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Abstract  

Substantial evidence now exists suggesting that agricultural yields will have to increase 

significantly in order to meet food needs during the 21st century. One such way of increasing 

yields is to develop high yielding cultivars through crop improvement. This Working Paper 

summarises the results of a CCAFS project named Target Population of Environments (TPE). 

The project aimed at providing actionable information to crop breeders and, therefore, inform 

breeding decisions. We developed and applied a methodology for classifying crop growing 

environments, determining stress profiles and, finally, assessing the potential benefit of 

improved breeding practice. We present two contrasting case studies, one for upland rice in 

central Brazil and another for common beans in Goiás (Brazil). Analyses are also currently 

being conducted for lowland irrigated rice in Colombia, and plans to conduct research on rice 

in sub-Saharan Africa. Results of the TPE project are publicly available in the form of 

dynamic maps and graphs at http://www.ccafs-tpe.org. 

 

Keywords 

Climate change adaptation; breeding; crop modelling; environmental characterisation. 

 

 

 

 

 

 

 

 

 



 3 

Acronyms 

 

CCAFS CGIAR Research Program on Climate Change, Agriculture and Food 

Security 

CIAT  Centro Internacional de Agricultura Tropical 

CSM  Cropping System Model 

DSSAT  Decision Support System for Agrotechnology Transfer 

EG  Environment Group 

Embrapa Empresa Brasileira de Pesquisa Agropecuaria 

FE  Favourable Environment 

GO  Goiás 

HFE  Highly Favourable Environment 

LAI  Leaf Area Index 

LFE  Least Favourable Environment 

MAE  Mean Absolute Error 

R  Pearson product-moment correlation coefficient 

RMSE  Root Mean Squared Error 

RRMSE Relative RMSE 

TPE  Target Population of Environments 

UR  Upland Rice 

WSPD  Water stress index in the CSM-CROPGRO-BEAN model 

 



 

 4 

About the authors  

 

Julian Ramirez-Villegas works as a researcher on climate impacts at the School of Earth and 

Environment, University of Leeds, UK, and is affiliated with the Climate-Smart Agriculture 

Flagship of the CGIAR Research Program on Climate Change, Agriculture and Food Security 

(CCAFS), and the International Center for Tropical Agriculture (CIAT). Julian can be 

contacted by email at: j.r.villegas@cgiar.org or J.Ramirez-Villegas@leeds.ac.uk. 

 

Alexandre B. Heinemann works as a researcher in ecophysiology at the Rice and Beans unit, 

at the Empresa Brasileira de Pesquisa Agropecuaria (Embrapa), Brazil, where he leads 

research on physiology of rice and common beans.!Alexandre can be contacted by email at: 

alexandre.heinemann@embrapa.br. 

 



 5 

Acknowledgements  

We wish to thank Camilo Barrios and David Arango from the International Center for 

Tropical Agriculture (CIAT), and Noah Matovu (CIAT consultant) for their contributions to 

the development of the project presented here. We also thank Marie Quinney for her editorial 

work. This project was fully funded by CCAFS. 

 



 

 6 

Contents 

Introduction .................................................................................................................... 8 
Methodology .................................................................................................................. 9 
Case Studies ................................................................................................................. 13 
    Upland rice in central Brazil .................................................................................... 13 
    Common beans in Goiás, Brazil .............................................................................. 17 
A web platform to visualise and integrate results ........................................................ 21 
Conclusions and future work ....................................................................................... 23 
References .................................................................................................................... 24 

  

 
 
 
 

 

 

  



 7 

Introduction 

Agriculture faces and will continue to face multiple challenges. Most notably, the need to 

meet food demand for a rapidly growing and urbanising population under increasingly 

variable and warmer climates (Wheeler and von Braun 2013; Tilman and Clark 2014). 

