Participatory Epidemiology and the Use of Models to Design Control Strategies
Participatory Epidemiology

The use of participatory rural appraisal techniques to collect epidemiological knowledge and intelligence
Participatory Rural Appraisal (PRA)

• Qualitative intelligence gathering process
• Key informants
• Problem solving
 – Multiple methods
 – Multiple perspectives
 – Triangulation
• Best-bet scenarios
Existing Veterinary Knowledge

- Traditional terms and case definitions
- Clinical presentation
- Pathology
- Vectors
- Reservoirs
- Epidemiologic features

Photo: T. Leyland
Applications

- Basic Research
- Active Surveillance
 - Participatory Disease Surveillance (PDS)
- Holistic Needs Assessment
 - Stakeholders, livelihoods and risk
- Impact Assessment
 - Participatory Impact Assessment (PIA)
 - Qualitative and Quantitative
- Institutional change
Participatory Disease Surveillance

PDS

- Active surveillance done by professionals
- Risk-targeted
- High detection rate
 - Information networks
 - Extended time frame
- Sensitive and Specific
 - Validation processes
 - Laboratory support
- Timely
Diagram:

- Kantor Pucuk
- Lapangan
- Rumah
- Area Taman
- Area Pemancingan
- Area Permainan

Legend:

- '\text{Rt 1 Rt 2}': Route
- '\text{AI 16 Aug 06}': Event
- '\text{Kematian spalang ke kampung}': Event
- '\text{Kematian Membantu}': Event

Location:

- \text{Brasier Farm}
- \text{Brasier Farm}

Reported by Wihin
PDS ? \\

Attributes of PE/PDS Programs

- Flexible approach that allows for discovery
- Practitioners are problem-solvers and not enumerators
- Strength of the approach lies in its flexible and qualitative nature
- Orients and complements, but does not replace structured and quantitative methods
- Information from diverse sources and methods
- Analyzed in an iterative process referred to as triangulation
- Integrates biological testing and quantitative methods when appropriate to objectives
PENAPH
Participatory Epidemiology Network for Animal and Public Health

• Nine core partners

• Building Surveillance Capacity

• Good Practice Guidelines

• Certification of Training

• Research, Policy and Advocacy

• Pro-Poor and One Health Focus

• Knowledge Exchange
Appropriate Combinations of Complimentary Techniques

- Participatory methods
- Biological testing
- Analytical methods
Participatory Approaches to the Mathematical Modelling of Rinderpest and CBPP

PARC, PACE and CAPE
Modelling Objective

- Model agents and lineages as they occurred in pastoral areas of East Africa
- Involve stakeholders at all levels in design and address principal questions of pastoralists and policy-makers
 - More useful and creates a sense of ownership
- Inform policy dialogue leading to more effective strategies
 - Targeting interventions and surveillance
Data Collection

- Evidence-based literature review
- Participatory epidemiology – expert opinion
 - Mortality, prevalence, clinical course, spatial and temporal patterns and contact structure, estimation of R_0
 - SSI, proportional piling, matrix scoring, relative prevalence scoring, mapping and event trees
- Serology - Estimation of R_0
“Some of us believe we have rinderpest, but we are not really sure. The disease looks like rinderpest, but it doesn’t kill the animals. It is rinderpest-like or mild rinderpest.”

Somali elder on lineage 2 rinderpest

El Wak, Somalia 1996
Modelling Approach

• State-Transition
• Stochastic
 – Critical Community Size
 – Fade - Out
• Open Population
• @ Risk Software
• Input Parameters – Beta Pert Distributions
• Single population and multipopulation
• Outputs – Probability Distributions
RP Model Structure

\[S \quad E \quad I \quad R \]

- \(b \): birth rate
- \(\beta \): effective contact rate
- \(\gamma \): latency to infectious rate
- \(\mu \): non-specific mortality rate
- \(\sigma \): RP mortality rate
- \(\alpha \): recovery rate

\(S = \) Susceptible, \(E = \) Exposed, \(I = \) Infectious, \(R = \) Resistant
CBPP Model

\[V \]
\[S \]
\[E \]
\[I \]
\[R \]
\[Q \]

\[\mu \]
\[\beta \]
\[\gamma \]
\[\alpha_r \]
\[\kappa \]
\[\psi \]
\[\mu \]

\[\rho \]
\[\omega_v \]
\[\omega_r \]
\[\mu \]
\[\sigma \]
\[\alpha_d \]
\[\mu \]

\[\mu \]
\[\mu \]
\[\mu \]
\[\mu \]

\[\mu \]
\[\mu \]
\[\mu \]
\[\mu \]
\[\mu \]
The Basic Reproductive Number R_0

- Number of secondary cases resulting from one infected animal in susceptible population
- R_0 is a feature of both the strain of infectious agent and the host population
The Importance of R_0

• A measure of the transmission rate
• Can be easily estimated from field data
 – RP - Herd immunity threshold ($1 - 1/R_0$)
 – CBPP - Average of first infection
 – HPAI – Final fraction size
• Effective contact rate, β, can be calculated from R nought.
• Herd immunity targets
Inter-Epidemic Period
Rinderpest in Sudan and Somalia
Temporal distribution of reports on rinderpest compatible events by year and interview area
So What?

