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Global and regional scale agricultural monitoring systems aim to provide up-to-date information regarding food
production to different actors and decision makers in support of global and national food security. To help
reduce price volatility of the kind experienced between 2007 and 2011, a global system of agricultural mon-
itoring systems is needed to ensure the coordinated flow of information in a timely manner for early warning
Inusity data purposes. A number of systems now exist that fill this role. This paper provides an overview of the eight main
Crop calendars global and regional scale agricultural monitoring systems currently in operation and compares them based on
Yield the input data and models used, the outputs produced and other characteristics such as the role of the analyst,
their interaction with other systems and the geographical scale at which they operate. Despite improvements in
access to high resolution satellite imagery over the last decade and the use of numerous remote-sensing based
products by the different systems, there are still fundamental gaps. Based on a questionnaire, discussions with
the system experts and the literature, we present the main gaps in the data and in the methods. Finally, we
propose some recommendations for addressing these gaps through ongoing improvements in remote sensing,
harnessing new and innovative data streams and the continued sharing of more and more data.

Crop production
Crop area

1. Introduction complex interaction between factors such as extreme weather patterns,
rising levels of population and wealth, water scarcity, increases in en-
ergy costs and civil conflicts (Godfray et al., 2010). Between 2007 and

2011, there were significant increases in world food prices of major

Achieving food security is high on the agenda of the Sustainable
Development Goals (United Nations, 2015), in particular SDG 2 to “End

hunger, achieve food security and improved nutrition, and promote
sustainable agriculture”. Despite significant advances in sustainable
global agricultural production, this remains a key challenge due to the
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commodities (i.e. maize, wheat, rice), which sparked political and so-
cial unrest around the world (UN, 2011). Shifts towards a meat-based
diet in many developing countries, increases in oil prices, which had a
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knock-on effect on fertilizer prices, financial speculation and in-
sufficient stocks of major grain commodities in the main agricultural
producing countries were suggested as possible drivers, among others
(Adam and Ajakaiye, 2011; Headey and Fan, 2010). To better prepare
for disruptions in food supply and global crop market price fluctuations
of the types witnessed over the last 10 years, timely and accurate in-
formation on current and forecasted global food production is needed
(Wu et al.,, 2014). Improved monitoring will enable more accurate
forecasting of commodity prices and a better understanding of the key
risks in food supply, helping to reduce global food insecurity (Justice
and Becker-Reshef, 2007).

Agricultural monitoring on a regional and national level has been in
place for decades, e.g. the Global Information and Early Warning
System (GIEWS) from the Food and Agriculture Organization (FAO) of
the United Nations, the Famine Early Warning Systems Network (FEWS
NET) from the United States Agency for International Development
(USAID), CropWatch in China, and the Monitoring Agriculture with
Remote Sensing (MARS) system from the European Commission (EC).
These systems have tended to operate somewhat independently with
little sharing of information, where the focus has been on either food
security for developing countries or food production for the global
market. The United States Department of Agriculture's Foreign
Agricultural Service (USDA-FAS) was the first system to provide glob-
ally comprehensive information on crop production and crop condition
(Becker-Reshef et al., 2010). These crop production estimates are also
used as economic indicators, for early warning alerts, in foreign aid
assessments for food import needs, in commercial market trends and
analysis, and in trade policy and exporter assistance. However, it was
recognized that national and regional monitoring systems cannot ef-
fectively monitor agriculture at all scales so there needs to be greater
coordination and sharing of information, i.e. a Global Agricultural
Monitoring System of Systems (Justice and Becker-Reshef, 2007). The
Group on Earth Observations (GEO) became the ideal body to launch
the flagship initiative GEOGLAM (GEO GLobal Agricultural Mon-
itoring), which has become the mechanism for bringing together key
players in the global agricultural monitoring community, to share in-
formation internationally, and to produce two regular bulletins (one for
the Agricultural Market Information System (AMIS) and one for Early
Warning covering approximately 95% of the world's croplands) that
represents consensus of the current situation globally. Other initiatives
have also been launched that support GEOGLAM, e.g. the Anomaly Hot
Spots of Agricultural Production (ASAP) system, which started in 2017
(Rembold et al., 2017).

To gain a better understanding of the current state of global agri-
cultural monitoring, eight major operational systems were identified
that either play an important role in regional or global agricultural
monitoring or which contribute to GEOGLAM at an international scale.
This paper also provides a comprehensive update to the previous review
of agricultural monitoring systems provided by Atzberger (2013). Each
of these systems are briefly described along with the results from two
questionnaires that were used to gather information about each system.
The first focused on a series of questions regarding the system inputs
and outputs as well as general questions about geographical scope,
stakeholders, interactions with other systems, etc. A second ques-
tionnaire was used to gauge the importance of (i) different data inputs,
which are then described along with state-of-the-art developments from
the literature (Section 4.1) and (ii) perceived gaps in methodologies,
which are described in Section 4.2. The paper concludes with an out-
look to the future, including recommendations for how these gaps
might be addressed.

2. Description of the main global and regional scale agricultural
monitoring systems

At present there are eight operational regional and global scale
agricultural monitoring systems that provide information to
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stakeholders to support evidence-based decision making. A brief over-
view of each system is provided below in chronological order of their
establishment. Some of these systems are part of more comprehensive
food security monitoring initiatives (e.g. FEWS NET and GIEWS) but the
aim of this paper is to focus on a comparison of the global crop pro-
duction components.

2.1. Global information and early warning system (GIEWS)

Established in the early 1970s, GIEWS' was one of the first key
global sources of information on food production and food security
within FAO. The system provides regular bulletins of food crop pro-
duction and markets on a global scale, as well as more specific regional
reports based on intelligence from FAO's regional and country offices.
GIEWS includes a network of 115 governments, 61 non-governmental
organizations (NGOs) and numerous trade, research and media orga-
nizations. The GIEWS team continuously monitors the world's food
supply and demand situation, using geospatial data as an auxiliary
variable to detect weather-related problems that could have an impact
on food security in member countries. In addition to rainfall estimates
and the Normalized Difference Vegetation Index (NDVI), GIEWS uses
the Agricultural Stress Index (ASI), adopted in 2013, an indicator for
early identification of agricultural areas that may be affected by dry
spells or droughts (Rojas et al., 2011), which was designed to fill an
information gap in the existing early warning system. Every ten days,
the ASIS (ASI System) generates a map showing hotspots where crops
are affected by water stress during the growing period, which are then
verified by data from public institutions or using agrometeorological
models based on data obtained from national meteorological networks,
which ultimately show indicator convergence (Rojas, 2015).

