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1. Introduction

The agricultural sector in Kenya is a fundamental part 
of the economy, contributing 25% directly to the total 
Gross Domestic Product (GDP), and another 27% 
indirectly (Government of Kenya, 2010). It accounts 
for 65% of Kenya’s total exports and provides more 
than 70% of informal employment in the rural areas. 
Therefore,  agriculture is not only the driver of Kenya’s 
economy but also the means of livelihood for the 
majority of Kenyan people (Government of Kenya, 
2010). Soils are fundamental to agricultural production. 
And their good management is vital for sustainable 
agricultural production (Sigunga, 2011). Yet, in sub-
Saharan Africa soils are eroded and their fertility 
depleted at an alarming rate, and Kenya is no exception 
(Batjes, 2014). In addition, agriculture is highly exposed 
to climate change, as rainfed farming activities directly 
depend on climatic conditions (Grant, 2005). At 
the same time, agriculture also directly contributes 
to climate change through greenhouse gas (GHG) 
emissions and a reduction of (soil) carbon stocks in 
agricultural land.

Globally, agriculture is a principal source of climate 
change, directly contributing 14% of anthropogenic 
GHG emissions, and another 17% through land use 
change; the latter mostly in developing countries. The 
majority of future increase in agricultural emissions 
is expected to take place in low- to middle-income 
countries (Smith et al., 2007). While industrialized 
countries must dramatically reduce current levels 
of GHG emissions, developing countries face the 
challenge of finding alternative, low carbon or 

green growth development pathways. In this sense, 
climate-smart agriculture (CSA) aims at transforming 
agricultural systems to sustain food security under 
climate change. Although CSA aims at improving food 
security, resilience and mitigation, it does not imply that 
every recommended practice should necessarily be a 
‘triple win’. Mitigation in developing countries should be 
a co-benefit, while food security and resilience are main 
priority. Low emission growth paths might have more 
associated costs than the conventional high emission 
pathways, thus monitoring can open opportunities 
for climate finance funds (Lipper et al. 2014). CSA is 
complemental to sustainable intensification (SI), aiming 
at increasing agricultural productivity from existing 
agricultural land while lowering the environmental 
impact. SI’s focus on resource use efficiency and 
CSA’s pillar on mitigation both focus on achieving 
lower emissions per unit output. Increased resource 
use efficiency contributes to resilience and mitigation 
through increased productivity and reduced GHG per 
unit output (Campbell et al., 2014). Both, CSA and 
SI underline the importance of potential trade-offs 
between agricultural production and environmental 
degradation. In fact smallholder farmers are confronted 
with trade-offs almost on a daily basis. They have 
to weigh short-term production objectives against 
ensuring long-term sustainability and global goods 
such as climate change mitigation (Klapwijk  
et al., 2014). 

The project ‘Climate-smart soil protection and 
rehabilitation in Benin, Burkina Faso, Ethiopia, India 
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and Kenya’, was designed to build on CIAT’s expertise 
in both soil science and CSA to assess the climate 
smartness of selected GIZ-endorsed soil protection 
and rehabilitation measures in the five countries. Soil 
rehabilitation is often evaluated for productivity and 
food security benefits, with little attention to climate 
smartness. Likewise, CSA initiatives have not given 
due attention to soil protection and rehabilitation, 
despite their apparently strong and potential to increase 
climate-smartness. Thus the goal of the project is to 
produce detailed information on the climate smartness 
of ongoing soil protection and rehabilitation measures 
in these countries, identify suitable indicators for future 
monitoring and evaluation, potentials to increase the 
climate smartness of these measures. This project 
contributes directly to the objectives of the BMZ-GIZ 
Soil program on ‘Soil Protection and Rehabilitation for 
Food Security’ as part of Germany’s Special Initiative 
“One World – No Hunger” (SEWOH), which invests in 
sustainable approaches to promoting soil protection 
and rehabilitation of degraded soil in Kenya, Ethiopia, 
Benin, Burkina Faso and India. It furthermore supports 
policy development with regard to soil rehabilitation, 
soil information and extension systems. The climate-
smart soil protection and rehabilitation research project 
allows GIZ to widen the scope of soil protection and 
rehabilitation for food security by aligning with the goals 
of climate smart agriculture. 

This report presents results from the rapid assessment 
of climate-smartness, the first activity of the project. It 
evaluates the potential impact of GIZ Kenya endorsed 
soil rehabilitation and protection technologies on 
productivity, nitrogen (N) balances, soil erosion, and 
greenhouse gas (GHG) emissions. These are suitable 
(rapid) indicators representing the three CSA pillars – 
productivity, resilience and mitigation.

This activity follows up on a previous scoping study 
that modelled potential impact and trade-offs of soil 
technologies on two farms in Kenya and Ethiopia, but 
recommended to base further household modelling 
on farm typologies (Paul et al., 2015). Data for the 
assessment was obtained from various sources. During 
a participatory workshop in Kisumu, five distinct 
farming systems were identified in Western Kenya 
(Koge et al., 2016a). Subsequently, interviews were 
conducted in farm households that were representative 
of the identified farm types (Koge et al., 2016b). 
Data collected from these farms form the basis of 
the baseline calculations of the indicators mentioned 
above. The soil technology scenarios were derived from 
workshop discussions, as well as technical documents 
by GIZ and implementing partner GOPA to reflect 
practices promoted in Western Kenya as closely  
as possible. 
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2. Methodology

Following the participatory workshop that described 
four to six farming system types per country, potential 
representative farms were jointly identified by CIAT, 
GIZ, GOPA, and ministry staff for a rapid assessment. 
The rapid assessment is based on a case study 
approach thus only one farm per type was selected and 
sampled. The head of the household was interviewed 
and household data collected using a questionnaire 
similar to IMPACTlite (http://bit.ly/2h3KAZf). Information 
about crops and livestock was collected including data 
about plot sizes, yields, use of crop products and crop 
residues, labour activities and inputs. Similar information 
was gathered for the livestock activities if any. In some 
cases, soil samples were taken from different plots. 

