barley, potato or wheat; only weeds like <i>Rumex spp</i> grow	Grows coffee, teff, wheat, barley and potatoes	Grows coffee, teff, wheat, barley and potatoes
R	State of crop	Predominantly, crops dry up quickly, very poor yield	Stunted crops with low-yield	Productive with amendments
1	Crop symptoms	Excessive toxicity: AI (stunted roots) Mn (pale/ yellow leaves) Fe (brown spots on leaves)	Leaf discoloration (purple or dark green) caused by P-deficiency	Leaf discoloration (purple or dark green) caused by P-deficiency
4	Soil indicators	Shallow and hardpan (Degraded Nitisols, Luvisols, Acrisols, Alisols and Ferralsols)	Moderately fertile and wet (Nitisols, Luvisols, Acrisols, Alisols and Ferralsols)	Deep clay or loam (Mostly Nitisols; Alisols, Gleysols, Cambisols, Planosols and Ferralsols are also found)
What o	can be done	Reverse the condition by:	Manage the soil by:	Maintain and improve the soil by:
	System shift	Shift to pasture/livestock systems		
Lime	Liming	Liming with high rate (>6 ton / ha) (To be done after all the other interventions)	Whole farm application of lime (4-5 t/ha), repeat every 5 years, OR rotational application of lime, row application (about 2.5 t/ha)	Maintenance, rotational application of lime (about 2.5 t/ha)
0	Fallowing + legumes	Fallowing with deep-rooted legume trees (e.g. <i>Acacia decurrens; Erythrina spp; Sesbania spp</i>)	Short season fallow with deep rooted legumes (e.g. Alfalfa, Lupin)	Short season fallow with deep rooted legumes (e.g. Alfalfa, Lupin)
	Water guide	Proper drainage	Proper drainage	Proper drainage
	Fertilizer usage		Avoid ammonium-based fertilizers	Avoid ammonium-based fertilizers

How to apply lime

There are options available to incorporate lime ranging from surface application and deep rip to direct injection and shallow incorporation. The choice depends on the farm. Raw application of lime reduced the lime demand significantly.

Photo: Dept. of Primary Industries and Regional Development, Govt. of Western Australia

Complementary strategies

Integrated soil fertility management: In acid soils, where Phosphorus (P) fixation is a problem, application of **Farm Yard manure** (FYM) releases a range of organic acids that can form stable complexes with Aluminum and Iron thereby blocking the P retention sites and releasing P.

Tolerant crop and pasture species

In extreme acidic soils Triticale rye with hybrid wheat was found to be producing a good crop.

For effective reclamation of acid soils:

Determine the amount of lime: Application of 2-5 tons of lime per hectare annually has been reported to be adequate

to maintain the level of Ca and Mg in the soil under continuous cropping.

Determine the frequency of liming

At higher rates, residual effects of liming are expected to last for five to seven years. When a high rate of lime is recommended, (>6 tons/ha) biennial application may suffice.

Purity determines rate of application

If the purity of liming material is 80%, then **recommendation rate must be adjusted** by multiplying by 100 and dividing by 80.

Smaller-size material acts faster

The finer the lime material the faster is the correction of soil pH.

Soil type determines the lime amount

Clay soils, particularly nitisols, need more lime to correct the pH. Due to high organic matter they have a larger reservoir than sandy soils.

GTP II targets: Reclaim 226,000 hectares of acidic soil

For every **1**birr invested today, a NPV* return of **5.2** birr is projected

Production >	Distribution to sellers	Sale of lime + ISF	M Application & pla	anting Harvesting Na	tional benefits
Public/private lime crushing: 452,000 tons	Developed private transportation networks	Public/private agro-dealers & cooperatives	1 ton lime per 1/2 hectare plot for 452,000 farmers	40% yield increase with lime (ISFM needed)	5 year production 8.5 M q wheat
Cost 339 million birr	Cost 475 million birr	Lime cost 45 million birr	Total lime cost 859 million birr	Benefit 1st Year production 3.8 q wheat Net income: 1,000 birr	Benefit NPV 5 year productio 8.5 M q wheat 6.6 billion birr sold
Unit cost per ton Unit cost per ton 750 birr 1,050 birr		Unit cost per ton 100 birr	Total lime 1,900 birr	NPV 5 year production Net income: 11,849 birr	
* Net present value			Total application 900 birr	Total returns: 523%	
Incentives f	or scaling up		Employmen	t of Youth (loading, local	transport,

application, retailing...)

and their communities

• Increasing demand for lime from various regions

- Strong lime production capacity of Ethiopian Cement Industry
- Farmers willing to pay for lime (EIAR, IFPRI, 2016)

Results of farmer field demonstrations across the Ethiopian Highlands (Amhara, Oromia, SNNPR and Tigray)