2.2. Famine early warning systems network (FEWS NET)

In 1985, the FEWS NET system” was initiated by USAID to provide
decision support to food assistance programs and relief agencies (Funk
and Verdin, 2010). FEWS NET attempts to quantify both changes in the
area planted as well as crop yield but does not monitor production
directly (Brown, 2008). Currently covering 36 of the world's most food-
insecure countries, the system not only publishes specialized monthly
reports on current and projected food security but also provides timely
alerts on emerging crises. FEWS NET follows a convergence of evidence
strategy to achieve its goals. Data from field assessments, agro-clima-
tology, market/price monitoring, nutrition surveillance and conflicts
are combined to build scenarios, carry out livelihood analysis and
produce information for effective decision support. In additional to
quarterly outlook reports, FEWS NET updates scenarios monthly as new
information becomes available. FEWS NET draws heavily on agro-cli-
matology data for its food security analysis, relying mostly on anomaly
analysis (Senay et al., 2015).

2.3. MARS crop Yyield forecasting system (MCYFS)

In 1992, the MARS program of the JRC developed the operational
MARS Crop Yield Forecasting System (MCYFS) to fill the need for op-
erational estimates of area, yield and production at pan-European level
for EU member states. It is operated under the mandate of the European
regulation No 1306/2013 (Art. 6 and 22). This regulation stipulates an
agricultural monitoring system and production and yield forecasts to
manage agricultural markets. As a decision support system, the MCYFS
provides independent and evidence-based information on the status of
annual crops in the EU and neighboring countries by monitoring crop
growth and forecasting crop yields (Supit et al., 1994; Baruth et al.,

1 http://www.fao.org/giews/en/.
2 http://www.fews.net/.
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2008; Gallego et al., 2010; Duveiller, 2012; Boogaard et al., 2013;
Bojanowski et al., 2013; Lopez-Lozano et al., 2015). The MCYFS is
based on near real-time acquisition and processing of three main data
sources: weather data (observations and forecasts), crop model simu-
lations, and biophysical parameters derived from satellite remote sen-
sing to monitor the crop status. All these data plus a time series of
historic area and yield statistics are used within a statistical yield
forecasting process. Monthly MARS bulletins are published that provide
an overview on the development of the main crops and areas of concern
including yield forecasts for cereals, oilseeds, and tuber crops, a pasture
analysis and country specific analyses. Near real-time and historic in-
formation on weather conditions and the progress of crop growth can
be visualized via the JRC MARS Explorer®. Maps for several weather
and crop indicators are available and the information is updated three
times per month.

2.4. CropWatch

CropWatch®, which is led by the Institute of Remote Sensing and
Digital Earth at the Chinese Academy of Sciences, evaluates national
and global crop production. Started in 1998, the aim of this system is to
provide timely, reliable and independent predictions of crop conditions
and production, both within China and globally, in order to plan crop
imports, exports, and prices and ensure national food security (Wu
et al., 2014). Since 2013, CropWatch has been releasing bulletins in-
ternationally. Four spatial levels are considered: global, regional, na-
tional (thirty-one key countries including China), and sub-national (for
the nine largest countries). These thirty-one countries encompass more
than 80% of both production and exports of maize, rice, soybean and
wheat. Global patterns of growing conditions are analyzed using in-
dicators for rainfall, temperature, photosynthetically active radiation
(PAR) as well as potential biomass. At the regional scale, other in-
dicators such as the Vegetation Health Index (VHI) and the Vegetation
Condition Index (VCI) are used to characterize the crop situation,
farming intensity and stress. CropWatch also carries out detailed crop
condition analyses at the national and sub-national scale with a com-
prehensive array of variables and indicators to derive food production
estimates (Wu et al., 2015).

2.5. United States Department of Agriculture-Foreign Agricultural Service
(USDA-FAS)

After Hurricane Mitch devastated Honduras in 1998, the Honduran
Ministry of Agriculture needed near real-time information on agri-
culture during the reconstruction period. Hence in 2001 the Foreign
Agricultural Service (FAS) of the US Department of Agriculture
(USDA)® began the Crop Explorer service, which provides remote sen-
sing-based information used by agricultural economists and researchers
to predict global crop production. The system automates the extraction
and processing of agro-meteorological indicators from MODIS (Mod-
erate Resolution Imaging Spectroradiometer), TOPEX/Poseidon and
Jason-1 satellites to publish data visualization products every 10 days.
FAS also has the responsibility of providing market intelligence in the
form of timely, objective, unclassified, global crop conditions and
production estimates, for all major commodities, for all foreign coun-
tries. These estimates are an integral part of the World Agricultural
Production and World Agricultural Supply and Demand numbers used
by the US Office of Management and Budget (OMB) as economic in-
dicators. To accomplish this task, FAS synthesizes information from its
global network of marketing experts, agricultural economists, meteor-
ologists and remote sensing scientists. In addition to the crop

3 http://agri4cast.jrc.ec.europa.eu/mars-explorer/.
“ http://www.cropwatch.com.cn/.
5 https://www.fas.usda.gov/.
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production information from foreign government reports and field
visits, remote sensing is used to help verify these reports.

A series of data sets coupled with meteorological data and crop
models have significantly improved the USDA-FAS' operational capa-
cities to monitor and forecast global crop production. These data sets
come from the Global Agricultural Monitoring (GLAM) project, in-
itiated in 2002, which is a collaborative research project between
USDA-FAS, the University of Maryland (UMD), the Global Inventory
Monitoring and Modelling Studies (GIMMS) at NASA, and South Dakota
State University (SDSU) (Becker-Reshef et al., 2010). The GLAM project
focuses on the integration and analysis of MODIS data products to feed
the USDA-FAS decision support system. The initiative combines mul-
tiple satellite data resources including NDVI from GIMMS and MODIS,
among others. In USDA-FAS, change in crop area estimates and mid-
season dominant crop masks are computed using semi-automated
classification algorithms and remote sensing data. Mid-season to end-
of-season yield estimates and maps are produced using regression and
analog year algorithms derived from MODIS NDVI data.

2.6. GEOGLAM

As mentioned in the introduction, GEOGLAM? is a flagship initiative
from GEO, which was endorsed by the G20 in 2011 to provide the
Agricultural Market Information System (AMIS) with an assessment of
crop growing conditions, crop status and agro-climatic conditions that
may have an impact on global production of wheat, maize, rice and soy.
Documented in the Crop Monitor bulletin, these assessments have been
produced operationally since September 2013. Crop Monitor assess-
ments are conducted during the final ten days of each month to ensure
timely information for the Crop Monitor. A conference call is held each
month with a group of international experts to discuss and review these
assessments, which have been generated from a variety of independent,
yet complementary, sources and to provide an opportunity to reach
consensus on any discrepancies. The consensus information is then
compiled into a report, which is reviewed iteratively by the partners.