Substantial evidence now exists suggesting that agricultural yields will have to increase 

significantly in order to meet food needs during the 21st century (Ray et al. 2013; van Oort et 

al. 2015). One such way of increasing yields is to develop high yielding cultivars through 

crop improvement (Chapman et al. 2012; Dingkuhn et al. 2015). Additionally, the 

development of novel, climate-adapted varieties that ably tolerate stresses will be key in order 

to respond to regional climatic changes (Asseng et al. 2014; Ramirez-Villegas et al. 2015), 

particularly if no mitigation policies are enforced (Müller et al. 2015).  

The development of high yielding and climate-adapted crop varieties, however, requires an 

understanding of how crops respond to spatio-temporal variations in soil, climate and 

management, as well as an assessment of the main factors limiting yields. This is because 

genotype-by-environment interactions sometimes prevent plant breeding progress for broad 

adaptation and/or for adaptation to specific conditions within a region (Chenu et al. 2011). 

Therefore, understanding yield constraints and their spatio-temporal variations will ultimately 

lead to improved priority setting and more rapid progress in breeding programs.  

This Working Paper summarises the results of a CCAFS project named Target Population of 

Environments (TPE). The project aimed at providing actionable information to crop breeders 

and, therefore, inform breeding decisions. Our method focuses on classifying growing 

environments and stress patterns, using a combination of controlled field trials and crop 

simulation models driven by observed soil, climate and management data (Sect. 2). We also 

present the application of the method on two crops in Brazil (Sect. 3), as well as a web-based 

tool for visualisation of results (Sect. 4). We conclude by setting out potential avenues for 

future research (Sect. 5). 
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Methodology  

As stated earlier, our method combines field experiments, observations of environment 

(climate, soils) and management, and crop simulation models to develop a classification of 

environments and stress patterns. These classifications are then quantitatively assessed against 

the current breeding pipelines for the regions under study in order to assess the potential 

impact of stress-tailored breeding strategies. Fig. 1 presents an overview of the process. The 

methodology consists of seven steps, as follows: 

1.! The first step is to define the study region and crop under study and the crop model to 

be used, and to collate experimental data for model calibration and evaluation. 

Because breeding is a highly crop- and region-specific discipline, the area and crop 

under study are straightforward choices in most cases. The crop model, however, 

needs to be defined with care. Particular attention has to be paid to whether a well-

established model has already been calibrated and evaluated for the study region [e.g. 

Lobell et al. (2015)], or whether the model of choice is suitable for the conditions in 

the study region. The selected crop model needs to be able to simulate processes that 

are relevant to the region. In some cases, it may be desirable to use more than one 

crop model in order to assess crop model uncertainty (Asseng et al. 2013). Gathering 

experimental data is also key to the success of this approach. Trial data should include 

relevant varieties in the region, should ideally be multi-location and/or multi-year, 

and should include both potential yield and stress-induced yield trials. Field data 

should be as detailed as possible, including time-varying measures of multiple plant 

attributes (e.g. leaf area index, organ-specific biomass), as well as weather, soils and 

management inputs. 

2.! Once the crop model has been defined and the experimental data has been collected 

the next step is to calibrate the crop model using a set of field experiments. To this 

aim, the experimental data should first be thoroughly checked for possible errors and 

then split into a `calibration` set and an `evaluation` set. The objective of model 

calibration is to adjust influential model parameters within their reasonable ranges so 

that modelling results are comparable to observed data (Wallach et al. 2014). Multiple 

methods exist to derive model parameter values for crop models (Angulo et al. 2013; 
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Wallach et al. 2014; Alderman et al. 2015), and some of these are already built-in and 

well-tested for certain crop models. However, regardless of the method, it is key to 

ensure that the parameter values fall within plausible ranges and represent the 

morpho-physiological attributes of the varieties being parameterised.  

 

Figure 1 Overview of the environmental characterisation methodology. Circled numbers indicate 

steps, grey boxes indicate inputs to the method, and dark yellow boxes indicate outputs. 
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3.! Simulations are then run per crop variety and assessed against the evaluation data. 

