Enteric methane production from cattle fed on three tropical grasses in East Africa

Daniel Korir1,2, Svenja Marquardt1, Richard Eckard2, Alan Sanchez3, Uta Dickhoefer3, Lutz Merbold1, K. Butterbach-Bahl1,4 and John Goopy1,2

1International Livestock Research Institute (ILRI), Kenya, 2University of Melbourne, Fac. of Agriculture and Veterinary Sciences, Australia, 3University of Hohenheim, Inst. of Agric. Sci. in the Tropics, Germany, 4Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Tropentag virtual conference 2020
10/09/2020
Introduction

• Livestock production is an important source of livelihood and nutrition to the vulnerable communities in the tropics, with more than 80% of subsistence farmers in Africa owning livestock (FAO, 2009).

• Ruminant production in Sub-Saharan Africa (SSA) is dominated by small and medium scale farmers – owning up to 70% of the cattle in the region.

• Low animal productivity – mainly as a result of low quantity and quality of feed.
introduction

- Planted grasses form the main feed resource for cattle among smallholder farmers under crop-livestock systems in humid zones
- Changing climatic conditions and emerging diseases are negatively affecting productivity of commonly grown grasses (Napier and Rhodes var.)
- Led to Introduction of new/improved species that tolerate drought and diseases.
- For greenhouse gas reporting, many SSA countries – IPCC Tier 1- high uncertainty level
Aim of the present work

- To study the nutritive value of cultivated grasses in Kenya (inconclusive data available);
- To measure enteric methane emission from cattle fed planted grasses using methane respiration chambers – accurate in situ method - gold standard
Materials and methods

Animal feeding experiment;

• Animals: Growing Boran steers (n=18, live weight (LW): 216 ± 6 kg)
• Diets: Freshly cut *Pennisetum purpureum* var. Kakamega 1 (Napier), *Chloris gayana* var. Boma (Rhodes) or *Brachiaria brizantha* var. Xaraes (Brachiaria)
Materials and methods

- Two feeding periods each running for 70 days.
- Parameters measured:
 - Voluntary nutrient intake,
 - Apparent total tract digestibility,
 - LW gain and,
 - Enteric methane production (respiration chambers)
Results_ Chemical composition and intake

Table 1: Dry matter (DM), Organic matter (OM), crude protein (CP), Neutral and acid detergent fibre (NDF and ADF), and gross energy of Napier, Rhodes and Brachiaria grasses

<table>
<thead>
<tr>
<th>Diet</th>
<th>DM (g/kg)</th>
<th>OM (g/kg)</th>
<th>CP (g/kg)</th>
<th>NDF (g/kg)</th>
<th>ADF (g/kg)</th>
<th>GE (Mj/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napier</td>
<td>230±8</td>
<td>885±4</td>
<td>83±4</td>
<td>668±6</td>
<td>370±5</td>
<td>16.8±0.06</td>
</tr>
<tr>
<td>Rhodes</td>
<td>278±10</td>
<td>893±4</td>
<td>77±5</td>
<td>695±7</td>
<td>386±5</td>
<td>17.0±0.09</td>
</tr>
<tr>
<td>Brachiaria</td>
<td>256±8</td>
<td>885±4</td>
<td>83±4</td>
<td>668±6</td>
<td>370±5</td>
<td>16.8±0.06</td>
</tr>
</tbody>
</table>

• No difference on DM intake among the 3 treatments $P = 0.37$
Results _ Digestibility, weight gain and methane production

Table 2: Organic matter digestibility (DOM), average daily weight gain (ADG), methane yield (MY) (g/kg intake) and methane conversion rate (Ym) of Boran steers ($n=18$; Avg. 216 kg) fed on freshly cut Napier, Rhodes and Brachiaria grasses

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rhodes</th>
<th>Napier</th>
<th>Brachiaria</th>
<th>SEM</th>
<th>P value</th>
<th>IPCC (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOM%</td>
<td>57.1</td>
<td>64.0</td>
<td>61.0</td>
<td>1.37</td>
<td>0.0076</td>
<td></td>
</tr>
<tr>
<td>ADG (g/day)</td>
<td>403</td>
<td>449</td>
<td>468</td>
<td>36.3</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>MY (g/kg DM)</td>
<td>26.7</td>
<td>28.5</td>
<td>27.5</td>
<td>0.77</td>
<td>0.26</td>
<td>23.3</td>
</tr>
<tr>
<td>Ym (% of GEI)</td>
<td>8.73</td>
<td>9.87</td>
<td>9.03</td>
<td>0.252</td>
<td>0.0127</td>
<td>7.0</td>
</tr>
</tbody>
</table>

GEI: gross energy intake; SEM: standard error of mean; IPCC: Intergovernmental Panel on Climate Change

IPCC (2019)
Conclusion

• Our findings suggest that East African cattle could be having higher emissions (MY and Ym) than currently estimated by IPCC 2019 (non-dairy cows on high forage diet) – need for more similar studies
• Improved Brachiaria grass species may only benefit livestock production if management and nutrient input match the species potential - need to integrate better fodder management – Native soils are known to be low in nitrogen
Opportunities going forward;

• Need more on enteric methane emissions from Boran cattle in East Africa

• Grass legume integration/ compatibility studies to improve the nitrogen status grass quality
Thank you for your audience

https://mazingira.ilri.org/