2.7. World Food Programme Seasonal Monitor

Since 2014, the Seasonal Monitor system’ of the World Food Pro-
gramme (WFP) has been operational, primarily to monitor growing
season status and to provide early warning of conditions detrimental to
crop and pasture production within WFP regions of interest. The reason
for the development of this system was the need for more detailed in-
formation than was available from other systems as well as the ability
to produce tailored outputs for internal customers. The system derives
indicators from near real-time rainfall estimates (CHIRPS) and NDVI
(MODIS) data. A range of outputs is produced, mainly aggregations of
rainfall amounts at varying time scales, dates of onset of the growing
season and vegetation index, as well as anomalies of most parameters.
The main outputs of the system are region specific reports with an
approximate monthly frequency describing the current growing season
conditions and providing an outlook for the months ahead based on
available seasonal forecast information. Another perspective on
growing season monitoring is provided by Dataviz®, a visualization
platform from WFP, that includes data from the Seasonal Explorer
where users can obtain charts of time series of seasonal rainfall and
NDVI values and anomalies for administrative regions: from adminis-
trative Level O (country), Level 1 (state, province, region, governorate,
etc.) and Level 2 (district, locality, county), as well as data from the
Economic Explorer, where price and price-forecast information is also
shown. The data from the Seasonal Monitor can be obtained for the

6 http://www.geoglam.org/index.php/en/.
7 https://www.wfp.org/content/seasonal-monitor.
8 http://dataviz.vam.wfp.org/.
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entire administrative unit or for only the areas covered by cropland or
pasture (according to a land cover layer).

2.8. ASAP (Anomaly Hot Spots of Agricultural Production)

The final system is the Anomaly Hot Spots of Agricultural
Production (ASAP)°, launched by the Joint Research Centre (JRC) of
the European Commission (EC) in June 2017. This information system
was developed both for EC use and for making contributions to multi-
agency information systems such as GEOGLAM. ASAP focuses on
finding areas where unfavorable growing conditions for both crops and
rangelands may represent a potential food security problem (Rembold
et al., 2017) and informs EU-supported food security assessments such
as the Integrated Food Security Classification and the Global Report on
Food Crises. There are two parts to this system. In the first part, rainfall
estimates and the NDVI derived from remote sensing are used to au-
tomatically generate warnings at the first sub-national level regarding
potential problems with crop and rangeland production globally. These
early warnings are issued every 10 days when new rainfall and NDVI
data become available. The second part of the system involves using
agricultural monitoring experts to verify these ‘hotspots’ of potential
food security problems for around 80 countries with high risk of food
insecurity; these assessments are updated on a monthly basis. The main
added value of the ASAP system is that it analyzes the available Earth
Observation (EO) and weather data and turns this into short warning
messages that do not require a background in geospatial data analysis
to be useful for decision makers. The ASAP complements the informa-
tion available through the MCYFS, covering food insecure areas outside
of Europe.

3. Comparison of the main global and regional scale agricultural
monitoring systems

To compare the eight systems, a questionnaire was used to collect
information about each system, which can be found in the
Supplementary Information. Table 1 summarizes the data and models
used by each system while Fig. 1 quantifies the number of sources of
input data used. Fig. 2 indicates the degree to which the different sys-
tems use five main sources of information, i.e. meteorological data, crop
models, optical satellite remote sensing, analyst input and other aux-
iliary data sets.

The results show that all of the systems make use of meteorological
data and remote sensing information although many of the meteor-
ological data are derived from remote sensing (Table 1). Only the MARS
MCYFS uses interpolated data from stations while ASAP uses gridded
meteorological data from atmospheric models. The sources of remote
sensing used vary across the systems (Table 1), with CropWatch, USDA-
FAS (Crop Explorer) and GEOGLAM using the highest number of dif-
ferent remote sensing products (Fig. 1). Each of the systems that use
crop models employ different ones although GEOGLAM obtains inputs
from FEWS NET and GIEWS in their crop condition modelling (Table 1).
A range of different auxiliary data sets are used by each of the systems
(Table 1) with GIEWS, MCYFS MARS, USDA-FAS (Crop Explorer) and
CropWatch using > 10 different sources of additional data (Fig. 1).
Almost all of the systems forecast crop conditions while some systems
additionally forecast cropping intensity, i.e. the number of crops grown
per year, crop area, crop yield, crop production and crop production
anomalies or crop area affected by critical anomalies. The GIEWS and
USDA-FAS systems additionally make forecasts of other data such as
crop stage and start of the season while USDA-FAS also forecasts the
number of dry days and has the highest number of forecasting outputs
(Fig. 1).

Fig. 2 shows that no system relies entirely on any one type of input

9 https://mars.jrc.ec.europa.eu/asap/.

Agricultural Systems xxx (XxXX) XXX—XXX

of the five shown, i.e. meteorological data, crop models, optical remote
sensing, analyst input or auxiliary data. The USDA-FAS and FEWS NET
make considerable use of all five sources while systems like Seasonal
Monitor use mostly optical remote sensing data and analyst inputs,
supplemented with meteorological data from remote sensing and aux-
iliary data. Of the remaining systems, the importance of meteorological
data is evident, while crop models, optical remote sensing, analyst input
and auxiliary data are of varying importance to the systems.

The system outputs and the dissemination across the different sys-
tems is summarized in Table 2. All the systems produce NDVI profiles
and produce outputs related to anomalies. All the systems produce
phenological analyses except for GEOGLAM and the Seasonal Monitor
and only GEOGLAM does not produce rainfall profiles. All the systems
produce some type of bulletin or report except for ASAP, which dis-
seminates the information online via web services and GIS files. FEWS
NET also disseminates many GIS layers used in their analyses, e.g.
rainfall estimates, anomalies, the Water Requirement Satisfaction
Index, etc. Except for GEOGLAM, which only produces the Crop
Monitor, the other systems produce several outputs with USDA-FAS
(Crop Explorer) producing the largest number (Fig. 1). Regarding the
accuracy of the system outputs, there are few quantitative assessments
available for the operational systems considered here. One example is
provided by Van der Velde and Nisini (2018; this Virtual Special Issue),
who found that for the end-of-campaign MCYFS crop yield forecasts
from 1993 to 2015, the lowest median mean absolute percentage error
(MAPE) across all crops was obtained for Europe's largest producer at
3.73%, while the highest median MAPE was obtained for Portugal, at
14.37%. MCYFS forecasts generally underestimated reported yields,
with a systematic underestimation across all member states for soft
wheat, rapeseed and sugar beet forecasts. Forecasts generally improved
during the growing season; both the forecast error and its variability
tend to progressively decrease. Egelkraut et al. (2003) undertook a
quality assessment of crop forecasts from the USDA and found that
errors were larger for maize than soybeans, but similar to the MCYFS,
the forecasts improved as the season progressed. The outputs from these
systems clearly require more evaluation, which should be made trans-
parent and published.

Four of the systems undertake their analysis at the national, sub-
national and pixel level which also mirrors the resolution of their
outputs. Other systems use combinations of either national/sub-na-
tional or sub-national/pixel, reflecting different information needs.
FEWS NET also disseminates their output by livelihood zones. Five of
the systems disseminate early warning information during the growing
season on a dekadal (10-day) or monthly basis. Only the CropWatch
system releases information on a quarterly and annual basis while the
Seasonal Monitor aims to produce three reports per growing season.
The dissemination schedule for GEOGLAM is very much driven by the
need to provide information to AMIS on a monthly basis.