The data collected served as input for the model used 
for the rapid assessment. The rapid assessment model, 
named Kalkulator, calculates the following indicators:

Productivity: Farm productivity was calculated based 
on the energy (calories) produced on farm – crop 
and livestock products – and compared to the energy 
requirement of an adult male equivalent to 2500 kcal 
per day (AME). Energy from direct consumption of on 
farm produce was calculated by multiplying the energy 
content of ever crop and livestock product with the 
produced amount. It is thus important to note that 
the indicator only represents food/energy production 
from the own farm, and does not include food that the 
household might purchase with additional income.
Energy contents were based on a standard product list 
developed by the US Department of Agriculture USDA 
(source:http://bit.ly/1g33Puq). The total amount of 

energy produced on the farm was then divided by  
2500 k cal to obtain the number of days for which 
1 AME is secured. For the sake of cross-farm 
comparability, these data were then also expressed on a 
per-hectare basis.

Soil nitrogen balance: This balance was calculated 
at the plot level following the empirical approach of 
NUTMON as described in Van den Bosch et al. (1998). 
The following soil N-inputs were considered i) mineral 
fertilizers, ii) manure, iii) symbiotic fixation by legumes 
crops, iv) non-symbiotic fixation, and v) atmospheric 
deposition. The N-outputs are i) crops and residues 
exported off the field, ii) leaching of nitrate, iii) gaseous 
loss of nitrogen (NH3 and N2O) and iv) soil erosion. For 
calculating N inputs from manure and fertilizer, and N 
outputs from crop and residues, farmer reported data 
on quantities from the household survey was used. For 
N inputs from N fixation and deposition as well as N 
outputs from leaching, gaseous losses and soil erosion, 
transfer functions were used that are based on the 
rainfall and soil clay content of the specific site. The N 
balance is calculated for each plot (kg N/plot) and then 
summed to obtain the field balance expressed in kg N 
per farm. These results are then, again, converted into 
kg N per ha. 

Soil erosion: Soil erosion is calculated at plot individual 
field level following the Revised Universal Soil Loss 
Equation (RUSLE; Renard et al., 1991; Amdihun  
et al., 2014). 
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Soil loss (t/ha/year) = R*K*LS*C*P

where,

R = Erosivity factor (a function of rainfall in mm/month) 

K = Erodibility factor

LS = Slope length factor (function of the length and 
gradient of the slope)

C = Crop cover factor (function of the crop type)

P = Management factor (function of agricultural  
management practices). 

Further information on each factor can be found at: 
www.iwr.msu.edu/rusle/factors.htm 

GHG emissions: GHG emissions are calculated at 
farm level following the guidelines of the International 
Panel on Climate Change (IPCC, 2006). Emissions from 
livestock (methane from enteric fermentation), manure 
(methane and nitrous oxide), and field emissions (nitrous 
oxide) are taken into account as illustrated in  
Figure 1. Household survey data on livestock feed, 
livestock numbers and whereabouts, manure and 
fertilizer use, crop areas, and residue allocation was 
used as input data for the calculations. Most of the 
calculations follow IPCC Tier 1 methods, while Tier 2 
calculations were performed for enteric fermentation and 
manure production.

Figure 1: Scheme of the GHG emission calculations.
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3. Farming systems 

Four farm types were identified during the initial 
workshop in Kisumu Western Kenya. Workshop 
participants included representatives from GIZ, 
Ministry of Agriculture, Livestock and Fisheries, local 
NGOs, Government agricultural and environmental 
organizations, farmers, GOPA, University of Leeds, 
Stockholm Environment Institute (SEI) and CIAT (Koge 
et al. 2016a). We did, however, sample a resource-poor 
female-headed household. As there are some important 
lessons to learn from this farm, it was treated as a 
distinct type and is here reported alongside the other 
four farm types. 

Resource-poor female-headed household: This farm 
type is characterized by a female household head. 
The farm covers around 1-2 acres of land and has 
no livestock, low productive assets, low income, low 
technology adoption, reliance on scarce family labour 
only, and low level of education. This farming system is 
characterized by low yields and low soil fertility due to 
low input use, but a minimum level of manure needs to 
be purchased. 

Small mixed subsistence: Most of the farm, 1-2 acres in 
size, is under cultivation. Livestock herds are rather small 
with an average of not more than 5 local cattle, with no 
option for grazing on (communal) land outside the farm. 
Main crops grown are maize and beans though farmers 
have diversified and grown other crops to minimize 
risks of crop loss from attacks by pests, diseases, weeds 
and unfavourable weather conditions. Farmers in this 
category also have little resources, low yields and low 
soil inputs.

Medium dairy commercial farms: have 3-8 acres of land 
with both livestock and crop production, specializing in 
dairy production mainly for sale. Their dairy cows are 
mostly improved (mixture of local and exotic) breeds. 
This farming system is characterized by high-quality 
feeds, zero-grazing, artificial insemination services 
and potential for value addition as the milk can also 
be processed into by-products and sold at a higher 
price. The combination of improved cow breeds and 
improved feeds often results in a higher milk production 
of on average 10 litters per cow per day. Farmers in this 
category have also embraced modern technologies such 
as hay-making, silage production, biogas production 
and coolers for their milk. Key output markets for this 
type of farm include milk brands such as Brookside, 
schools and cooperatives, among others.