Faba bean								
LOK.		Grain yield (t/ha)			Stov	er yield	s (t/ha)	
		ISMF	Minus	Increase	ISFM	Minus	Increase	
Year	N*	+ lime	lime	(%)	+ lime	lime	(%)	
2016	45	2.2	1.3	78	4	2.5	60	
2017	31	2.9	1.3	115	4.9	2.7	80	
2018	9	4.6	2.6	80	5.4	2.5	121	
Total/ weighted average	85	2.7	1.4	88	4.5	2.6	74	

24	Wheat							
		Grain yield (t/ha)			Residue yields (t/ha)			
		ISMF +	Minus	Increase	ISFM	Minus	Increase	
Year	N*	lime	lime	(%)	+ lime	lime	(%)	
2016	100	4.4	2.5	80	7.5	4.7	59	
2017	66	5.4	3.3	63	8.8	5.7	55	
2018	58	5.0	2.9	73	8.7	4.8	80	
Total/ weighted average	224	4.9	2.8	71	8.2	5.0	63	

Lime Production and Supply Chain Options

A Maize									
		Gra	in yield	(t/ha)	Resid	ue yield	yields (t/ha)		
		ISMF	Minus	Increase	ISFM +	Minus	Increase		
Year	N*	+ lime	lime	(%)	lime	lime	(%)		
2016	72	8.3	4.5	86	14.2	8.4	69		
2017	47	9.1	5.7	59	17.6	12.4	42		
2018	18	8.0	5	61	13.7	9	52		
Total/ weighted average	137	8.5	5	71	15.3	9.9	55		

3 r Acidic

*Number of experiments Minus lime=farmer practice (without lime)

Transport

supported private sector transport

Project supported private sector

(Task Force Report, 2018)

Distribution

Unions/public associations, woreda* agriculture office, agro-dealers

Woreda agriculture office, public mobilization, with the support of partner institutions

Unions/public associations, woreda agriculture office, agro-dealers

Teff										
N		Grai	in yield	(t/ha)	Residue yields (t/ha)					
Vaar	N1*	ISMF + lime	Minus lime	Increase (%)	ISFM + lime	Minus lime	Increase (%)			
rear	IN .		_	,						
2016	63	2.2	1.3	70	5.6	3.8	46			
2017	25	1.7	1.0	69	4.6	3.4	34			
2018	8	1.9	1.2	56	4.3	2.4	75			
Total/ weighted average	96	2.0	1.2	68	5.2	3.6	46			

Recommendations

- Need for a National Movement in Reclaiming Acid Soil: This mission needs to be taken up with urgency as part of the solution for wheat import replacement and enhanced productivity.
- Lime Production, Supply and Distribution: Excavation, production, distribution and application of lime should be more consistent with current GTP II targets and the need for greater supply to meet the needs of the full acid soil problem should be developed (public-private partnership is strongly recommended).
- Farmer Awareness and Support: Development of enhanced government

services that facilitate farmer awareness, acid soil diagnosis, access to local acid soil experts and availability of training packages and local demonstrations, assistance with last-mile delivery and the availability of financing and credit to smallholder farmers for lime procurement and application.

- The Need for Targeted Application: Refinement of a comprehensive acid soil treatment and management package (lime, improved seeds, fertilizers, organic matter management, improved agronomy).
- Comprehensive Acid Soil Policy: Beyond just targets (as included in GTP II), a fully developed government policy that addresses the needs of an efficient and sustainable acid soils reclamation strategy as well as complimentary services (research support, inputs, credit, etc.) is needed.

References

Getachew Agegnehu, Chilot Yirga and James Warner. 2018. Soil acidity in Ethiopia, cause, effects, management and policy consideration. IFPRI, EIAR.

James Warner, Chilot Tizale, Sam Gameda, and Tadiwos Zewdie. 2018. A pilot program to rehabilitate and enhance the productivity of acid soils in Ethiopia. IFPRI, GIZ, EIAR and CIMMYT.

Mesfin Abebe. 2007. Nature and Management of Acid Soils in Ethiopia, Addis Ababa, Ethiopia, pp 89.

Sahle Medhin Sertsu and Ahmed Ali.

1983. Phosphorus sorption characteristics of some Ethiopian soils. Ethiopian Journal of Agricultural Science 5: 1-12.

Limestone quarry at Guder, Oromia.

• Lime Delivery Business Model: Develop an efficient and sustainable lime delivery system that balances cost effectiveness with widespread farmer adoption and job creation.

Suggested next steps

- National campaign for lime promotion
- Minimize free distribution of lime, except for demonstrations
- Continue farmer demand creation for lime, particularly in the most-affected regions
- Develop sustainable lime delivery mechanisms (Proactive Task Force)
- Agree on pricing mechanism (subsidy/credit for lime) – Policy decision is needed.

Contact:

Dr Tilahun Amede (t.amede@cgiar.org) Address: ICRISAT-Ethiopia (c/o ILRI) PO. Box 5689

Conceptualization and editing: Jemima Mandapati; Design: Meeravali SK; Strategic Marketing & Communication, ICRISAT