Table 3 contains other characteristics of the monitoring systems that
were asked in the questionnaire. For example, the role of the analyst is
quite similar across systems, e.g. they undertake different types of
agrometeorological and statistical analyses, synthesize information
from multiple sources and contribute to reports. However, some sys-
tems are more automated compared to others, e.g. WFP's Seasonal
Monitor and the ASAP system require some degree of expert knowledge
to judge how severe a drought is, for example, while the ASIS system
produces a map that directly indicates where and how severe the
anomaly is. In the future, these systems may require more automation
in order to deal with the increasing amounts of big data. All of the
systems have a mechanism for dealing with situations where informa-
tion sources disagree, which are flagged by the analysts and generally
involves expert intervention and cross-validation with additional data
sources. GEOGLAM, in particular, has a transparent approach to finding
consensus from the different system assessments and data sources. In
fact, all of the systems contribute to GEOGLAM's Crop Monitor but
there is also interaction and use of products between systems. Most of
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Table 1
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Data and model inputs used by each monitoring system obtained from the questionnaire. Check marks or text indicate that the systems use the data or model inputs
while a dash indicates non-usage or non-applicability. The following acronyms are used to indicate meteorological sources: AM, gridded data from Atmospheric

Model; RS, gridded data estimated by a RS-based model; I, gridded data interpolated from meteorological ground station data.

Data and model inputs

GIEWS FEWS NET MCYFS CropWatch USDA-FAS GEOGLAM  Seasonal ASAP

Monitor

Meteorological data
source used

Remote sensing

Crop models used

Auxiliary data used

Forecasts from the
system

Precipitation

Temperature

Evapotranspiration

Solar radiation

Relative humidity

Wind speed

Snow coverage

Total cloud cover

Water vapor pressure

Atmospheric pressure

Products Vegetation indices (e.g. NDVI, VHI,
fAPAR)

Soil moisture, FAO-ASIS

Passive Radar (10-50 km) (e.g. SMOS,
SMAP, SSM/I, TMI)

Active radar (20 m - 50 km) (e.g.ASCAT,
JASON, Sentinel 1)

Geostationary (5km, e.g. FY2)
Coarse resolution optical (250 m - 1 km)
(e.g. AVHRR, MODIS, Proba-V, FengYun-
3)

Very high to high resolution optical
(80 cm - 30m) (e.g. Landsat, Sentinel 2,
Gaofenl&2, ZY3)

Water balance models (e.g. GWSI, WRSI)
Biophysical/simulation models (e.g. WOFOST, Wheat
Ritchie (CERES), Sorghum Vanderlip and Reeves, GDD,
Corn Hanway, FAO-ASIS, WARM for rice, etc.)

NDVI models

Statistical and bespoke models (e.g. FAO-ASIS)
Cropland maps

Crop type

Crop calendar

Soil information

European Media Monitor outputs

Agricultural Census

Agricultural Surveys

Small area crop statistics

Agricultural contacts

DEM

Climate or agroecological zones

Surface water availability

Commodity prices

Soil map

Admin borders

Livelihood zones

Windshield survey (field observation)

Crop conditions

Agro-climate/potential Biomass

Cropland utilization

Cropping intensity

Crop area

Crop yield

Crop production anomalies

Crop area affected by critical anomalies

Crop stage

Season start

Number of dry days

NDVI values

Sensors
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AET = actual evapotranspiration; PET = potential evapotranspiration; ET =

NDVI = normalized difference vegetation index; ASI = Agricultural Stress Index;

evapotranspiration; RH = relative humidity; DEM = digital elevation model;
GDD = growing degree days, VCI = vegetation condition index, TCI = temperature

condition index, VHI = vegetation health index, RFE = rainfall estimate, SPAM = spatial allocation model, WRSI = water requirement satisfaction index.

the systems provide some open access to their GIS outputs, some are
planning to open more of their data in the future while MCYFS MARS
and GEOGLAM currently do not have any outputs that are openly
available as GIS layers. The areas covered by the systems is largely
global. FEWS NET has more activities in certain regions but their data

sets offer global coverage while MCYFS MARS is more focused on
Europe and neighboring countries. GEOGLAM also focuses on countries
that cover around 95% of all cropped area. There is a wide range of
stakeholders to whom the information is of interest including govern-
ment ministries and EU departments, aid organizations, agribusiness
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Fig. 1. Comparison of global and regional scale agricultural monitoring systems in terms of number of sources of input data used.

and other relevant industries and AMIS, as a direct user of the GEO-
GLAM Crop Monitor.

4. Gaps in agricultural monitoring needs

Discussions with each of the monitoring systems was initially used
to determine what the current data gaps in agricultural monitoring are.
To formalize this gap analysis, a second questionnaire was used to
determine the importance of different data inputs to the system, in-
cluding cropland maps, crop calendars, maps of cropping intensity and
crop types, crop management data sets, meteorological data, and sta-
tistical and in-situ data on agricultural production, yield and area.
These gaps, along with state of the art, are described in section 4.1.
There was also a question about the main methodological gaps per-
ceived by each system, which are summarized in section 4.2. This
second questionnaire is provided in the Supplementary Information.

4.1. Data gaps

Fig. 3 summarizes the level of importance of different sources across
all agricultural monitoring systems while Fig. S1 shows the breakdown
of answers by individual system. Cropland maps, crop calendars, sta-
tistics on agricultural production and meteorological data are con-
sidered very to extremely critical by more than half of the systems. Each
of these data gaps are now discussed in the sections that follow.

4.1.1. Cropland maps

Seven out of eight systems identified global cropland maps as being
critical or very critical to their systems. Cropland is captured in one or
more land cover types within global land cover maps although Fritz
et al. (2011) have shown that there is considerable disagreement be-
tween the major land cover products with respect to cropland. Specific
cropland maps have also been produced (Biradar et al., 2009; Pittman
et al., 2010; Thenkabail et al., 2009; Yu et al., 2013) but each of these
also has associated uncertainties in cropland definitions, the methods
used, issues with spectral separation, particularly when there are sea-
sonal effects, and cloud cover in certain regions when using optical
data, etc. (Gong et al., 2016). Very fragmented landscapes typical of
smallholder farmers will require higher resolution images to meet the
accuracy requirements (Waldner and Defourny, 2017). The latest 30 m
cropland map produced by Xiong et al. (2017) has an overall accuracy
of 94% (defined as the percentage of correctly classified sample loca-
tions) but a user's accuracy of 68.5%, which is a class specific accuracy
for cropland that indicates how often this class will actually be present
on the ground so still requires improvement. Yearly updates are desir-
able, especially in regions where cropland can be very dynamic, such as
the Sahel, but this is not yet available operationally on a global scale.

ESA's Sentinel 2 for Agriculture (Sen2Agri)'° project recently released
an open source and portable toolbox to derive dynamic cropland maps
in an operational fashion from Sentinel 2 and Landsat-8 time series
(Matton et al., 2015; Valero et al., 2016), which shows promising re-
sults.