Medium horticulture commercial: This farm type 
comprises 3-8 acres of land with dairy and crop 
production but specializing in horticulture production. 
They grow a variety of vegetables, tomatoes, cabbages, 
onions and capsicums, all mainly for sale. The farms 
in this category are labour intensive. Youths are mostly 
drawn to commercial horticulture farming. Farmers 
require knowledge and management skills in running 
this farming enterprise. It includes high risk investments 
because of potential pests and diseases and vagaries 
of the weather, but on the other hand returns are also 
high. Farmers in this category have embraced innovative 
technologies such as irrigation and greenhouses. They 
also keep records on crop productivity and attract 
micro-finance institutions for credits and savings.
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Large commercial farms usually have more than  
10 acres of land, are highly commercialized and are 
growing mostly sugarcane, maize or coffee in Bungoma 
and Kakamega, and rice in Siaya. This type of farm 
is sensitive to market fluctuations. Households are 
generally small in size and well educated, and crop 
production is mostly mechanized. Farmers in this 
category have more productive assets than all the 
other identified farm types and therefore exhibit a 
high adoption of innovative technologies as they have 
enough capital and land to do so. They rely more on 
hired labour than household labour. Mineral fertilizers 

and organic manure are used and contributing to the 
high crop productivity found in these farms. 

With the help of GIZ county program managers and 
county agricultural employees from the Ministry of 
Agriculture and County Departments of Agriculture, 
Livestock and Fisheries, one case study farm was 
selected for each of the farm types. The chosen farms 
were deemed representative of the farmers within each 
farm type. The percentage of households that fall within 
each type in each of the 3 counties was discussed 
during and directly after the workshop, and used as 

Counties Resource-poor-
female-headed

Small mixed 
subsistence

Medium dairy 
commercial

Medium 
horticulture 
commercial

Large 
commercial

Siaya NA 70% 5% 20% 5%

Kakamega NA 60% 10% 10% 20%

Bungoma NA 50% 5% 10% 35%

Table 1: Percent distribution of households of each farm type across Siaya, Bungoma and Kakamega. Percentage distribution of resource-
poor female-headed households could not be reported as this type was only added after the distribution discussions.

a guide to determine in which county the case 
study farm would be selected for each of the 
types. 

Most of the large commercial farms are found 
in Bungoma and most of the medium dairy 
commercial farms in Kakamega. Therefore, the 
representative farms for these two types were 
selected from these two counties. One small 
subsistence mixed farmer and one resource-poor 
female headed household was selected from 
Siaya, while a medium horticulture commercial 
farmer was selected from Bungoma (Figure 2).

Figure 2: Location of case study farms in Western Kenya.
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4. Technology descriptions 
and scenarios

The following scenarios represent soil rehabilitation 
interventions that are currently promoted by GIZ and 
partners in Western Kenya or that are under discussion 
for future promotion. All assumptions are described 
according to impact dimensions and summarized in the 
Appendix Scenario Assumptions. 

Three distinct soil fertility improvement scenarios were 
implemented: 

 i. 	The liming + DAP scenario assumes that  
15 kg N/ha DAP was applied to all non-legume 
crops across all farm types that are not already 
receiving other fertilizers. At 18% N content of DAP, 
this corresponds to 83 kg fertilizer/ha. In response 
to the addition of lime and N-fertilizer, all yields were 
assumed to increase by 30%.

ii. 	 In the compost-only scenario, all crop residues 
are assumed to be removed from the field for 
composting. 30% of the N in these residues is lost 
to the environment during composting. The yields 
were assumed to increase by 20%.

iii. 	The lime + compost scenario combines the 
previous two scenarios. The yields were assumed to 
increase by 30%. This scenario was not applied to 
the large commercial farm.

In addition, a Conservation Agriculture (CA) scenario 
was assessed by introducing zero-tillage and soybeans 
in rotation or intercropping, depending on the farming 
system at hand. Both cropping systems are covering 
the soil well, thereby reducing erosion and suppressing 
weeds, while at the same time adding N to the farm by 
biological nitrogen fixation (BNF). 

Vegetative strips of vetiver (“Veg. strip vetiver”) and 
Napier (“Veg. strip Napier”) are the two scenarios in 
which soil protection measures are implemented. As 
these strips require space, for all farm types, 10% of the 
area under maize and other cereals are replaced with 
either vetiver or Napier. Milk production is assumed to 
increase due to improved feeding (10% increase with 
vetiver and 20% with Napier). More manure is produced 
as consequence of increased milk production.
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5. Results

5.1 Productivity pillar

5.1.1 Baseline productivity

The small mixed subsistence and the medium 
commercial horticulture farms have the highest 
productivity per hectare compared to all three other 
farms (Figure 3). This is due to the high proportion of 
maize produced on both farms, beans on the small 
mixed and vegetables on the medium commercial 
horticulture farms. On the mixed commercial dairy 
and on the large commercial farm, there is a higher 
percentage of calories from livestock products 
compared to the other farms. Both these farm have 
the highest productivity at the farm level but not per 
hectare. On the mixed commercial dairy farm, 60% 
of calories come from livestock products, and 40% 

from crop products. On the large commercial farm 
nearly 50% of calories come from livestock and 50% 
from crop products (all of which is maize, as no 
calories are counted from coffee). The poor female-
headed household has the lowest productivity – per 
hectare and for the entire farm, which is due to the 
absence of livestock and low crop production. The 
medium commercial horticulture farm has the most 
diversified production, counting 15 different sources of 
calorie production. The resource-poor female headed 
household and the large commercial farmer have the 
least diversified calorie production base with four and 
two sources only.
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5.1.2 Changes in productivity

