Feeds, forages and feeding of dairy animals

Welcome

International Livestock Research Institute

V Padmakumar International Livestock Research Institute

Importance of Feeds

A Formula -1 Car Cannot run on bad quality fuel

A Holstein Cow Cannot perform with poor quality feed

Phenotype = Genotype X Environment

Classification of Feeds

Roughages

>18% fibre

Concentration of energy or protein or both

Ruminants and importance of roughages

Feed is digested by enzymes produced by microorganisms in the rumen

Saliva produced while rumination neutralizes acidity in the rumen

Energy rich feeds and their energy content

SI. No	Energy rich feeds	Energy (ME) per kg DM
1	Maize grain	13.5 MJ
2	Sorghum	13.5 MJ
3	Pearl millet	13.4 MJ
4	Wheat	13.1 MJ
5	Barley	12.4 MJ
6	Finger millet	11.8 MJ
9	Wheat bran	11.0 MJ
7	Rice grain	10.1 MJ
10	Rice bran (11-20% fibre)	10.1 MJ
8	Oats	09.9 MJ

Source: Feedipedia, FAO, 2012

Protein rich feeds and their protein content

SI. No	Protein rich feeds	Protein per kg DM
1	Soybean meal	518 g
2	Groundnut meal	440 g
3	Cotton seed meal	410 g
4	Niger meal	338 g
5	Sunflower meal	324 g
6	Rape /Mustard meal	260 g

Source: Feedipedia, FAO, 2012

Difference in the nutritive value of various crop residues

Crop residue type	Energy content (ME MJ/Kg DM)	Protein content (CP g/Kg DM)	What % of residue is digestible (OM digestibility)
Groundnut	8.24	147	59
Pigeon pea	7.88	202	58
Maize	7.20	69	49
Pearl millet	6.70	50	51
Sorghum	7.00	39	48
Rice	7.10	50	50
Wheat	7.10	54	49

Source: ILRI

Difference in nutritive value of different varieties of the same crop (Sorghum)

Cultivar/	Digestibility	Energy ME	Protein	
Hybrids	(%)	(MJ/kg)	(CP%)	
Andhra	50.0 NA		3.69	
Bellary HB	48.9	NA	3.56	
Raichur	51.7	NA	2.88	
Rayalasema	48.6	NA	3.13	
Telangana	46.9	NA	3.06	
Andhra HB	49.3	NA 3.88		
(Blummel and Parthasarathy Rao, 2006)				

Nutritionally balanced feeds have all nutrients in balanced proportion

Total	100%
Mineral mixture	02%
Salt	03%
Urad husk	05%
Wheat bran	07%
Rice polish	03%
Soya seed	15%
Mustard oil cake	07%
Barnyard millet	20%
Barley	08%
Maize	30%

ME 10 MJ; CP 14%

Different brands will have different qualities

Nutrient requirement of dairy animals

Daily requirement (300 kg body weight)

	Energy (ME)	Protein (DCP)
For body maintenance	40 MJ	350g
Per kg milk production (4% fat)	5 MJ	96g

The requirement can be met through green fodder, dry fodder and concentrate /balanced feed

Maximum dry matter an animal can take is 2.5% of its body weight (7.5 kg in the above example)

Use dual purpose crops for better quality residue

Sorghum (BJV44), Pearl millet (ICMV221), Groundnut (ICGV91114, 02266, 00351)

Always chop roughages and mix with concentrates to increase intake and reduce wastage

Impact of chopping (on dairy animals)

10% ↑ intake = **10%** ↑ milk

Chopping + Manger \rightarrow Reduces refusal from 5kg to 1kg (saves 4 kg/animal/day)

Different types of chaff cutters are available

Dry fodder may be chopped and stored in structures like this

Green fodder may be chopped on the day of feeding

Green forage production

1. Forage Sorghum

Irrigated: COFS-29 -7 cuts-210 MT- (75-35--- days) Dryland: CSH24MF -3 cuts-90 MT (first cut 75 days, then 45days)

2. Forage Maize 3. Forage Pearl millet For green - P3546 - 1 cut only (20-25 MT) IC MV 15111, ICMV 05555 For silage - PAC 745 - 1 cut only ICMV 15777

Forage sorghum

Variety: COFS29

Forage production

Forage crops	Seed rate	Fodder yield	No of cuts
Maize (P3546) 65% digestibility	8kg/acre	30 ton/acre	1 cut
Maize (PAC745) Advanta-SILAGE			
Maize (3580) Pioneer-SILAGE	8kg/acre	30 ton/acre	1 cut
Sorghum (CSH24MF) 66% digestibility DRYLAND	4kg/acre	30-40 ton/acre	3 cuts ^{75d-45d-45d}
Sorghum (COFS-29) 46% digestibility IRRIGATED	2kg/acre	85 ton/acre	7 cuts ^{75d-35d-35d-} ^{35d-→}
Brachiaria	2kg/acre	60 ton/acre	3 cuts

If surplus green forage is available, it can be converted into silage for use in the lean period

-Black gram Khariff (10Q) -Sorghum Rabi @20 Q grain - Rs -Sorghum Rabi @ 3 ton CR - Rs -Total

Silage

-Total yield (irrigated) -Revenue @Rs2/kg -If sold as silage @Rs 3

84 tons/- ore Rs 1.68 lakh Rs 2.52 lakh

Sustainable feed intensification

+5% dig→1 lit/day

* Productivity can be enhanced by managing feed 'quality' (pre-requisite: responsive breed)

better lives through livestock ilri.org

Patron: Professor Peter C Doherty AC, FAA, FRS

Animal scientist, Nobel Prize Laureate for Physiology or Medicine–1996

Box 30709, Nairobi 00100 Kenya Phone +254 20 422 3000 Fax +254 20 422 3001 Email ilri-kenya@cgiar.org

ilri.org better lives through livestock

Box 5689, Addis Ababa, Ethiopia Phone +251 11 617 2000 Fax +251 11 667 6923 Email ilri-ethiopia@cgiar.org

ILRI is a member of the CGIAR Consortium

ILRI has offices in East Africa • South Asia • Southeast and East Asia • Southern Africa • West Africa

This presentation is licensed for use under the Creative Commons Attribution 4.0 International Licence.