The global hybrid cropland map produced by IIASA and IFPRI (Fritz
et al., 2015), the Unified Cropland Layer (Waldner et al., 2016), and the
GLC-SHARE hybrid land cover product (FAO, 2015a) represent another
approach in which multiple cropland or land cover products have been
merged to produce the best characterization of cropland or land cover
at a particular location. The IIASA-IFPRI product has also been cali-
brated using FAO statistics so that it can be used in global models that
require official statistics. A similar approach has been used to build the
cropland and rangeland maps of ASAP, where six global and 16 regional
land cover data sets were compared at the country level using multi-
criteria decision analysis to select the most suitable ones for agricultural
monitoring (Pérez-Hoyos et al., 2017). As it is clear that more effort is
required to accurately map the world's cropland, Waldner et al. (2015)
have compiled existing cropland maps to highlight priority areas for
improving cropland mapping.

4.1.2. Crop calendars

Similar to global cropland maps, global crop calendars were viewed
as being critical to very critical by all of the eight systems although the
MCYFS system uses only European ones. Crop calendars contain the
planting and harvesting dates of different crop types for an area or
region. These are useful for crop condition monitoring, crop type area
estimation and crop yield forecasting and estimation, among other
applications. Agricultural policies, the mobilization of food aid and the
movement of commodities to market would also benefit from accurate
knowledge of harvest timing. Furthermore, such information could
contribute to the UN SDG goal 12.3 to reduce post-harvest losses (IAEG-
SDGs, 2016).

FAO provides crop calendars for a large variety of crops for 44
African countries by agro-ecological zone (FAO, 2010). This type of
information is traditionally gathered from household surveys and na-
tional censuses, which is time consuming to collect and maintain.
Moreover, the use of agro-ecological zones fails to capture regional
variations. As part of the MIRCA2000 data set, crop calendars were
constructed for 402 spatial units from censuses, national reports and
other relevant databases, using global monthly irrigated and rainfed
crop areas (Portmann et al., 2010) as an input. A similar approach was
taken by Sacks et al. (2010) but additional sources of sub-national data
were used, and the full range of planting and harvesting dates in a

10 http://www.esa-sen2agri.org/.


http://www.esa-sen2agri.org/

S. Fritz et al.

_~ Meteo data

E Auxiliary \ Cr/(jp
- 8\ / models
] data\ / Q
\ \ / /
\ \ /
\ O\ 5 i |
Analyst input Optical data
_~Meteo data
E Auxiliary \ Crop
= data \\ m?dels
u \\\ \\ /"
= \ O\

Analyst input Optical data

_~Meteo data

e

CropExplorer, CropSignal

Optiéal data

\
Analyst input

_~Meteo data

L s

S ey

c

5 L ~ N

S Auxiliary\| ¢ 5,/ Crop

= data |\ |\ O " models

S \ O\ ‘

(7] \

8 \

n 2 ’
Analyst input Optical data

Agricultural Systems xxx (XxXX) XXX—XXX

_~Meteo data

A ~

B

w \ / P N /’/
E Auxiliary ¢ ) Cfop
= d ata 0y models
s \ 1
5 /
\\‘ ””
Analyst input Optical data
_~Meteo data
< rd AR
S ( %
g Auxiliary \ Crop
= d at\q \ / m?dels
) \ \\ / /
- \ \ / /
O \ \ / /
\ O\ 2 [/
Analyst input Optical data
_~Meteo data
o y
= .
c y p S
(e} P P . e
o \ ¢ / P4 \ b /
O Auxiliary \ \ / Crop
= \ \ 0 / del
O  data |\ [\ / mogdels
2 \\ ! \ — 1— / ’ :
< \\ \ /
- \ \ |
w ‘\ /
o \ /
w \ /
o Analyst input Optical data
_~Meteo data
% Auxilig ry
< data\

Analyst input Optical data

Fig. 2. Comparison of the global and regional agricultural monitoring systems in terms of the degree to which they use different sources of input data. The reference

is the following: 3, exclusively; 2, a lot; 1, a little; and 0, not at all.

region were provided rather than the most typical one. Although both
of these data sets are global, they have similar limitations to the FAO
crop calendar, i.e. they fail to capture spatial variations due to the
coarse resolution of the underlying national and sub-national data.
More recently, Laborte et al. (2017) produced the global RiceAtlas with
crop calendars for rice production.

Other approaches involve modelling of planting dates based on
climate data (Stehfest et al., 2007; Sacks et al., 2010; Waha et al., 2012)

and the use of remote sensing. For example, Harvest Choice and the
International Food Policy Research Institute (IFPRI) used NDVI from
MODIS to derive a crop calendar data set at a 1 km resolution for sub-
Saharan Africa (Guo, 2013; HarvestChoice, 2013) while Kotsuki and
Tanaka (2015) used NDVI from SPOT-VEGETATION to develop the
SAtellite-derived CRop calendar for Agricultural simulations (SACRA),
a global crop calendar for 6 major crop types. A comparison of SACRA
with MIRCA2000 and the product of Waha et al. (2012) showed large



S. Fritz et al.

Table 2

Agricultural Systems xxx (XxXX) XXX—XXX

System outputs and dissemination by the various global and regional scale agricultural monitoring systems obtained from the questionnaire. Check marks or text
indicate affirmative responses while a dash indicates a negative response or non-applicability.

Outputs and dissemination GIEWS FEWS NET MCYFS CropWatch USDA-FAS GEOGLAM Seasonal ASAP
Monitor
Outputs from the ~ NDVI profiles v v v v v v v v
system Rainfall profiles v v v v v - v v
Phenology v v v v v - - v
analysis
Anomaly analysis v/ v v v v v v v
Format to Bulletins v v v v v v v -
disseminate Reports v v v v v - v -
outputs GIS files - v - - - - - v
Web services v v v v v v v v
System resolution  Pixel level v v v v - v - v
to undertake Administrative v v v v v v v v
assessment unit
National level v - v v v - v v
Resolution of Pixel level v v v v v - v v
outputs Administrative v v v v v v v v
unit
National level v - v v v v - v
Other - Livelihood zone - - - - - Global overview
Timing to release During the v v v - - During the growing v v
system growing season season on the first
findings Thursday of the month
(in line with AMIS
Market Monitor
publication schedule)
Monthly v - v - v v - v
Other - Every dekad - Quarterly Numerous maps - 3 per Automatic warnings
and annually and charts season (as a every dekad (10 days)
updated every goal) and monthly country
dekad level analysis

discrepancies in places; hence it was not possible to determine which
product was the best overall. Developed from an agricultural mon-
itoring perspective, Whitcraft et al. (2015a) used 10 years of NDVI from
MODIS to identify the start, peak and end of the agricultural growing
season for all major crops together at a resolution of 30 arcmin. This
product is useful for identifying the periods during which cropland
areas should be monitored by EO, thereby informing strategies for
image acquisition. ASAP also makes use of remote sensing based phe-
nology from 15 years of MODIS data and the outputs have been com-
pared with FAO and USDA national level crop calendars to derive sub-
national calendars. ASAP uses and re-distributes the sub-national crop
calendars for all administrative units where there is a match between
the remote sensing based phenology and FAO/USDA crop calendars.
The GIEWS ASIS system uses phenology from a time series of longer
than 30 years from METOP and NOAA AVHRR (1984-present).