Introducing the technologies described earlier is 
projected to generally increase productivity across 
all farm types (Figure 4). This is mainly due to the 
increases in yields and in animal productivity (i.e. 
milk) that result from additional inputs of N or from 
increasing the area of legumes (high calorie content). 
The vegetative strips have the least impact on 
productivity across all farm types. Although improving 
soil fertility to the areas where they are placed and 
thus potentially increasing crop yields to those fields, 
a) these strips cannot be consumed directly, and 
b) vegetative strips reduce the cultivatable area. 
Conservation agriculture impacts productivity the most 

on the poor female-headed household and on the 
mixed commercial dairy farms. In the first case, this 
is because of the increase in area under cultivation in 
the short rainy season (in the baseline, only 0.04 out 
of 0.32 ha were cultivated) and from the addition of 
soybean (source of high calories). Keeping the soil 
covered throughout the year through adding cover 
crops (mainly legumes) as intercrop or rotation is one 
of the three principals of CA. The farms where livestock 
products (especially milk) are important sources of 
calories, can improve productivity from the grass strips 
because of improved feeding. This is the case for the 
mixed commercial dairy and the large commercial farms.
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Figure 3: Baseline productivity and contribution from the different products across farm types.  Productivity is expressed as number of days 
that 1 adult male equivalent (AME) can be fed from livestock and crop products produced on the farm .
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5.2 Resilience pillar

5.2.1 Baseline N balances

A negative N balance was calculated for all farms except 
the small mixed subsistence and large commercial 
farms (Figure 5). On the small mixed subsistence 
farms, the positive N balance is mainly due to the 
high livestock density. Five cattle are kept on the farm 
and fed on 70% off-farm grazing. All of the manure 
produced on-farm is used to fertilize the half a hectare 
cropland. This combination from nutrient import 
through off-farm grazing and nutrient return on a small 
piece of arable fields leads to nutrient abundance. On 

the large commercial farm, the N balance is positive 
mainly because of the use of inorganic fertilizers for the 
coffee crop. On all the other farms the major loss of N 
is due to N being exported from the fields in the form 
of harvested crop products. This is specifically the case 
on the mixed commercial horticulture farm where a lot 
of N is exported out of the fields through nutrient-rich 
crop harvest and sale without sufficient compensation 
through application of on-farm manure, compost or 
other fertilizers.

5.2.2 Changes in N balance 

Implementing the different soil technology scenarios 
affects the N balance differently across farms (Figure 6). 
The N balance improves the least across interventions 
in the mixed commercial dairy, the medium commercial 
horticulture and the large commercial farms.

In the mixed commercial dairy farm the N balance 
ranges from -30 to -15 kg N/ha, in the medium 
commercial farm from -47 kg to -16 N/ha and in the 
large commercial farm from 5.6 to -38 kg N/ha. There 

is more impact seen on the small farms especially 
for the soil fertility improvement interventions. The 
balance ranges from -8.7 to 68 kg N/ha on the poor 
female-headed household farm and from 71 to as 
high as 168 kg N/ha on the small mixed subsistence 
farm. The vegetative strips and CA have the lowest 
impact compared to the three soil fertility improvement 
interventions. 

K
g 

N

100

80

60

40

20

0

-20

-40

Per farm Per ha

Poor female-headed 
household

Small mixed
subsistence

Mixed 
commercial 

dairy

Medium commercial
horticulture

Large commercial

Figure 5: Baseline N balance at field level per farm and hectare across farm types.
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5.2.3 Baseline erosion 

In this study, most farms sampled were found on relatively flat land. Erosion was greatest on the medium commercial 
horticultural farm at close to 1 ton of soil/ha. There was the least erosion on the mixed commercial dairy farm less 
than 200kg soil/ha (Figure 7).

5.2.4 Changes in erosion 

In the scenarios only the vegetative strips were considered to have a direct impact on soil erosion acting as a physical 
barrier (Figure 8). The technology of conservation agriculture had different impact on erosion. This is mainly due 
to the change in crop cover from the baseline, as new crops were introduced in the crop rotation. In some cases, 
soil erosion decreased such as in the small mixed farm, slightly decreased in the medium horticultural farm and 
increased in all other three farms. 
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Figure 7: Baseline soil erosion (t soil/year), per farm or per hectare.

Figure 8: Soil erosion baselines and scenarios across farms (t soil/ha).
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5.3 Mitigation pillar

5.3.1 Baseline GHG emissions

The large commercial farm has the highest emissions 
per farm, first of all because of the significant size of the 
farm, and because of the high number of livestock and 
high fertilizer input to the soils triggering nitrous oxide 
emissions. The small mixed subsistence farm, however, 
has the highest emission intensity (CO2e/ha) because 
of the high number of livestock per area. Here enteric 
fermentation is the major source of GHG emissions. 
Soil nitrous oxide emissions contribute comparably 
little because of the lower use of inorganic inputs and 
the low “make use” of the cow manure as organic 
fertilizer. In comparison to the small mixed subsistence 
farm, the mixed commercial dairy farm has slightly 

lower per farm emissions and especially a much lower 
GHG emission intensity. The lower livestock number 
(only two dairy cows) explain the big difference in 
emissions from enteric fermentation. In addition, the 
livestock production on this farm is more intensive, 
i.e. less animals and less area are needed to produce 
a similar amount of animal products. As this farm’s 
land size is bigger, the emission intensity is lower. The 
poor female-headed household has lowest emission 
intensity because there is no livestock and no fertilizer 
use, closely followed by the medium commercial 
horticultural farm with its small animal herd and limited 
fertilizer application. 
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5.3.2 Changes in GHG emissions

In the three first interventions, additional N is added to the soil. This by consequence, applying IPCC tier 2 method, 
increases soil nitrous oxide emissions and thus overall farm GHG emissions (Figure 10). 
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There is greater relative change from the baseline in the 
poor female-headed household farm because it is the 
most extensive. Thus, any input will increase emissions. 
Although the percentage change is large (compared 
to the other farms), this farm still has the lowest 
GHG emissions overall. Similarly, there is a relatively 
big change in the medium commercial horticulture 
because of the low baseline GHG emissions. The only 
soil fertility improvement intervention with a positive 
effect, i.e. reducing the GHG emissions per area of 
land, is composting at the large commercial farm. 
On all other farms, GHG emissions increase after 
the implementation of the three outlined soil fertility 
improvement measures lime+NPK, lime+compost, 
and compost only. The CA intervention has mixed 
impacts depending on the farm type. 

