Mycotoxin binders An option for safer milk in Kenya?

Florence Mutua, Johanna Lindahl, Delia Grace

20-24 May 2019

Food safety conference, Kenyatta University, Nairobi, Kenya

Introduction (1)

- Aflatoxins are toxic substances produced by certain species of moulds.
- Best-characterised of many mould toxins in food and feed
- Common in Kenya (human outbreaks / much food and most feed above permissible levels)
- AFB1: most common / toxic in humans and animals

AFB1 in the dairy value chain

- Exposure to cows is through contaminated feed
- Contamination: use of spoilt raw materials, poor feed storage practices, giving food thought unfit for humans to animals
- Exposure to humans is through contaminated milk and milk products

The link between AFB1 in feed and release of AFM1 in milk

Feed	In the rumen	In the liver
 Feed with AFB1 is given to cows 	 AFB1 is broken down in the rumen and metabolites removed (waste) A fraction of AFB1 is absorbed / reaches the liver 	 AFB1 is broken down to a reactive (toxic) form DNA binding (mutagenic/carcinogenic) protein / RNA binding (cell processes disrupted) detoxified to less toxic forms (AFM1 in milk)

Implications in human health...

- AFM1 is the main AFB1 metabolite in milk; ~a carry-over rate of 1-7% has been reported~
- Other ASF (except sun-dried, secondarily contaminated) much less carry-over

 Why focus on AFM1? It retains ~10% of AFB1 effects(health); high milk consumption rates; infant

Aflatoxin M₁ levels in different marketed milk products in Nairobi, Kenya

Johanna Frida Lindahl^{1,2,3} [] • I. N. Kagera^{1,4} • D. Grace¹

Very little aflatoxin is transferred to animal tissue or eggs

Ratios of aflatoxin in feed to that in edible animal tissues and products

Tissue	Aflatoxin	Feed/Tissue ratio (ppb)
Egg	B ₁	2,200 ^ª
Muscle	B ₁	33,800 ^b
Muscle	B ₁	182 ^b
Milk	M ₁	75 ^a
Muscle	B ₁	500 ^b
	Egg Muscle Muscle Milk	EggB1MuscleB1MuscleB1MilkM1

^aAdapted from Park and Liang. 1993; ^bAdapted from Manning et al. 2005

Replicated from Njapau, et al. EAC Policy Paper, 2015

Implications in animal health...

 Variable susceptibilities (species, age, status etc.):<100ppb (calves); <300ppb (cattle); are more tolerant than humans

 Acute toxicity, hepatotoxic, nephrotoxic, carcinogenic, mutagenic, immunosuppression, growth impairment

Regulations and standards

- AF standards (food / feed) are necessary to protect health (human, animals) [..compliance issues]
- Milk use in child nutrition demands stricter
 AFM1 standards (which is also variable, 0.05 ppb
 (EU); 0.5 ppb (FDA); EAC limit is 0.05 ppb)

Many countries allow higher aflatoxin in feed than in food for human consumption

Commodity	For consumption by	Tolerable levels (ppb)			
		EU	USA	Kenya	Ghana
Maize	Humans	4	20	10	15
Groundnut	Humans	4	20	10	20
Maize	Immature animals	10	20	10	15
Maize	Mature animals	20	100	10	15
Maize	Mature feedlot cattle	20	300	10	15
Maize	Dairy cattle	5	20	10	15
Milk	Humans	0.5	0.5	0.5	
Milk	Infants	0.025	0.5	0.5	

Assessment of standards

- Rarely evidence-based
 - Some have zero standards
 - Not related to consumption or liver cancer risk
 - Not related to species vulnerability
 - Very little enforcement in LMIC
- Tend to ratchet-up
- Countries with more aflatoxins tend to have laxer standards

Mitigation strategies

- Several approaches exist (pre- and post harvest) but none, on its own, is adequate
- Mycotoxin binders, applicable at the level of animal feeding, are one such options
- Are mainly clays (aluminosilicates—e.g. hydrated sodium calcium aluminosilicate (HSCAS) or yeast /bacterial cell wall extracts

How mycotoxin binders work in dairy (1)

 Binders are mixed with feed, and when ingested by cows, bind the toxins in the gastro-intestinal tract of the animal.

• Bound toxins are **eliminated** in faeces and their bio-availability is reduced.

• The cow is protected from ill effects and safer milk is produced

How mycotoxin binders work in dairy (2)

- Many different binders are marketed worldwide
- Their effectiveness varies by type and amount used, and some may not be effective in binding aflatoxins
- Effectivess of NovaSil[®] (an HSCAS) has been demonstrated in many studies: 0.5-1kg/ tonne of feed

Which mycotoxin binders are available in Kenya

- ILRI study visits to agrovet and animal feed outlets (Nairobi / Kisumu)
- Focused on binder types sold / used in animal feeds.

Availability and use of mycotoxin binders in selected urban and Peri-urban areas of Kenya

Florence Mutua^{1,2} · Johanna Lindahl^{1,3,4} · Delia Grace¹

Received: 18 September 2018 / Accepted: 6 March 2019 The Author(s) 2019

CGIAR

Our observations (1).....

	Description
Imported as	Feed additives
Types	9 different types
Sources within the country	Agrovets, feed millers
Who buys	Smallholders for home feed formulation; feed millers
Cost	Variable depending on binder type

Our observations (2).....

- Feed millers source raw materials from distant places with high likelihood of spoilage during handling, transportation and storage
- Awareness about mycotoxin binders is low; and their inclusion in feed is not regular
- There are no standards that govern the use of mycotoxin binders in Kenya
- The products include substances that are unknown

Our observations (3)...

Our conclusions (1)

- Relaxing aflatoxin standards in feed for meat animals may be appropriate
- Mycotoxin binders can reduce pass-through of aflatoxin to milk
- Mycotoxin binders are an option to reducing risk of aflatoxin exposure
- Their effectiveness, when used in local smallholder systems (e.g. quantities for feed batches of different contamination levels), need to be investigated
- Findings from such studies can be used to inform development of standards for their use in the country

Conclusions (2)

- Binders are sold in large quantities (~25kg) which may be expensive for smallholders
- Marketing approaches that meet the need of all producers (home feed formulation, purchased feeds etc.) need to be explored
- Binders are not a stand-alone strategy and raising awareness on other mitigation approaches is equally important

better lives through livestock

ilri.org

ILRI thanks all donors and organizations who globally supported its work through their contributions to the CGIAR system

Patron: Professor Peter C Doherty AC, FAA, FRS Animal scientist, Nobel Prize Laureate for Physiology or Medicine–1996

Box 30709, Nairobi 00100 Kenya Phone +254 20 422 3000 Fax +254 20 422 3001 Email ilri-kenya@cgiar.org ilri.org better lives through livestock

Box 5689, Addis Ababa, Ethiopia Phone +251 11 617 2000 Fax +251 11 667 6923 Email ilri-ethiopia@cgiar.org

ILRI is a CGIAR research centre

ILRI has offices in East Africa • South Asia • Southeast and East Asia • Southern Africa • West Africa

This presentation is licensed for use under the Creative Commons Attribution 4.0 International Licence.