The lack of calibration and validation data sets that adequately re-
present geographic diversity and spatial and inter-annual variability in
sowing and harvesting dates has slowed the advancement of remote
sensing-based approaches. Therefore, the establishment of an openly
accessible database of samples of sowing and harvesting dates across
major and minor agricultural areas of the world and across multiple
years would greatly advance the use of remotely sensed information in
agricultural phenology, which would bolster the entire enterprise of
EO-based cropland monitoring. Crowdsourcing and self-reporting by
farmers may also provide more phenological data in the future.

4.1.3. Maps of cropping intensity (CI)

Cropping intensity (CI) refers to the number of crops grown within a
year, and can provide valuable information regarding food security
(Jain et al., 2013). Both FEWS NET and WFP's Seasonal Monitor view
information about CI as very critical while four other systems viewed

this information as critical. There have been a number of studies using
remote sensing to determine CI in Asian countries (Jain et al., 2013;
Gray et al., 2014) and China in particular (Qiu et al., 2014; Yan et al.,
2014; Ding et al., 2016; Qiu et al., 2017) but there is currently no global
data set available (lizumi and Ramankutty, 2015). Using only MODIS
data, Gray et al. (2014) found that they underestimated the number of
cropping cycles due to missing data, particularly during cloud-covered
monsoon periods, and recommended the use of data from multiple
sensors. Other studies have shown the importance of adding other types
of data such as agricultural statistics or outputs from crop models (e.g.
Qiu et al., 2014). Although the agricultural statistics from FAO im-
plicitly contain information on multiple cropping in the total produc-
tion and area harvested figures, the CI data are not recorded (lizumi
and Ramankutty, 2015). Thus, it is important to build a global database
with this information, both nationally and at the sub-national level, to
aid in the development of global maps of CI.

4.1.4. Maps of crop type

Maps of crop type were viewed as very critically important by half
of the systems and critical by two others. Neither the ASIS system of
GIEWS or the MCYFS of MARS uses crop type information; in the case of
MARS, agricultural statistics are used instead. Spatially explicit crop
type maps have been produced by downscaling national and sub-na-
tional statistics using different methodologies. The M3 Cropping System
Model (Ramankutty et al., 2008) consists of harvested area and yield
downscaled for 175 crops including tree crops and managed grasslands.
Using remote sensing, cropland and pasture maps are constructed ata 5
arc-minute resolution and national and sub-national agricultural data
are then downscaled using a regression approach. The MIRCA2000 data
set is a downscaling of 26 crops for rainfed and irrigated systems
(Portmann et al., 2010) and uses the M3 data as a starting point. It also
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provides a further temporal disaggregation by month. The SPAM pro-
duct (You et al., 2014) uses a cross-entropy approach to downscale area
and yield for > 40 crops into high-input irrigated, high-input rainfed
and low-input rainfed production systems using additional information
such as crop prices, population density and suitability. Products are
available for both 2000, which used the M3 cropland extent as an input,
and 2005, which uses the IIASA-IFPRI global cropland map (Fritz et al.,
2015). The Global Agroecological Zones (GAEZ) cropping system model
has produced gridded harvested area and yield by downscaling agri-
cultural statistics for 23 crop types using an approach similar to SPAM
although the underlying cropland extent is based on suitability.
Anderson et al. (2014) compared these four products and found large
discrepancies between them, which are caused by differences in the
input data used, in particular the underlying cropland extent, as well as
the methodologies used for downscaling. Hence there are clear un-
certainties in all of these products and only the SPAM data set is being
updated every 5 years.

Remote sensing is another approach for constructing maps of crop
type (Boryan et al., 2011), which holds more promise for the con-
struction of annual crop type maps globally on an operational basis.
However, much of the crop type mapping to date has used MODIS data
and has only been demonstrated on test areas (Wardlow and Egbert,
2008; Ozdogan, 2010; Brown et al., 2013). More recently, Salmon et al.
(2015) have produced a global map of irrigated, rainfed and paddy
croplands using various MODIS products and other agroclimatological
data but this does not include the major crop types except for wetland
rice. Inglada et al. (2015) have developed a processing chain for
creating crop type maps at the global scale using Landsat and SPOT
data, which has also been applied to Sentinel 2 data as part of the Se-
n2Agri project for Ukraine, Mali, South Africa and selected sites in
other countries around the world with the aim of creating operational
systems that can support GEOGLAM. Combining MODIS and Landsat
data, high resolution soybean maps of the United States and Argentina
have been constructed (King et al., 2017; Song et al., 2017). The in-
tegration of data from SAR (Synthetic Aperture Radar) with optical data
also holds promise for crop type mapping as demonstrated by McNairn
et al. (2009) in the construction of an operational annual crop inventory
in Canada. While the methodological ability to derive crop type maps
from time series of satellite images has been intensively demonstrated,
the lack of seasonal calibration data for the classification appears as the
main constraint to operationalization (see section 4.1.7).

4.1.5. Crop management data sets

Five systems rated crop management data sets as critical while the
remaining systems viewed this as less critical data. However, there is a
clear lack of data on crop management practices, which are key factors
that influence agricultural productivity, and spatially-explicit data sets
are needed for crop growth models, which can simulate yields under
different management practices. From an inventory of the main data
sets available for different land management practices, Erb et al. (2017)
highlighted the lack of data on tillage and nitrogen fertilization. Cur-
rently no data on tillage are available although promising approaches
are being developed using Sentinel 1 (Atstaja, 2017) while there are
spatially explicit global data sets on nitrogen fertilization (Liu et al.,
2010; Potter et al., 2010; Mueller et al., 2012). These data sets are,
however, derived from models, and they show large discrepancies be-
tween them. More recently, Lu and Tian (2017) downscaled national
nitrogen and phosphorus use to a 30 arcmin resolution to create a
gridded time series from 1961 to 2013. There are also a number of
uncertainties with this data set, e.g. it does not take grassland fertili-
zation into account so may overestimate fertilizer use in some areas,
and the M3-crop distribution data set was used for crop types, which
may lead to further uncertainty in the estimates.

Crop management practices may also adversely affect the environ-
ment. Salinization, eutrophication and contamination of areas sur-
rounding cropland, e.g. rivers, ground water but also populations of
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natural pollinators, are affected by over use of pesticide, and are
common environmental problems related to agriculture. To understand
their effect on the environment, researchers usually have to piece to-
gether information on fertilizers, pesticides and their dosages and fre-
quency. A clear registry and characterization of these and other en-
vironmentally related practices from cropping areas in the world would
be useful for building better spatially explicit products of crop man-
agement practices but also for evaluating their impacts on the en-
vironment, including soil health, water quality and biological activity
around and in crop fields.