- **Prevalence of Infection**
 - 0.1 – 0.2 %
 - Random clinical surveillance to OIE standards (1%) not useful
 - Participatory disease surveillance

- **Critical Community Size**
 - ~200,000 head
 - Target vaccination to high risk populations
 - Large, remote pastoral communities

- **Lineage 2 in Somalia**
 - Modest herd immunity levels could eradicate
Disease Persistence as a Function of the Initial Prevalence of Immunity
Traditional Livestock Exchange
Heterogeneous RP Model for lineage 2 in the Somali Ecosystem

- Four populations
- Multiple species
 - Parameter values can set independently
- Eight year duration
- Cattle and buffaloes
- Buffalo $R_0 \sim 8$
Four Sub-Population Epidemic Curves from a Heterogeneous Population Model for Rinderpest in Cattle Where the Between Population Contact Rate is 1% of the Within Population Contact Rate
Results Over 2 Years

- Mean mortality 0.85% per year
- 34% of iterations ended with a prevalence of infection of 0.1 to 1%
- Maximum prevalence 2%
- Final average immunity 26%
Eight Year Model
\(\eta = 0.005 \) and \(R = 35\% \)

<table>
<thead>
<tr>
<th>Duration</th>
<th>Mean</th>
<th>95(^{th}) %</th>
<th>Max</th>
<th>Persistence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>137</td>
<td>323</td>
<td>603</td>
<td>0</td>
</tr>
<tr>
<td>20,000</td>
<td>227</td>
<td>532</td>
<td>1100</td>
<td>0</td>
</tr>
<tr>
<td>30,000</td>
<td>329</td>
<td>878</td>
<td>1571</td>
<td>0</td>
</tr>
<tr>
<td>40,000</td>
<td>408</td>
<td>948</td>
<td>1915</td>
<td>0</td>
</tr>
<tr>
<td>50,000</td>
<td>477</td>
<td>1418</td>
<td>2633</td>
<td>0</td>
</tr>
<tr>
<td>100,000</td>
<td>1031</td>
<td>2553</td>
<td>2920</td>
<td>3</td>
</tr>
</tbody>
</table>
The Role of Buffaloes

<table>
<thead>
<tr>
<th>Buffaloes % Immune</th>
<th>Cattle - Day of Last Case</th>
<th>Overall – Day of Last Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-15</td>
<td>245</td>
<td>247</td>
</tr>
<tr>
<td>15-25</td>
<td>264</td>
<td>269</td>
</tr>
<tr>
<td>25-35</td>
<td>261</td>
<td>266</td>
</tr>
<tr>
<td>45-55</td>
<td>258</td>
<td>265</td>
</tr>
<tr>
<td>55-65</td>
<td>253</td>
<td>260</td>
</tr>
</tbody>
</table>
Somali Ecosystem

- Buffalo act as an indicator host and do not contribute to persistence in cattle
 - Explosive outbreaks of short duration
- Small isolated communities can maintain Lineage 2 for prolonged periods
- Intensive surveillance and time
Potential of a Combined Vaccination and Treatment Strategy for CBPP

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Baseline 1/α</th>
<th>75% 1/α</th>
<th>50% 1/α</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>75.4</td>
<td>59.6</td>
<td>33.2</td>
</tr>
<tr>
<td>Annual – 5 yr</td>
<td>67.8</td>
<td>43.0</td>
<td>7.6</td>
</tr>
<tr>
<td>Biannual – 2 yr</td>
<td>57.2</td>
<td>-</td>
<td>4.4</td>
</tr>
<tr>
<td>Biannual – 5 yr</td>
<td>35.2</td>
<td>8.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Indications from the CBPP Modelling

• Eradication not possible with existing vaccine without severe movement control

• The potential impact of treatment is at least great as available vaccines
 – Private sector and consumer driven application

• Research on treatment regimes merits the same level of attention and investment as vaccine development.
Conclusion

• Simple, intuitive models serve as good communications tools for underlying concepts
• Bring diverse information together to be tested as for biological coherence
• Choose between strategy options or identify new options
• Involve beneficiaries and decision-makers from the outset.