On the two small and on the large commercial farm, 
there is virtually no change in GHG emission intensity. 
On the medium commercial dairy farm the emission 
intensity is projected to go up slightly, whereas in the 
medium commercial horticultural farm, CA is projected 
to cause a small decrease in emission intensity. Under 
baseline conditions, GHG emission intensity is lowest 
for the female-headed farm and highest for the small 
mix subsistence farm. 

The emission intensity changes, on the other hand, are 
highest for the first of these and lowest for the second, 
across the scenarios. The high emission intensity at the 
dairy farm is due to the high stocking rate, with most 
emissions coming from livestock. The small changes in 
emission intensities in the dairy farm are caused by little 
changes in livestock management. In other words, as 
long as the livestock numbers do not change, emission 
intensity will not change significantly.

5.4 Trade-offs

Trade-offs occur when improvement in one dimension 
of farm performance cause deterioration in another 
dimension. We plotted changes in productivity – as 
food security indicator – against the changes in 
resilience (N balance, Figure 11) and mitigation (GHG 
emission intensity, Figure 12). These figures show 
trade-off and synergy patterns across farm types and 
soil technology scenarios. 

In Figure 11, the majority of dots are in the upper right 
quadrant of the graph, indicating that improving the 
N-balance also improves productivity (or vice-versa), 
representing a synergetic situation. Yet, it should be 
noted that even a positive changes in N-balance could 
still mean a resulting overall negative N-balance. 
Also, a further increase in N-balance in farms that 
already have a positive balance to start with, is not 
necessarily desirable, as this could lead to N-losses to 
the environment and associated eutrophication of water 
bodies and streams. 

Vegetative strip dots are mostly in in the lower right 
quadrant, meaning that these improve productivity at 
the expense of the N-balance (trade-off), which seems 
inevitable as long as these are not adequately fertilized 
or (N-fixing) legumes included. On the medium 
commercial horticulture farm, vegetative strips also 
lead to a reduction in productivity. 
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Figure 10: GHG emission intensity baselines and scenarios across farms. The dashed line represents the baseline.
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When looking at synergies and trade-offs between 
changes in productivity and GHG emissions  
(Figure 12), the following conclusions can be drawn: 
even more strongly than in Figure 8, most of the dots 
are in the upper right quadrant. However, in this case it 
indicates a trade-off as increasing productivity comes 
at the expense of increased GHG emission intensities. 
However, some technologies – such conservation 

agriculture – have the potential to perform well in terms 
of increasing productivity without increasing GHG 
emissions. On the large commercial farm, introducing 
compost presents a potential win-win solution as well. 
The poor female-headed household, however, produces 
much less kcal than the other farms and is thus scoring 
badly on the amount of greenhouse gases emitted 
relative to its contribution to food security.
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Figure 12: Trade-offs between changes in productivity (AME days/ha) and GHG emissions (t CO
2
e/ha) comparing baseline and soil 

conservation scenarios;  Colours represent the scenarios, and shape the farm types (     =Poor female-headed household,      =Small 
mixed subsistence,      =Mixed commercial dairy,     with patterns=Medium commercial horticulture and       =Large commercial). The 
dashed line represents the baseline production.

Figure 11: Trade-offs between changes in productivity (AME days/ha) and field N balance (kg N/ha) when moving from baseline to soil 
conserving technologies.  Colours represent the scenario and shape the farm types (      =Poor female-headed household,    =Small 
mixed subsistence,     =Mixed commercial dairy,     with patterns=Medium commercial horticulture and       =Large commercial).
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In this report a fairly simple set of three indicators 
was used for assessing the climate-smartness of farm 
types and soil protection and rehabilitation measures 
in Western Kenya. This allowed for a truly rapid 
assessment across implementation countries that can 
feed into decision-making processes in the on-going 
GIZ Soil Program. 

Needless to say, the choice of indicators has its 
limitations. The use of calorie-based production 
of crops, milk and eggs as a productivity indicator 
disadvantages farms with higher importance of livestock 
production as compared to staple crops. The livestock 
farms are first of all disadvantaged by the exclusion of 
meat, secondly by the low calorie content of milk and 
eggs. The high protein content of livestock products 
renders them however very important for nutrition 
security, especially so for young children and pregnant 
women. This should be kept in mind when evaluating 
production. Adding up calories produced from the 
various crops and livestock products and comparing 
business-as-usual with best-bets, is however a simple 
and easy-to-grasp way of indicating changes. 

Focusing on soil fertility (approximated by the field-level 
N-balance) as the resilience indicator excludes a large 
number of important issues that contribute to farmers’ 
resilience to climate change, such as income stability, 
access to skills, finances and information, crop/
livestock diversity, etc. Indeed soil organic carbon could 
not be modelled in the rapid assessment. SOC has 
the potential to offset GHG emissions through carbon 
sequestration. 