The primary aim of this step is to ensure that the model is capable of reproducing an 

independent set of observations. The result should be a parameter set (per variety) 

that can later be used to run spatially-explicit and time-varying simulations for the 

study region. Evaluation metrics often used in crop modelling to measure the distance 

between measured and simulated values include the Root Mean Square Error 

(RMSE), the RMSE relative to the mean or the standard deviation (RRMSE), the mean 

absolute error (MAE), the correlation coefficient (R), and the Wilmott d-statistic 

(Willmott et al. 2012). Model performance can also be assessed both numerically and 

visually through the Taylor diagram (Taylor 2001).  

4.! The fourth step in this process is to run spatially explicit crop model simulations for 

the study area (across k sites), for a representative period of n years and for a number 

of management scenarios (m). For this, either high-resolution gridded daily weather 

or daily weather station records of a representative number of weather stations are 

needed. Weather variables needed for crop simulation are: minimum and maximum 

temperatures, downwards shortwave solar radiation, and precipitation. Soil profile 

data (i.e. lower, upper and saturation moisture contents) for all locations where the 

crop model is to be run are also needed. Management scenarios are constructed as a 

combination of planting dates, planting densities, and/or fertiliser application regimes 

(Heinemann et al. 2015a; Lobell et al. 2015). Model runs are finally performed for 

each of the site*year*management situations. 

5.! Once simulations are completed, environmental groups (EGs) need to be determined. 

To this aim, statistical clustering is performed on the simulated crop yields of all the 

site*year*management scenarios. Clustering by yield helps separate situations of low 

and high yields, without necessarily assessing their causes –which will be assessed in 

step 6. Various clustering methods exist, including the hierarchical clustering used by 

Heinemann et al. (2015a) in Brazil, the k-means clustering used by Harrison et al. 

(2014), or more complex neural-network-based methods (Reymondin et al. 2012). 

Clustering efficiency and stability indicators are then used to determine the optimal 

number of EGs for the study region. However, it is also important to take into account 

the expert knowledge of regional breeders and/or agronomists to define the number of 
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EGs. Using the results of this first clustering, maps of EG distribution and frequency 

can be produced.  

6.! With an understanding of which site*year*management combinations belong to the 

different EGs, the next step is to determine the main stresses for each group, i.e. stress 

profiles. Because this step requires statistical clustering of stress-related modelled 

variables (i.e. stress index), an a-priori idea of stresses in the region should inform 

this step. For example, the ratio of actual to potential evapotranspiration is usually a 

good indicator of water stress (Heinemann et al. 2015a). Similarly, the fractional 

reduction in grain-set from high temperature can help differentiate heat stressed and 

non-heat stressed situations (Lobell et al. 2015). For nitrogen or phosphorous stress, 

the ratio of uptake-to-required nutrients could be used. Clustering is performed 

individually per EG using the seasonal variation of the relevant modelled stress index. 

As in Step 5, a number of clustering algorithms can be used to perform this 

classification. 

7.! The final step is to use the environmental groupings and the stress profiles to 

calculate how much additional area in the study region can be covered if the breeding 

strategy is extended to include stresses that are not currently considered. This step is 

expected to make a clear case for, for example, the inclusion of additional sites for 

germplasm selection under specific conditions.  
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Case Studies 

Having described our methodology, we now present two case studies: one for upland rice in 

central Brazil (states of Goiás, Tocantins, Mato Grosso and Rondônia) and another for 

common beans in the state of Goiás in Brazil. We provide a summary of key results and 

conclusions. For more detailed descriptions the reader is referred to Heinemann et al. (2015a) 

for upland rice and Heinemann et al. (2015b) for common beans. 

 

Upland rice in central Brazil 

Upland rice (UR) is a key part of the central and northern Brazilian diet, and is the main 

source of income for many smallholders in the savannah region. The current UR growing area 

is, however, half of what it was 10 years ago. To an unknown but likely significant extent, 

these reductions in UR growing area in central Brazil are a product of the UR breeding 

program strategy, whereby direct grain yield selection is performed primarily under optimal 

growing conditions. Recent evidence, however, suggests that drought stress conditions are 

prevalent across central Brazil (Heinemann and Sentelhas 2011), and hence limit the 

efficiency of the UR breeding program. Here, we hypothesise that the impact of the UR 

breeding program can be enhanced by better accounting for drought conditions across the UR 

growing region. 