4.1.6. Meteorological data

Six out of eight systems viewed meteorological data as being very
important for their system performance where rainfall data are the most
critical meteorological input. Rainfall estimates are used by all eight
monitoring systems (Table 1). Although the most accurate rainfall is
obtained from rain gauges, the spatial network of stations is too sparse,
particularly in places where food security risks are greatest, creating
spatial data gaps across many areas (Maidment et al., 2017). In general,
the global meteorological station network has diminished and dete-
riorated in some developing countries, in particular Central Asia, and
many stations cannot be maintained due to underfunding and in-
sufficient national capacity (Rogers and Tsirkunov, 2013). To comple-
ment ground-based meteorological data, and rainfall in particular,
spatially explicit measurements can be obtained from atmospheric cir-
culation models and satellite observations, e.g. precipitation forecasts
from the European Centre for Medium-Range Weather Forecasts
(ECMWF), the rainfall estimates from the Climate Hazards Group In-
fraRed Precipitation with Station data (CHIRPS) of the USGS, rainfall
from the Tropical Rainfall Measuring Mission (TRMM) and the Tropical
Applications of Meteorology using SATellite (TAMSAT), among others.
Maidment et al. (2014) provide a comprehensive overview of available
gauge and satellite rainfall data for Africa and compare seven different
rainfall products, showing there are disagreements when compared
with one another and with rain gauge data. There is clearly a tradeoff
between products that incorporate rain gauge data but have shorter
historical records compared to those with longer historical records but
which do not use rain gauge information. Hence there are uncertainties
around these products, which are further propagated in crop models
that use satellite-based rainfall estimates. Rainfall estimation using
radio interference in cellular networks (Overeem et al., 2013) is a
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promising avenue of ongoing research that may benefit agricultural
monitoring in the future. Moreover, there are recent plans to increase
the density of meteorological observations by deploying low cost sen-
sors and by using cell phone towers as sites for meteorological stations
(Rogers and Tsirkunov, 2013).

4.1.7. Data on agricultural production, area and yield

Six out of eight systems view this information as very critical or
critical. The FAO has been compiling statistics relevant to agriculture in
its FAOSTAT system for 245 countries and 35 regions from 1961 to the
most recent available year (FAO, 2015b). The data sets are based on
censuses, agricultural samples and questionnaire-based surveys (FAO,
1996). Despite this vast historical record, there are several drawbacks
of relying on the quality and accuracy of such national reports as there
have been no attempts to harmonize data collection methods among the
different countries (World Bank and FAO, 2011). National agricultural
statistics are generated by many countries but their accuracy, timeliness
and consistency over time and accessibility vary greatly. Some coun-
tries collect administrative data based either upon census, surveys or
national sampling frames. Area frame sampling is a well-established
statistical method for collecting agricultural data that cannot be ob-
tained directly by satellite such as actual crop yield (Gallego, 2015).
However, other countries have no established formal data collection
process and there are no globally recognized standards for in-situ or
survey data collection of agricultural statistics (Justice and Becker-
Reshef, 2007).

Since FAO statistics are reported nationally, FAOSTAT only provides
limited information on agriculture, particularly when spatially explicit
data are required (Anderson et al., 2014). The lack of sub-national
agricultural statistics has been identified as a challenge to crop fore-
casting systems and remote sensing (Kayitakire, 2012). However, there
are initiatives such as Agro-MAPS (Mapping of Agricultural Production
Systems) to collect statistics on crop production, area and yield at the
sub-national level (FAO et al., 2006) and FAO's CountrySTAT''. Many
researchers have also compiled sub-national statistics for many coun-
tries and crops as part of their studies, e.g. Ray et al. (2012), where the
data should be placed in open data repositories for sharing.

More in-situ yield data are needed to develop and validate crop
models, which are used to make forecasts of production, or as inputs to

11 http://www.countrystat.org/.
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statistical models for prediction of yield anomalies using remote sen-
sing. Six out of eight systems viewed in-situ data as critical to very
critical for their operation. The Land Parcel Information System (LPIS)
is openly available in some countries across the EU, e.g. the Netherlands
and Czech Republic, which may encourage other countries to open up
their agricultural databases in the future. There are also sources of in-
situ yield data available from crop trials, e.g. from FAO (van der Velde
et al., 2013), the International Maize and Wheat Improvement Center
(CIMMYT), the Global Yield Gap Atlaslz, and the Global Agricultural
Trial Repository and Database'® hosted by the CGIAR's (Consultative
Group on International Agricultural Research) Research Program on
CCAFS (Climate Change, Agriculture and Food Security). The latter
initiative is aimed at encouraging scientists to share their data within
the community, where these data might otherwise remain locked
within their own institutions (Smith et al., 2015). Advances in mobile
phone and location-based technologies are also increasing the in-situ
collection of yield data while the private sector is another potential
source of data. However, the sharing of and access to these diverse data
sets is not common.

Crop growth models also require soil information as a critical input
(Krishna Murthy, 2004). For yield forecasting for agricultural mon-
itoring purposes, the Harmonized World Soil Database v1.2
(Nachtergaele et al., 2010) is available at a 1 km resolution, which has
integrated existing regional and national soil data sets, many of which
are available from the International Soil Reference and Information
Centre (ISRIC). However, this map has been criticized for its coarse
resolution and the fact that it does not represent the current soil con-
dition but rather combines existing soil data sets from different time
periods and of differing quality (Sanchez et al., 2009; Grunwald et al.,
2011). Several other data sets of interest are available from ISRIC such
as the Harmonized Global Soil Profile data set v3.1, containing > 10K
soil profiles globally, gridded data sets of soil water capacity and the
more recent SoilGrids250m product (Hengl et al., 2017).

4.2. Gaps in methods

Although Jones et al. (2017) argue that data scarcity and limitations
are more important than gaps in theory and approaches in agricultural
system models, there are still missing pieces in the science behind
agricultural monitoring and forecasting. To better understand these
issues in the context of this paper, the eight global agricultural mon-
itoring systems were surveyed for their perceptions regarding current
methodological gaps. Three of the systems mentioned the need for
better predictions of yield and crop production, which can either be
realized through crop growth models or statistical models, e.g. based on
NDVI. The review of agricultural system models by Jones et al. (2017)
highlighted several recent reviews of crop models and their limitations,
mostly related to the data but also recognizing the need for continued
methodological developments.

Gaining a better understanding of the differences between different
input data sets is another gap that was identified. For example, pre-
cipitation varies between different sources; the same is true of different
vegetation indices. Having a better understanding of where these data
sets have discrepancies and why is very important for consensus in
monitoring, and the tools for carrying out an automated comparison are
currently lacking.

Two other relevant points were raised. Some felt that it is not so
much the methods that are lacking, since there is considerable scientific
research taking place in many different areas related to agricultural
monitoring, but rather the ability to operationalize these new methods.
Hence there is a lag time between the emergence of scientific research
and implementation as operational activities. The second point is

12 http://www.yieldgap.org/.
13 http://www.agtrials.org/.
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related to lack of tools or methods for synthesizing the variety of in-
formation coming into the system for decision makers, which was also
raised as a key issue by Jones et al. (2017). They mention the idea of a
virtual laboratory in which scenarios could be defined under different
spatial and temporal scales, which could produce outputs suitable for
decision makers but which does not currently exist. Such tools should
also allow inputs to the system to be weighted differently depending on
the situation, e.g. a normal year versus a drought year, which was an-
other comment raised in the survey.