Despite the short-comings of the indicators used, the 
rapid assessment clearly shows that there is a large 
variation in the baseline climate smartness across 
large different farm types. One of the most important 
factors influencing this is the number of livestock and 
the efficiency of the livestock production. Livestock 
production depends on relatively large land sizes (for 
feed production) and therefore scores quite low in 
terms of production and productivity. The livestock 
manure, however, has the potential to contribute 
considerably to a farm’s soil fertility. In some cases 
it is doing so already, in other farms the manure is 
underutilized and just left to contribute to GHG instead.

6. Conclusions and 
	 recommendations
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Appendix I: Surveyed farm details

Farm type
Household members 

(number)
Farm size (h a) Area managed (ha) Area cultivated (ha)

Poor female-headed 3 0.56 0.56 0.38

Small mixed subsistence 5 0.33 0.33 0.33

Mixed commercial dairy 5 2.8 1.72 1.54

Mixed commercial 
horticulture 7 0.97 1.26 1.02

Large commercial 10 5.6 5.2 4.05

Farm type

Grain yields of main 
crops

(kg FW/ha/year)

Yields of cash crops
(kg FW/ha/year)

Yields of horticultural crops
(kg FW/ha/year)

Maize Beans Coffee Sugarcane Kales Green 
pepper Butternut Cabbage

Poor female-
headed 1724 299 NA NA NA NA NA NA

Small mixed 
subsistence 2168 626 NA NA NA NA NA NA

Medium dairy 
commercial 5560 729 NA NA 62253 17557 6721 11861

Medium 
horticulture 
commercial

5337 NA NA 80062 NA NA NA NA

Large 
commercial 2250 NA 982 NA NA NA NA NA

Table 2: Household size, land sizes and management per farm type. Area managed refers to cultivated land, pasture, tree plots, fallow and 
unutilized land that is managed by the household. Area under cultivation refers only refers to land being cultivated by the household.

Table 3: Crops yields per farm type. Not applicable (NA) indicates that the respective crop is not grown on the farm. All yields are reported in 
fresh weight (FW).
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Poor female-headed household NA NA NA

Small mixed subsistence NA NA 61

Medium dairy commercial NA NA 158

Medium horticulture 
commercial NA NA 124

Large commercial 544 247 247

Farm type NPK CAN DAP

Farm type
Local 
dairy 
cattle 

Improved
dairy
cattle

Other 
cattle 

(male and 
heifers) 

Calves Sheep Goats Pigs Poultry Total TLU 

Poor female-headed 
household 0 0 0 0 0 0 0 0 0

Small mixed 
subsistence 0 0 5 0 0 3 0 23 0.53

Medium dairy 
commercial 0 2 0 0 0 0 5 41 2.81

Medium horticulture 
commercial 0 0 0 0 0 3 0 45 0.75

Large commercial 0 6 0 2 3 0 0 4 5.61

Table 4: Fertilizer application rates (kg/ha).

Table 5: Livestock herd composition (no.) and total TLU (tropical livestock unit).
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Poor female-headed 
household

Small mixed 
subsistence

Medium dairy 

commercial

Medium horticulture 
commercial

Large commercial

 Farm type Napier
Natural 
grasses 

(pasture)

Rhodes 
grass (green 

fodder)

Fodder 
(calliandra 

and 
Sesbania)

Dairy meal Molasses
Crop 

residues

Poor female-headed 
household

Small mixed 
subsistence

Medium dairy 
commercial

Medium horticulture 
commercial

Large commercial

NA NA NA NA NA NA NA

0.1 0.9 NA NA NA NA NA

0.8 0.1 NA NA 0.035 0.04 0.03

0.55 0.025 0.175 0.13 NA 0 0.12

70 8 NA NA NA NA 20

 Farm type Napier
Natural grasses 

(pasture)
Rhodes grass 

(green fodder)

Fodder 
(calliandra and 

Sesbania)
Dairy meal Molasses

NA NA NA NA NA NA

0.25 NA NA NA NA NA

1 NA NA NA 0.26 1

0.375 1 1 1 1 NA

1 NA NA 0.43 NA 1

Table 6: Livestock (ruminants) feed basket (fraction).

Table 7: Crop residue management for the main crops (fraction removed from the fields).
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Appendix II: Scenario Assumptions

Impact 
dimension

SC1A:
Lime + NPK

SC1B:
Composting

SC1C:
Lime + 

composting

SC2: 
Conservation

Agriculture

SC3A:
Vetiver Strip

SC3B:
Napier Strip

Small 
subsistence 
semi-arid

Land use 
change None None None 

Short rains:
-Replacing 
sweet potato 
with soybeans 
(GIZet al.,2015a) 

- Soybeangrown 
on previous sole 
maize field  
(0.63 acres)
-Added 
soybeans to 
fallow fields 
(0.78 acres)

Reducing 
maize and 
sorghum 
area by 10% 
for vetiver 
strips

Decreasing 
maize and 
sorghum 
area by 10% 
for vetiver 
strips

Small mixed 
subsistence

Land use 
change None None None

Both season: 
Reducing maize 
area by 1/4 for
soybeans

Reducing 
maize and 
banana fields 
by 10% each 
for vetiver 
strips

Reducing 
maize and 
banana fields 
by 10% each 
for Napier 
strips

Medium 
commercial 
dairy

Land use 
change None  None None

Both seasons: 
Reducing sole 
sugarcane 
field by 1/4; 
to intercrop 
with soybean 
Reducing maize 
area by 1/4 and 
allocating that to 
soybean

Long rains: 
Reducing 
maize and 
banana fields 
by 10% each 
for vetiver 
strips 