The analysis region comprises the states of Goiás, Tocantins, Mato Grosso and Rondônia 

(Fig. 2). We gathered data from 17 different experiments conducted at the Embrapa Rice & 

Beans experimental station in Santo Antonio de Goiás (GO). Six of these experiments were 

used for calibrating phenology and growth parameters, and the remaining 11 were used for 

model evaluation. Model calibration experiments included measurements of dates of 

emergence, flowering, and physiological maturity, as well as of leaf area index and stem, leaf 

and panicle biomass. Evaluation experiments included only dates of flowering and maturity, 

and crop yield. We used the crop model Oryza2000 as it has proven to simulate rice yields 

accurately across a wide range of environmental and management conditions (Bouman and 

van Laar 2006; Li et al. 2013). Calibration of the model was performed using the built-in 

genetic algorithm of the Oryza2000 model for the cultivar BRS Primavera –a representative 

check cultivar for the four states under analysis. For model evaluation, we computed the 
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RMSE and the Mean Absolute Error (MAE). Model calibration and evaluation indicated that 

the model ably reproduced growth dynamics and crop yield. RMSE (MAE) values for 

flowering and maturity dates in the evaluation dataset were 3.56 (2.56) days and 4.47 (4.33) 

days, respectively, for a ~90-day growing cycle. RMSE and MAE values for yield were also 

low (349 and 249 kg ha-1, respectively), and the model also adequately captured the 

interannual variation in crop yields. 

 

Figure 2 Environmental groups for upland rice in central Brazil. The map shows the the most 

frequent EG. Blue corresponds to the highly favourable environment (HFE); yellow corresponds 

to the favourable environment (FE); and beige corresponds to the least favourable environment 

(LFE). 
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Spatially-explicit simulations were conducted for 51 weather station zones (defined using 

Thiessen polygons), 7 soil types (defined based on texture), 8 sowing dates (defined at 10-day 

intervals from 1st Nov. to 10th Jan.), and 33 years (1980-2012), for cv. BRS Primavera. We 

then classified the simulated yields using a hierarchical clustering method (Ward 1963), and 

determined the optimal number of groups using the inertia gain, the within-groups sum of 

squares, and expert knowledge. Results indicate the existence of three EGs: a highly 

favourable environment (HFE), a favourable environment (FE), and a least favourable 

environment (LFE) (Fig. 2). The HFE showed mean yields of 3,168 kg ha-1, and represented 

19 % of the production region; the FE presented a mean yield of 2,610 kg ha-1 and represented 

44 % of the simulated scenarios; and, finally, the LFE showed the lowest yield (1,661 kg ha-1) 

and represented 37 % of the seasons. The occurrence of HFE was associated with clay soils 

and early planting dates, whereas the occurrence of LFE was often associated with sandy 

loam and sandy soils and late planting dates. 

Based on our knowledge of the study region, we defined the stress index as the ratio between 

actual to potential evapotranspiration. In the Oryza2000 model, this factor is used to reduce 

photosynthesis, and hence is a suitable indicator of drought effects on biomass accumulation 

and growth dynamics. For each EG we clustered weekly variations in the stress index using 

the same hierarchical clustering method as that used for determining the EGs. Results indicate 

the existence of 2 stress patterns for HFE, and 3 stress patterns for both FE and LFE (Fig. 3). 

For HFE, the two stress patterns correspond to stress-free conditions (69 % occurrence in this 

EG, profile 1 in Fig. 3) and to terminal drought stress (31 % occurrence in this EG, profile 2 

in Fig. 3). For FE, the stress profiles are: [1] reproductive stress (41 % occurrence in this EG); 

[2] terminal drought stress (40 % occurrence); and [3] severe reproductive stress (19 % 

occurrence). For LFE, the three stress patterns are much more mixed than for the FE and HFE 

due to substantial variability as a result of severe drought during almost the entire crop cycle. 

