Mycotoxin binders
An option for safer milk in Kenya?

Florence Mutua, Johanna Lindahl, Delia Grace

20-24 May 2019
Food safety conference, Kenyatta University, Nairobi, Kenya
Aflatoxins are toxic substances produced by certain species of moulds.

Best-characterised of many mould toxins in food and feed.

Common in Kenya (human outbreaks / much food and most feed above permissible levels).

AFB1: most common / toxic in humans and animals.
• Exposure to cows is through contaminated feed
• Contamination: use of spoilt raw materials, poor feed storage practices, giving food thought unfit for humans to animals
• Exposure to humans is through contaminated milk and milk products
The link between AFB1 in feed and release of AFM1 in milk

Feed
- Feed with AFB1 is given to cows

In the rumen
- AFB1 is broken down in the rumen and metabolites removed (waste)
- A fraction of AFB1 is absorbed / reaches the liver

In the liver
- AFB1 is broken down to a reactive (toxic) form
 - DNA binding (mutagenic/carcinogenic)
 - protein / RNA binding (cell processes disrupted)
- detoxified to less toxic forms (AFM1 in milk)
• AFM1 is the main AFB1 metabolite in milk; \textit{a carry-over rate of 1-7\% has been reported}~

• Other ASF (except sun-dried, secondarily contaminated) much less carry-over

• Why focus on AFM1? It \textit{retains \~10\% of AFB1 effects (health); high milk consumption rates; infant}
Very little aflatoxin is transferred to animal tissue or eggs

Ratios of aflatoxin in feed to that in edible animal tissues and products

<table>
<thead>
<tr>
<th>Animal</th>
<th>Tissue</th>
<th>Aflatoxin</th>
<th>Feed/Tissue ratio (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken (Layer)</td>
<td>Egg</td>
<td>B₁</td>
<td>2,200<sup>a</sup></td>
</tr>
<tr>
<td>Chicken (Broiler)</td>
<td>Muscle</td>
<td>B₁</td>
<td>33,800<sup>b</sup></td>
</tr>
<tr>
<td>Swine (Pigs)</td>
<td>Muscle</td>
<td>B₁</td>
<td>182<sup>b</sup></td>
</tr>
<tr>
<td>Cattle (Dairy)</td>
<td>Milk</td>
<td>M₁</td>
<td>75<sup>a</sup></td>
</tr>
<tr>
<td>Cattle (Beef)</td>
<td>Muscle</td>
<td>B₁</td>
<td>500<sup>b</sup></td>
</tr>
</tbody>
</table>

^aAdapted from Park and Liang. 1993; ^bAdapted from Manning et al. 2005

• Variable susceptibilities (species, age, status etc.): <100ppb (calves); <300ppb (cattle); are more tolerant than humans

• Acute toxicity, hepatotoxic, nephrotoxic, carcinogenic, mutagenic, immuno-suppression, growth impairment
Regulations and standards

• AF standards (food / feed) are necessary to protect health (human, animals) [..compliance issues]

• Milk use in child nutrition demands stricter AFM1 standards (which is also variable, **0.05 ppb (EU); 0.5 ppb (FDA); EAC limit is 0.05 ppb**)

Standards that are “too strict” can impact on food security / trade
Many countries allow higher aflatoxin in feed than in food for human consumption

<table>
<thead>
<tr>
<th>Commodity</th>
<th>For consumption by</th>
<th>EU</th>
<th>USA</th>
<th>Kenya</th>
<th>Ghana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Humans</td>
<td>4</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Groundnut</td>
<td>Humans</td>
<td>4</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Maize</td>
<td>Immature animals</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Maize</td>
<td>Mature animals</td>
<td>20</td>
<td>100</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Maize</td>
<td>Mature feedlot cattle</td>
<td>20</td>
<td>300</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Maize</td>
<td>Dairy cattle</td>
<td>5</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Milk</td>
<td>Humans</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>Infants</td>
<td>0.025</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Assessment of standards

• Rarely evidence-based
 – Some have zero standards
 – Not related to consumption or liver cancer risk
 – Not related to species vulnerability
 – Very little enforcement in LMIC

• Tend to ratchet-up

• Countries with more aflatoxins tend to have laxer standards
Mitigation strategies

• Several approaches exist (pre- and post harvest) but none, on its own, is adequate

• Mycotoxin binders, applicable at the level of animal feeding, are one such options

• Are mainly clays \textit{(aluminosilicates—e.g. hydrated sodium calcium aluminosilicate \textit{(HSCAS)} or yeast /bacterial cell wall extracts}
How mycotoxin binders work in dairy (1)

• Binders are mixed with feed, and when ingested by cows, bind the toxins in the gastro-intestinal tract of the animal.

• Bound toxins are eliminated in faeces and their bio-availability is reduced.

• The cow is protected from ill effects and safer milk is produced
How mycotoxin binders work in dairy (2)

- Many different binders are marketed worldwide

- Their effectiveness varies by type and amount used, and some may not be effective in binding aflatoxins

- Effectiveness of NovaSil® (an HSCAS) has been demonstrated in many studies: 0.5-1kg/tonne of feed
Which mycotoxin binders are available in Kenya

• ILRI study – visits to agrovet and animal feed outlets (Nairobi / Kisumu)

• Focused on binder types sold / used in animal feeds.

Availability and use of mycotoxin binders in selected urban and Peri-urban areas of Kenya

Florence Mutua1,2 · Johanna Lindahl1,3,4 · Delia Grace1

Received: 18 September 2018 / Accepted: 6 March 2019
© The Author(s) 2019
<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported as</td>
<td>Feed additives</td>
</tr>
<tr>
<td>Types</td>
<td>9 different types</td>
</tr>
<tr>
<td>Sources within the country</td>
<td>Agrovets, feed millers</td>
</tr>
<tr>
<td>Who buys</td>
<td>Smallholders for home feed formulation; feed millers</td>
</tr>
<tr>
<td>Cost</td>
<td>Variable depending on binder type</td>
</tr>
</tbody>
</table>
Our observations (2)......

- Feed millers source raw materials from distant places with high likelihood of spoilage during handling, transportation and storage
- Awareness about mycotoxin binders is low; and their inclusion in feed is not regular
- There are no standards that govern the use of mycotoxin binders in Kenya
- The products include substances that are unknown
Our observations (3)...

https://www.biomin.net/en/products/mycofix/
Our conclusions (1)

- Relaxing aflatoxin standards in feed for meat animals may be appropriate
- Mycotoxin binders can reduce pass-through of aflatoxin to milk
- Mycotoxin binders are an option to reducing risk of aflatoxin exposure
- Their effectiveness, when used in local smallholder systems (e.g. quantities for feed batches of different contamination levels), need to be investigated
- Findings from such studies can be used to inform development of standards for their use in the country
Conclusions (2)

- Binders are sold in large quantities (~25kg) which may be expensive for smallholders.
- Marketing approaches that meet the need of all producers *(home feed formulation, purchased feeds etc.)* need to be explored.
- Binders are not a stand-alone strategy and raising awareness on other mitigation approaches is equally important.
better lives through livestock

ILRI.org

ILRI thanks all donors and organizations who globally supported its work through their contributions to the CGIAR system.