Short rains: 
Reducing all 
crop areas by 
(%) for vetiver 
strips

Long rains: 
Reducing 
maize and 
banana fields 
by 10% each 
for Napier 
strips

Short rains: 
Reducing all 
crop areas by 
(%) for Napier 
strip

Medium 
commercial 
horticulture

Land use 
change None None None

Reducing maize 
area by 1/4 for 
more soybeans 
(GIZ et al., 
2015a))

Reducing 
maize and 
sweet 
potato area 
(instead of 
horticulture)
by 10% each 
for vetiver 
strips (GOPA, 
2015), 

Reducing 
maize and 
sweet 
potato area 
(instead of 
horticulture)
by 10% each 
for vetiver 
strips (GOPA, 
2015), 

Large 
commercial

Land use 
change None None NA

Long rains: 
Reducing maize 
field by 1/4 
and allocated 
this area to 
soybeans (GIZ 
et al., 2015a) 

Short rains: 
Added maize 
to make up 
for the1/4 
reduction. 
Added 
soybeans to 
fallow field that 
was sole maize 
in the long rains

Long rains: 
Reducing 
maize area 
by 10% to 
make space 
for vetiver 
strips (GOPA, 
2015).

Short season: 
Added maize 
area reduced 
in previous 
season.
Allocated 
10% of this 
maize area to 
vetiver strips

Long rains: 
Reducing 
maize area 
by 10% to 
make space 
for Napier 
strips (GOPA, 
2015).

Short season: 
Added maize 
area reduced 
in previous 
season.

Allocated 
10% of this 
maize area to 
Napier strips

(continues)
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Impact 
dimension

SC1A:
Lime + NPK

SC1B:
Composting

SC1C:
Lime + 

composting

SC2: 
Conservation

Agriculture

SC3A:
Vetiver Strip

SC3B:
Napier Strip

Small 
subsistence 
semi-arid

Fertilizer 
application

N (21 kg N/
ha/ crop) 
application 
on maize, 
sorghum 
and sweet 
potato

No fertilizer 
applied

No fertilizer 
applied

add 100 kg DAP/
ha (= 18 kg N/ha/
crop) on maize, 
sorghum and 
sweet potato

No fertilizer 
applied

No fertilizer 
applied

Small mixed 
subsistence

Fertilizer 
application

N (21 kg N/
ha/ crop) 
application 
on maize 
and banana

Reduced 
fertilizer 
application by 
50%

Reduced 
fertilizer 
application  
by 50%

No change No change No change 

Medium 
commercial 
dairy

Fertilizer 
application

N (31 kg N/
ha/ crop) 
application 
on 
sugarcane, 
Napier, 
banana and 
maize

Reduced 
fertilizer 
application by 
50%

Reduced 
fertilizer 
application  
by 50%

No changes No changes No changes

Medium 
commercial 
horticulture

Fertilizer 
application

 N (31 kg N/
ha/ crop) 
application 
on maize, 
sweet 
potato and 
horticulture 
crops 
(cabbage, 
kale, red 
pepper, 
pumpkin, 
butternut, 
watermelon 
and tomato 

Reduced 
fertilizer 
application by 
50%

Reduced 
fertilizer 
application  
by 50%

No changes No change No changes

Large 
commercial

Fertilizer 
application

N (63 kg N/
ha/ crop) 
application 
on maize 
and Napier

Reduced 
fertilizer 
application by 
50%

NA No change No change No change 

Small 
subsistence 
semi-arid

Manure 
application No change

70% of 45 kg N/
ha compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing).

0% of 45 kg N/
ha compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing).

No change No change No change

Small mixed 
subsistence

Manure 
application No change

70% of 45 kg 
N/ha from 
compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing)

70% of 45 kg 
N/ha from 
compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing)

No change No change No change

(continues)
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Impact 
dimension

SC1A:
Lime + NPK

SC1B:
Composting

SC1C:
Lime + 

composting

SC2: 
Conservation

Agriculture

SC3A:
Vetiver Strip

SC3B:
Napier Strip

Medium 
commercial 
dairy

Manure 
application No change

70% of 60 kg 
N/ha from 
compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing)

70% of 60 kg 
N/ha from 
compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing).

No change No change No change

Medium 
commercial 
horticulture

Manure 
application No change

70% of 60 kg 
N/ha from 
compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing)

70% of 60 kg 
N/ha from 
compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing)

No change No change No change

Large 
commercial

Manure 
application No change

70% of 60 kg 
N/ha from 
compost + 
compost from 
residue left 
on field (30% 
lost through 
decomposing).

NA No change No change No change

Small 
subsistence 
semi-arid

Crop yield
Increase all 
yields by 
30%

Increase all 
yields by 20%

Increase all 
yields by 30%

Increase cereal 
yields by 10% 
and legumes by 
5% (only for those 
crops that were 
intercropped or 
rotated)

Increase in 
productivity 
compensates 
for reduction 
in area, i.e. total 
production 
remains the 
same

Increase in 
productivity 
compensates 
for reduction 
in area, 
i.e. total 
production 
remains the 
same

Small mixed 
subsistence Crop yield

Increase all 
yields by 
30%

Increase all 
yields by 20%

Increase all 
yields by 30%

Increase cereal 
yields by 10% 
and legumes by 
5% (only for those 
crops that were 
intercropped or 
rotated)

Increase in 
productivity 
compensates 
for reduction 
in area, i.e. total 
production 
remains the 
same

Increase in 
productivity 
compensates 
for reduction 
in area, 
i.e. total 
production 
remains the 
same

Medium 
commercial 
dairy

Crop yield
Increase all 
yields by 
30%

Increase all 
yields by 20%

Increase all 
yields by 30%

Increase maize 
and sugarcane 
yields by 10% 
and legumes by 
5% (only for those 
crops that were 
intercropped or 
rotated)