In this EG, stress profiles are: [1] reproductive (68 %); [2] terminal (14 %); and [3] 

reproductive-to-grain-filling (17 %). 
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Figure 3 Drought stress patterns for each upland rice EG. HFE: highly favourable environment; 

FE: favourable environment; and LFE: least favourable environment. Stress types for each 

environment with numbers representing the frequency of occurrence of stress patterns in EGs. The 

first and second vertical dashed lines show the average panicle initiation and flowering dates for 

each environment group, respectively. 

 

The current strategy of the Brazilian UR breeding program is to perform direct selection for 

grain yield in the best environments. Our results indicate that the strategy of the breeding 

program should be adjusted as follows: 

•! In the best environment (HFE, 19 % occurrence), the current strategy is likely to perform 

well. In Santo Antônio de Goiás (GO) (red flagged point in Fig. 2), where early 

generation yield testing is performed, HFE shows 62.5% probability of occurrence, 

suggesting that this site is suitable for selecting for potential yield. Sowing should be 

undertaken at the beginning of November and in clay soil. Irrigation, however, may be 

needed in order to avoid stress in certain years.  

•! In the favourable environment (FE, 44 % occurrence), two distinct stress patterns occur 

roughly four in every five cropping seasons. One option is to perform selection for wide 

adaptation to drought, as suggested by Chenu et al. (2011). Another option is to weight 

the performance of genotypes according to the representativeness of the growing 

environments where they are tested (i.e. weighted selection). 
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•! For the least favourable environment (LFE, 37 % occurrence), we suggest selection to be 

specific to high yield under reproductive stress, which is the most likely stress profile in 

this environment (68 %).  

Based on our analyses, we estimate that an additional 42% of coverage (from total) would be 

possible if breeders were to broaden their selection strategy to select for reproductive stress 

(which corresponds to 41 and 68% within LFE and FE, respectively). This amounts to a four-

fold increase in the coverage of the UR breeding program, which we argue is likely to be cost 

effective. Realising this potential, however, will ultimately depend on the existence and 

efficiency of seed systems, and on the adoption barriers to new germplasm. 

 

Comon beans in Goiás, Brazil 

Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.) (FAO 

2014). In the state of Goiás (a large bean producer in Brazil), crop production occurs in three 

growing seasons or `safras`. A first season (wet season), for which sowing occurs between 1st 

Nov. and 31st Dec.; a second season (dry season), for which sowing occurs between 1st Jan. 

and 28th Feb.; and a third season (winter season) for which sowing occurs from 1st May to 30th 

Jun. Both the dry and wet seasons are rainfed, whereas the winter season is irrigated. The 

difference in planting times and yields between seasons implies the occurrence of different 

types of stress across time and space. Major limitations in the wet and dry seasons are low soil 

fertility, drought, nitrogen deficiency due to poor nitrogen fixation, as well as several 

bacterial, fungal and viral diseases (Beebe et al. 2011; Souza et al. 2013; Araújo et al. 2015). 

The Brazilian common bean breeding program, led by Embrapa’s Rice and Beans unit, 

focuses on developing germplasm with broad adaptation for all Brazilian bean production 

regions. In their scheme, the early generation screening yield trials (nursery) are always 

performed in the winter season under well-watered conditions (i.e. fully irrigated). Although 

this is a cost-effective strategy, the main caveat is that it increases the risk of developing 

genotypes that do not respond well under stress. We analyse drought stress patterns in the 

rainfed (wet and dry) seasons in order to determine the extent to which the current strategy of 

the common bean breeding program needs to be adjusted to include drought stress conditions. 
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As stated above, we concentrate on the state of Goiás (Fig. 4), for both wet and dry seasons. 

