Epidemiological research on brucellosis in India: knowledge generated and gaps

Ram Pratim Deka , Johanna Lindahl, Delia Grace

Workshop on One Health approach for brucellosis control in India NASC complex, New Delhi, India 26 October 2017

Overview

- Prevalence studies
- Risk factors
- Disease economics
- Human brucellosis
- Knowledge attitude and practices
- Control options
- Conclusion

Prevalence of Brucella infection in India

State	Prevalence	Author
Throughout the country	2%	Isloor et al. 1998
Throughout the country	4%	Renukaradhya et al. 2002
Punjab	21%	UI-Islam et al. 2013
Assam	13%	Gogoi et al. 2017
Gujarat	12%	M. D. Patel et al. 2014
Bihar	12%	Pandian et al. 2015
Andhra Pradesh	12%	Trangadia et al. 2012
Sample collected from suspected animals from different parts of the country	20-60%	Dalvi et al. 2007; Aulakh et al. 2008; S.P et al. 2011; Jagapur et al. 2013; Ul- Islam et al. 2013; Neha et al. 2014; Patel et al. 2014; Shome et al. 2015; Pathak et al. 2016
ILRI-ICAR study in Bihar	0.5%	
ILRI-ICAR study in Assam		

CGIAR

Prevalence

• Only 4 outbreaks of brucellosis in cattle and buffalo reported with 46 cases in 2016 (Annual Report, DAHDF, 2017)

Gap/limitations

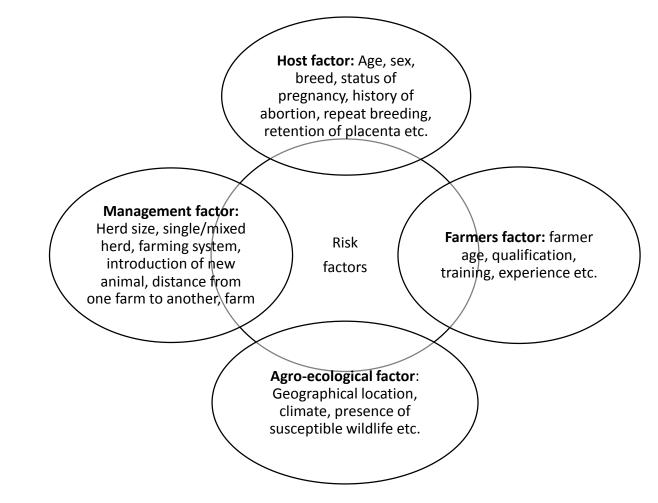
- Many studies in India have not clearly mentioned the sampling frame
- Large scale studies on pure random sampling is required to report true prevalence
- Sero-positivity does not necessarily mean animals have current or active infection; more confirmatory studies are required
- Apart from probabilistic method, appropriate sample size, use of appropriate diagnostic test and sound laboratory methods are essential

Distribution of prevalence studies (tentative)

High: Punjab, UP, Karnataka, Gujarat, Maharashtra,....

Medium: Tamilnadu, Karnataka, Assam, MP, Haryana, ...

Low: Bihar, Odisha, West Bengal, Jharkhand, Chhattisgarh, north eastern states (except Assam), Himalayan states,


Gap/limitation:

Priority may be given to the areas where there is lesser studies

Risk factors

Risk factors may be classified in 4 groups

Risk factors

Risk factors	Host factor	
Species	Cattle are more likely to be sero-positive than buffalo	(Kumar et al. 2016)
Age of animal	Older animals are more likely to be sero-positive than calves	(Mugizi et al. 2015)
Sex	Female dairy animals are more likely to be sero-positive than male	(Ul-Islam et al. 2013)
Breed	Purebred animals are more likely to be sero-positive than indigenous	(Shomeet al. 2014)
History of abortion	History of abortion is positively associated with sero-positivity	(Lindahl et al. 2014)
History of repeat breeding	History of repeat breeding is positively associated with sero- positivity	(Dalviet al. 2007)
History of retention of placenta	History of retention of placenta is positively associated with sero- positivity	(Aulakh et al. 2008)
History of metritis/ endometritis	History of metritis/ endometritis is positively associated with sero- positivity	(Patel et al. 2014)
Farming system	Organized farms are positively associated with sero-positivity, compared to unorganised	(Kumar et al. 2016)
Mixed herd	Cattle being housed with goat and/or sheep are more likely to be sero-positive	(Calistri et al. 2013)
Herd size	Larger herds are positively associated with sero-positivity, compared to smaller herds	(Mugizi et al. 2015)
Distance between herds/ density of herds	Herds located close to one another are positively associated with sero-positivity than located away from each other	(Soomro et al. 2014)
Breeding method	Breeding by artificial insemination is positively co-related with sero-positivity, compared to natural mating	(Shome et al. 2014)

Risk factors

Gap/limitations

- Contradictory risk factors are also reported by some studies
- Identification of risk factors requires adequate sample size and ability to accurately measure true disease status.
- Confounding factors may mask the actual association or falsely demonstrate an apparent association between the treatment and outcome.
- Establishing actual cause effect relationship is difficult without confirmatory diagnosis

Disease economics

- Terminologies like economic impact, loss, and cost of brucellosis are used by some researchers loosely and interchangeably
- Reduced milk yield (10%) cause an economic loss of INR 2,774 per cow and INR 3,015 per buffalo cow (Panchasara 2012).
- Average costs of treatment following abortion, repeat breeding and retention of placenta of dairy cattle were estimated at INR 250, INR 320 & INR 506 (Panchasara 2012).
- Brucellosis cause 20-25% loss of milk production (Bano & Ahmad Lone 2015)
- Abortion caused a loss of INR 5,908 per animal (Dhand et al. 2005).

