

Evidence and risk-based planning for a climate-smart agriculture

Julian Ramirez-Villegas

Christine Lamanna, Mark van Wijk, Caitlin Corner-Dolloff, Todd Rosenstock, and Evan Girvetz

Contents

- What is climate-smart agriculture?
- Why CSA?
 - Food security
 - Impacts and adaptation
 - Mitigation
- But... a lack of evidence base?
- Risks-households-options (RHO) modelling for evidence-based CSA planning

What is climate-smart agriculture?

CSA...

- Improves food security
- Enhances adaptive capacity and resilience
- Reduces agriculture's burden on the climate system

Why CSA? Food security

Why CSA? Food security

Frelat et al. (2016)

Why CSA? Climate change impacts and adaptation

Climate change impacts and adaptation

Transformational adaptation needs at higher levels of global warming

Rippke; Ramirez-Villegas et al. (2016) Nat. Clim. Chang.

1.5 °C and climate research after the Paris Agreement

Mike Hulme

PARIS201

COP21-CMP11

- * 5%-95% percentile of AR5 WGIII scenarios in concentration category 7, containing 64% of the baseline scenarios assessed by the IPCC
- ** Greater than 66% chance of staying within 2°C in 2100. Median and 10th to 90th percentile range. Pathway range excludes delayed action scenarios and any that deviate more than 5% from historic emissions in 2010.
- *** Greater than or equal to 50% chance of staying below 1.5°C in 2100. Median and 10th to 90th percentile range. Pathway range excludes delayed action scenarios and any that deviate more than 5% from historic emissions in 2010.

Climate Action Tracker (2016)

Ramirez-Villegas, J. (unpublished)

Climate change: 1.5 vs. 2 °C

Ramirez-Villegas and Challinor (unpublished)

Why CSA? Mitigation

Direct agricultural emissions

Non-CO₂ agricultural emissions are about 6,100 million metric tonnes of carbon dioxide equivalent (MtCO₂e) per year—about 11 percent of total global greenhouse gas emissions and 56 percent of global non-CO₂ greenhouse gas emissions.

Agriculture-related activities are 19-29% of global greenhouse gas emissions (2010)

But... a lack of evidence base?

 What is CSA, where, and why? –A large compendium of practices shows many studies assess ≥ 1 CSA pillar

We can start to understand synergies and tradeoffs Food security Tradeoffs 0.5

Mean effect from random sample of 130 studies (55 comparisons)

Rosenstock et al. (in prep.)

But... only a few studies consider the 3 pillars (!)

So, we don't really know what is CSA, do we? Need a new paradigm for research

CSA Plan

- 1. Diagnosis and foresight
- 2. Prioritization
- 3. Program design
- 4. M & E

Risks-Households-Options (RHO) modelling for CSA planning

Lamanna; Ramirez-Villegas et al. (2015)

Modelling approach

- Use household survey (World Bank LSMS, CCAFS) to model yields at household scale (process-based or empirical models)
- 2. Quantify frequency and intensity of impacts of biophysical risks and vulnerabilities (e.g. soil fertility, drought spell length) on food availability
- 3. Use CSA compendium to identify promising CSA practices
- 4. Simulate CSA practice impact on food availability

Household survey data

- Frelat et al. (2016) gathered data from 93 survey sites, 17 countries and >13,000 hh
- LSMS-ISA (World Bank)—8 countries in SSA, eg.
 Niger

Climate change related risks –risk profiles

- Household survey data to understand climate vs. other risks (e.g. pest / disease)
- Crop-climate modelling to understand key climate vulnerability factors

Ramirez-Villegas and Challinor (in revision)

Playing out CSA practice prioritization

Risk-based CSA prioritization in Niger: preliminary results

Contributors to household food availability

Lamanna, Ramirez-Villegas et al. (2015)

Household food availability in Niger

Niger –contribution to household food availability from different farming system types

Analysis: Mark van Wijk

Crop/livestock contributions to food availability vary geographically

- Marked difference between sudanosahelian zone and sahel-saharan zone
- Millets grown
 ~everywhere

Analysis: Robert Hijmans, UC Davis

Risks amongst households

• First, used the LSMS database to characterise risks to which HHs are exposed

איז Drought Insect and bird attacks
Plant disease
Unable to plow after planting
Destruction by animals Flood
Theft

- 90 % HHs reported some harvest loss
- 65 % of these reported drought as the cause
- Average loss to drought was 78 %

Crop modelling: initial results (millet)

 Used a maximin latin hypercube approach to determine realistic management scenarios, based on prescribed durations and observed yields.

Crop modelling –next steps

- Simulate historical (1980-2010) yields for each household
- Deconstruct "drought" through sensitivity analysis and environmental classification →
- Assess drought vs. heat stress under future climate scenarios

CSA compendium analysis: initial results

We learned that...

- This preliminary analysis suggests priority investments need to address food insecurity with particular focus on cereal-based households across the Sahelian zone.
- There is potential in the use of a crop model to disentangle "drought" –we'll keep working on that
- The CSA Compendium is a useful yet incomplete source of information... we need to change the way we do field experiments

Generating the field-scale evidence base that links up to modelling

Campbell et al. (under review)