We assembled a large database of field experiments (41 in total) for two cultivars: cv. Pérola 

(31 experiments) and BRS Radiante (25 experiments). Measured variables varied across 

experiments but in general included sowing, flowering, first pod, first seed, and physiological 

maturity dates, leaf, stem and pod biomass, leaf area index and yield. Most experiments were 

conducted in Santo Antonio de Goiás (GO), but 14 of them were multi-site trials conducted in 

different locations. Five out of the 41 experiments were used for model calibration, whereas 

the remaining 36 experiments were used for model evaluation. We used the widely tested crop 

model CSM-CROPGRO-DRYBEAN (Boote et al. 1998) from the Decision Support System 

for Agrotechnology Transfer version 4.5 (Jones et al. 2003). Model calibration was performed 

following Alderman et al. (2015), who adopt a Markov Chain Monte Carlo approach and the 

Metropolis Hastings algorithm for parameter estimation. The CSM-CROPGRO-DRYBEAN 

model showed acceptable performance for both cultivars in simulating end of season yield 

and phenology, with most simulated quantities within a 95 % confidence interval derived 

from observations. The model also captured well the seasonal variations in dry matter 

dynamics, leaf area index and soil moisture under moderate drought, but was unable to 

adequately simulate severe drought conditions. To our knowledge, however, severe drought 

only rarely occurs in the wet and dry seasons. Multi-environment simulations also showed 

good agreement with observations, with RMSE (MAE) values for Radiante and Pérola being 

404 (328) and 322 (319) kg ha-1, respectively. 

Simulations were conducted for the period 1980-2013 for 26 weather station regions (defined 

using Thiessen polygons), for 3 soil types (oxisol, ultisol, inceptisol), and for a total of 13 

sowing dates (defined at 10-d intervals from 1st Nov to 30th Dec for the wet season, and from 

10th Jan to 28th Feb for the dry season) for the two cultivars (Pérola and BRS Radiante). 

Clustering of yields and determination of the number of EGs was undertaken as it was for 

upland rice. Fig. 4 shows the EGs for both seasons.  

For the wet season, results indicate the existence of two markedly different EGs: a highly 

favourable environment (HFEw, 44 % occurrence) and a favourable environment (FEw, 56 % 

occurrence) (Fig. 4, top maps). The HFEw has an average simulated yield of 3,655 kg ha-1, 

whereas the FEw has an average simulated yield of 2,870 kg ha-1. For the dry season (Fig. 4, 
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bottom maps), we also find two EGs: highly favourable environment (HFEd, 58 % 

occurrence) and favourable environment (FEd, 42 % occurrence). Yields in HFEd were 

 

 

Figure 4 Environmental groups for the dry bean wet (top maps) and dry (bottom maps) seasons in 

Goiás, Brazil. The maps on the left show the most frequent EG for early planting (i.e. during Nov. 

for the wet season and during Jan. for the dry season), and the maps on the right show the most 

frequent EG for late planting (i.e. during Dec. for the wet season and Feb. for the dry season).  

roughly twice as large as in FEd (i.e. 2,781 vs. 1,356 kg ha-1). For both seasons, the 

occurrence of the different EGs was strongly associated to the sowing date, with early sowing 

dates showing a high likelihood of HFEw and HFEd, and late sowing dates showing a high 

likelihood of FEw and FEd. 

The five-day mean values of the water stress index (WSPD) – a photosynthesis reduction 

factor, derived by calculating the ratio of actual to potential transpiration, were used to 
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determine drought stress profiles for each environment and season. Results are shown in Fig. 

5.  

 

 

Figure 5 Drought stress patterns for favourable environment (FE) and highly favourable 

environment (HFE) for wet (top) and dry (bottom) common beans growing seasons. Legend 

indicates stress types for each environment and numbers within the panels represent the frequency 

of occurrence of stress patterns in each EG. Grey bands represent the 95% confidence interval 

around the average stress patterns. Stress Profile Legend: 1 – drought free profile; 2 –reproductive 

terminal drought stress (A, B, C and D); 1 –terminal drought stress (E, F); 1 – stress-free (G; H); 

and 2 –reproductive-terminal drought stress (E, F, G, H). 

For the wet season, two stress profiles exist for the highly favourable environment (HFEw). 