5. Conclusions

This paper compared eight global and regional scale agricultural
monitoring systems that are currently supporting efforts to improve the
world's food security. The results of a questionnaire show that there are
many similarities between them, in particular in their use of meteor-
ological data and remote sensing. However, the systems are tailored to
meet the needs of different customers and hence they differ in the
importance they place on inputs to the system as well as how they
disseminate their results.

Data recorded by remote sensing satellites mainly assist with the
assessment of crop condition and crop condition anomalies, which can
then be used to infer information on yield, area and production re-
ductions. However, this approach is not able to provide quantitative
crop area and production forecasts as ideally needed for food security
interventions. Crop growth and yield forecasting models are data in-
tensive (daily meteorological inputs needed) and are currently applied
only for the US by the USDA system and for Europe by the MCYFS.
Moreover, remote sensing-based methods for agricultural statistical
forecasting need historical archives of high quality statistics, which are
not available in all countries.

All global systems and in particular those covering food insecure
countries use only remote sensing-based crop condition monitoring or
basic water balance models. Crop production and area information in
these countries is largely based on local expert knowledge (eg. USDA-
FAS, FEWSNET and GIEWS). Also for the remote sensing-based mon-
itoring systems, gaps in their baseline information are well docu-
mented. Moreover, when different basic (global) products are com-
pared, e.g. cropland extent, crop types or rainfall estimates, they often
show large differences. Hence knowing which product to use in an
environment where more and more products are appearing remains a
challenge.

Within the context of crop condition monitoring and yield fore-
casting, moderate resolution data (10-100 m) has not achieved broad
scale adoption across the globe, primarily due to the lack of consistent
cloud free acquisitions with sufficiently high temporal resolution
(Whitcraft et al. 2015b), but also due to barriers in operational adop-
tion of EO-based methodologies related to gaps in technological ex-
pertise and challenges in accessing, downloading, storing, and mana-
ging the sizable data volumes this resolution produces. The GEOGLAM
initiative has demonstrated that this is a priority growth area for ana-
lyses spanning the extent of cropland for fields of all sizes. GEOGLAM
works closely with the Committee on Earth Observation Satellites
(CEOS) - a consortium of the world's civil space agencies — to confront
issues of data acquisition, accessibility, and continuity. Examples of
activity areas include developing data preprocessing standards to fa-
cilitate operational uptake of diverse data streams and cloud-based data
dissemination systems and services. However, in order to make con-
crete progress towards enhancing the use of EO for agricultural mon-
itoring, coordinated and complementary efforts to develop human and
institutional capacity to use EO as they become increasingly available is
equally critical. The transition of research-based methodologies to the
operational domain hinges upon concerted efforts to document, pre-
serve, and disseminate methods and guidance materials (i.e. training)
to the broader agricultural community, a final step in research project
timelines, which due to funding and scheduling constraints, is too often
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overlooked. Recently developed systems, however, are now making
greater use of high resolution data in combination with cloud com-
puting. This is the case, for example, for ASAP's high resolution viewer,
which retrieves Sentinel 2 and Landsat imagery for any GAUL1 unit
globally and computes NDVI anomalies. The combination of cloud
computing with image enhancement and time series processing tech-
niques developed in the past for lower resolution data are a highly
promising way of exploiting recent remote sensing data, although the
short archives remain a limiting factor for anomaly computation.

The launch of Sentinel 1, 2, 3 and Proba-V sensors addresses issues
related to the availability of coarse and medium resolution imagery. For
example, Sentinel 3 provides data at 300 m ground sample distance
(GSD) and Proba-V at 100 m. Sentinel 2 already provides 10-20 m data
at 5-day revisiting intervals although we still need archives for anomaly
and change monitoring. The Venus (Vegetation and Environment
monitoring on a New MicroSatellite) sensor provides 12 spectral bands
(at 5m ground resolution) and a 2-day revisiting time. The hyper-
spectral HyspIRI will provide a spectral resolution of 10 nm, 19-day
revisiting time and a spatial resolution of 60 m. Landsat 8, the Landsat
data continuity mission (LDCM), includes two thermal bands for energy
balance calculations, thereby providing new opportunities for crop
monitoring (Atzberger, 2013). The German hyperspectral ENMAP will
be launched in 2020. Finally, commercial image providers have also
started to acquire hyper-temporal satellite image time series at < 10 m
resolution with constellations of microsatellites. For example, Planet
seeks to provide a daily coverage of the Earth's landmass at a 3-5m
resolution with the 175+ Dove satellites. However, as more of these big
data streams from remote sensing are used for agricultural monitoring,
more automated approaches such as that used by FAO-ASIS will be
required.

Furthermore, as mentioned previously, in order to advance the state
of the science, more consistent calibration and validation protocols for
crop monitoring applications as well as the data sets to support them
are needed. Logistically, this would involve the development of a co-
herent regional-to-global scale sampling scheme that accounts for
geographic heterogeneity in climate and in cultivation practices, the
routine collection of agreed-upon ground data, and the stewardship of
such data sets to facilitate access to and use by the broader agricultural
monitoring community. This would become an open in-situ data re-
pository of data sets that are currently missing, e.g. planting and har-
vesting dates, crop types, irrigation, fertilizer and pesticide applica-
tions, etc. Such an effort would advance the state of the science by
improving the robustness and applicability of remote sensing-based
approaches to monitor croplands in a diversity of settings. Similar to the
University of California at Irvine (UCI) Machine Learning Repository
that maintains data sets for the machine learning community, an open
repository of benchmarking data would also provide a one-stop-shop to
test and compare new methods.

The increased amount of smartphones all over the world, even
among low income farmers, usually the group responsible for the lar-
gest agricultural uncertainties, allows for increased opportunities to
self-report geo-located crops and parcel practices, including planting
dates, fertilizer application, irrigation and expected yields, through the
use of purpose-designed mobile applications. Although information
reliability can be a concern if self-reported information is used as the
basis for global monitoring of agricultural production, ways to improve
the precision and reliability of such information can be built into these
applications. Such ways may include incentives such as feedback with
timely agronomic and market recommendations, tailored to the regis-
tered crop and area where it is grown. Hence, it could be guaranteed
that the majority, if not all the information provided, is as accurate as
possible.

The food security and early warning community should also make
greater use of the latent predictive capacity of social media and sources
such as web search data (e.g. van der Velde et al., 2012) in the future.
As an example, in 2016, farmers tweeted about their low, unexpected
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soft wheat yields, which were nearly 30% below the five year average
and even lower than the yields obtained in 2003 that were affected by
drought and heat waves. This situation was not picked up by early
warning systems such as the MARS MCYFS so it represents an inter-
esting source of ground-based information that can inform early
warning systems.

Finally, we need to work towards greater sharing of data and in-
formation. GEO plays a pivotal role in encouraging member countries
and organizations to share their data via the GEOSS Common
Infrastructure but finding more ways to unlock data sitting in offices,
hard disks and closed cloud systems remains a continuing challenge.
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