Disease economics (cont...)

- Brucellosis caused a median loss of USD 3.4 (INR 228) billion to the livestock sector of which 96% was in the dairy sector (Singh et al. 2015)
- Brucellosis caused an economic loss of USD 58.8 million per year to the dairy industry (Kollannur et al. 2007)

Disease economics (Cont...)

Preliminary findings of ongoing ILRI-ICAR research project

ltem	Average loss
	Amount in INR
Milk yield loss	16047
Treatment loss	2975
Distress selling loss	19,375
Loss of a calf (average of male & female calf price)	3750
Loss caused by repeat breeding	515
Death of cow/heifer	0

Disease economics (cont....)

Gap

- There is paucity of comprehensive economic studies on impact of brucellosis in India
- No study has been observed on the economics of brucellosis control programme in India
- Different studies use different parameters and approaches for working out the economic impact, cost, and loss, therefore the estimates varies widely
- Difficult to extrapolate the prevalence data as sero-prevalence does not mean occurrence of the disease or loss.
- More systematic economics studies and approach are required to assess the economic impact, loss and cost of brucellosis

Human brucellosis

- Brucellosis has been reported as a major cause of pyrexia of unknown origin (PUO).
- In India, the disease is reported sporadically but the true incidence is estimated to be much higher than reported because of misdiagnosis and under reporting (Boral et al. 2009).
- Sen et al. (2002) found 6.8% sero-positive cases among the patients with PUO.
- Pathak et.al (2014) also found 6% sero-prevalence among patients with PUO.

Human brucellosis (cont...)

- Higher sero-positivity rate (27 %) was recorded in Ludhiana in a purposively sampled population (Yohannes and Sing 2011).
- 0.8% prevalence reported among a larger group of PUO patients (Kadri, 2000)
- History of ingestion of raw milk (87%), occupational contact with animals (81%) & handling of infected materials (62%) were reported as the major risk factors (Kochar et al. 2007)
- Among the occupational groups, veterinarians were the most affected followed by farm workers (Yohannes et al. 2011)

Gap:

 No study has been observed in randomly selected general population

Knowledge, attitude and practices (KAP)

• ILRI-ICAR study on KAP in Bihar, India suggest the following:

Particulars	Percentage households
Heard about brucellosis	6%
Knew something about brucellosis	2%
Knowledge about transmitting brucellosis from animal to human	2%
Heard about Q-fever	0
Heard about leptospirosis	0
Wear gloves in handling aborted materials	0
Threw away aborted materials	53%
Take bath after handling aborted materials	48%
Boil milk before consumption	98%
Consume raw milk (mainly offered to children, adults take boiled milk)	15%

Gap: Dearth of studies on KAP in India

26

GIAR

Control

- *Brucella abortus* S19 is the most widely used vaccine in the world
- *B. abortus* RB51 vaccine has proved safe and effective against bovine brucellosis & exhibits negligible interference with diagnostic serology
- Both *Brucella* S19 and RB51 vaccines are recommended by OIE
- A study in UP found that periodic testing of all animals and segregation of sero-positive animals reduces seropositive from 12.4% to 1.2% (Kollannur et al. 2007).
- Another study in Punjab found, *B. abortus* S19 vaccine reduced the rate of abortion from 8% to 1% in cows and from 3% to 1% in buffalo (Gill et al. n.d.)

Contol (cont...)

- Safe and effective vaccines against human, pig and wildlife brucellosis are not generally available (Godfroid et al. 2010)
 Gap:
- Needs more action research projects on brucellosis control in field condition keeping in view the prevailing challenges in India
- More effort is required to produce safer and effective vaccines (e.g. effective in all age groups, thermostable, not interrupting in diagnostic serology etc.)
- Technological intervention may not be good enough without building knowledge & capacity of stakeholders

Conclusion

- Plenty of epidemiological studies have been conducted in India on brucellosis, many are repetitive in nature.
- Prevalence data has important bearing on milk trade and investment on control programme, so assessing true prevalence is critical
- In some part of India, epidemiological studies are relatively fewer; there is need to prioritize
- Needs well accepted, economically acceptable model for assessing disease economics.
- Customized knowledge products should be designed & implemented for the target groups
- More research may be initiated on developing a more effective vaccine for the Indian context

Thank You

better lives through livestock

ilri.org

ILRI thanks all donors and organizations who globally supported its work through their contributions to the CGIAR system

Patron: Professor Peter C Doherty AC, FAA, FRS

Animal scientist, Nobel Prize Laureate for Physiology or Medicine-1996

Box 30709, Nairobi 00100 Kenya Phone +254 20 422 3000 Fax +254 20 422 3001 Email ilri-kenya@cgiar.org ilri.org better lives through livestock

Box 5689, Addis Ababa, Ethiopia Phone +251 11 617 2000 Fax +251 11 667 6923 Email ilri-ethiopia@cgiar.org

ILRI is a CGIAR research centre

ILRI has offices in East Africa • South Asia • Southeast and East Asia • Southern Africa • West Africa

This presentation is licensed for use under the Creative Commons Attribution 4.0 International Licence.