Namely, stress-free (pattern 1 in top panel of Fig. 5, 86-88 % occurrence depending on 
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cultivar) and terminal-reproductive stress (pattern 2 in top panel of Fig. 5, 12-14 % depending 

on cultivar). For FEw, stress-free conditions (pattern 1) are also the most frequent with 80 % 

occurrence for both cultivars, whereas terminal-reproductive drought stress (pattern 2) occurs 

only 20 % of the time, though it causes a yield reduction of 68-74 % in relation to stress-free 

conditions. For the dry season, HFEd consists of two stress profiles: [1] stress-free conditions, 

which occur 79-80 % of the time depending on the cultivar; and [2] terminal-reproductive 

drought stress, which occurs 20-21 % of the time depending on the cultivar. For FEd, we find 

that terminal drought stress (pattern 1) represents 56-62 % of conditions, whereas terminal-

reproductive drought stress represents 44-58 % of conditions. 

Our analyses suggest that in the rainfed seasons, drought-stress conditions occur about 25 % 

of the time for both cultivars Pérola and BRS Radiante. For the common bean breeding 

program, a 25 % frequency of occurrence of moderate drought means that germplasm 

selection under drought conditions may not be warranted. However, we note that, particularly 

in the dry season, yield reductions from drought can be above 50 % compared to stress-free 

conditions. Therefore, we argue that it may be desirable to include drought response as part of 

the selection criteria. We also suggest that further research be conducted to identify other 

stresses that cause yield reductions in the wet and dry seasons in relation to the winter season. 

Once these stresses are known, the common bean breeding program should adapt their 

selection practices accordingly so as to be able to develop genotypes that are more suitable for 

these environments. 
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A web platform to visualise and integrate results 

We developed a web application to visualise the results of the application of this approach to 

different crops and regions: http://www.ccafs-tpe.org (Fig. 6). The tool consists of three main 

components: 

•! A map application to visualise spatially explicit environmental groups, to query daily 

weather data and soil data, as well as to visualise dynamic graphs of yield variation 

and of stress profiles. 

•! Case studies and applications providing summaries and key findings of the analyses 

we have conducted so far. These include: upland rice in Brazil, dry bean in central 

Brazil, and irrigated rice in Colombia. Additionally, we blog about papers that use 

methods akin to ours. 

•! Documentation and data downloads: we provide detailed information on our 

methodology and results of our case studies, including free versions of published 

journal articles, reports and tutorials. We also allow users to download our project 

input and output data. 

 

Figure 6 CCAFS Target Population of Environments web platform at http://www.ccafs-tpe.org 

Finally, we encourage other researchers to get involved in our project by providing data 

and/or results of the application of methods that are akin to ours. 
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Conclusions and future work  

As part of the CGIAR Research Program on Climate Change, Agriculture and Food Security 

(CCAFS), we implemented a project named Target Population of Environments (TPE). We 

developed a methodology to classify environments and to determine stress profiles within 

these environments. Our results for upland rice in central Brazil suggest that breeding should 

be adjusted to include selection under drought conditions. On the other hand, results for 

common bean in the state of Goiás (Brazil) suggest that drought stress does not occur with 

enough frequency so as to warrant selection under drought conditions. However, for beans, 

we note that differences in observed farmer yields between seasons (wet, dry and winter) 

suggest that there may be other stresses acting to reduce yields. Future work should focus on 

identifying and characterising such stresses. 

The priorities identified by our analyses correspond to current climates, and, while they serve 

to identify clear priorities where breeding gains are necessary presently, climate change may 

imply shifts in some of these priorities [e.g. Lobell et al. (2015)]. As an obvious next step in 

this project, we are conducting analyses for upland rice and common beans in Brazil where 

we quantify changes in stress patterns under future climates. We are also extending the 

analyses to rice in sub-Saharan Africa, and flooded rice in southern Brazil.  

Finally, we wish to remark that other methods exist that classify environments for breeding. 

Many of these have been successful to orient crop improvement strategies in the last two or 

three decades (Hodson et al. 2002; Ortiz et al. 2008; Cairns et al. 2013). Future work should 

also focus on identifying how different approaches to environmental grouping can be used 

together to improve breeding practice. 
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