Increase in 
productivity 
compensates 
for reduction 
in area, i.e. total 
production 
remains the 
same

Increase in 
productivity 
compensates 
for reduction 
in area, 
i.e. total 
production 
remains the 
same

Medium 
commercial 
horticulture

Crop yield
Increase all 
yields by 
30%

Increase all 
yields by 20%

Increase all 
yields by 30%

Increase cereal 
yields by 10% 
and legumes by 
5% (only for those 
crops that were 
intercropped or 
rotated)

Increase in 
productivity 
compensates 
for reduction 
in area, i.e. total 
production 
remains the 
same

Increase in 
productivity 
compensates 
for reduction 
in area, 
i.e. total 
production 
remains the 
same

(continued)

(continues)
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Impact 
dimension

SC1A:
Lime + NPK

SC1B:
Composting

SC1C:
Lime + 

composting

SC2: 
Conservation

Agriculture

SC3A:
Vetiver Strip

SC3B:
Napier Strip

Large 
commercial Crop yield

Increase all 
yields by 
30%

Increase all 
yields by 20% NA

Increase cereal 
yields by 10% 
and legumes by 
5% (only for those 
crops that were 
intercropped or 
rotated)

Increase in 
productivity 
compensates 
for reduction 
in area, i.e. total 
production 
remains the 
same

Increase in 
productivity 
compensates 
for reduction 
in area, 
i.e. total 
production 
remains the 
same

Small 
subsistence 
semi-arid

Milk 
production No livestock No livestock No livestock No livestock No livestock No livestock

Small mixed 
subsistence

Milk 
production

No dairy 
cattle on the 
farm

No dairy cattle 
on the farm

No dairy cattle 
on the farm

No dairy cattle on 
the farm

No dairy cattle 
on the farm

No dairy cattle 
on the farm

Medium 
commercial 
dairy

Milk 
production

10 increase 
because 
of 30% 
higher crop 
production

10% decrease; 
not much 
because 
Napier is the 
main diet.

10% decrease; 
not much 
because Napier 
is the main diet.

10% decrease; 
not much 
because Napier is 
the main diet.

10% increase 20% increase

Medium 
commercial 
horticulture

Milk 
production

10 increase 
because 
of 30% 
higher crop 
production

20% decrease 
as residues 
for all crops 
that were 
previously fed 
to livestock are 
now mostly for 
compost.

20% decrease 
as residues for 
all crops that 
were previously 
fed to livestock 
are now mostly 
for compost.

20% decrease 
as residues for all 
crops that were 
previously fed 
to livestock are 
now mostly for 
compost.

10% increase 20% increase

Large 
commercial

Milk 
production

10 increase 
because 
of 30% 
higher crop 
production

10% decrease; 
not much 
because 
Napier is the 
main diet.

NA

10% decrease; 
not much 
because Napier is 
the main diet.

10% increase 20% increase

Small 
subsistence 
semi-arid

Residue 
management None

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

None (because 
all residue is left 
on the field)

None None

Small mixed 
subsistence

Residue 
management	 None

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

None (because 
all residue 
except maize is 
left on the field), 
of which 2/3 
maize residue is 
retained

None None

Medium 
commercial 
dairy

Residue 
management	 None

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

1/3 removal of 
all residue, 2/3 
remains on the 
field

None None

(continued)

(continues)
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Impact 
dimension

SC1A:
Lime + NPK

SC1B:
Composting

SC1C:
Lime + 

composting

SC2: 
Conservation

Agriculture

SC3A:
Vetiver Strip

SC3B:
Napier Strip

Medium 
commercial 
horticulture

Residue 
management	 None

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

1/3 removal of 
all residue, 2/3 
remains on the 
field

None None

Large 
commercial

Residue 
management	 None

2/3 removal of 
all residue for 
composting, 
1/3 remains on 
the field

NA

1/3 removal of 
all residue, 2/3 
remains on the 
field

None None

Small 
subsistence 
semi-arid

Soil erosion No change No change No change No change

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Small mixed 
subsistence Soil erosion No change No change No change No change

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead 
to 30% soil 
loss reduction 
((GIZ et al., 
2015b)

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Medium 
commercial 
dairy

Soil erosion No change No change No change No change

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Medium 
commercial 
horticulture

Soil erosion No change No change No change No change

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Large 
commercial Soil erosion No change No change NA No change

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

Reducing soil 
conservation 
factor (P) 
to from 0.8 
to 0.5; this 
should lead to 
30% soil loss 
reduction (GIZ 
et al., 2015b)

(continued)
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Appendix III: Reference maps of study sites

Legend

Soil Organic Carbon

9 - 23

23 - 34

34 - 50

50 - 71

71 - 136

Major town

County boundary

Water body

Units: g/kg

Legend

pH

4.6 - 5.4

5.4 - 5.7

5.7 - 6.0

6.0 - 6.4

6.4 - 7.8

Major town

County boundary

Water body

Legend

Elevation (metres)

1132 - 1354

1354 - 1629

1629 - 2120

2120 - 2922

2922 - 4171

Major town

County boundary

Water body

Legend

Land cover/Land use

Artificial surface

Cultivated land

Forest

Grassland

Shrubland

Water body

Wetland

Major town

County boundary

Soil organic carbon Soil pH

Elevation Land cover/Land use
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Legend
Precipitation (mm)

916 - 1080

1080 - 1336

1336 - 1583

1583 - 1760

1760 - 2007

Major town

County boundary

Water body

Annual precipitation

Legend
Temperature (°C)

5.3 - 12.4

12.4 - 16.7

16.7 - 19.5

19.5 - 21.3

21.3 - 22.8

Major town

County boundary

Water body

Mean temperature
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