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Abstract
Tanzania’s livestock sector contributes 7.4% of the county’s gross domestic product and provides 
employment to twenty-two-and-a-half million people. However, the sector is Tanzania’s second-highest 
emitter of greenhouse gases (GHG) and negatively affects other ecosystem services. This study aims to 
assess the environmental impacts of different livestock intensification pathways in smallholder farms in 
the Southern Highlands of Tanzania. Data was collected through a literature review, household surveys, 
key informant interviews, and focus group discussions. The Comprehensive Livestock Environmental 
Assessment for improved Nutrition, a secured Environment and sustainable Development along livestock 
value chains (CLEANED) tool was applied to estimate the potential environmental footprints associated 
with current farming practices and interventions to foster improved feeding and heightened productivity 
in terms of land, soil health, water, and GHG emissions. The study’s baseline results show higher absolute 
land, soil, and GHG emission footprints, but lower environmental impacts per unit of output across the 
case study farms. An improved wet season has an insignificant impact on feed basket quality, but on 
improving dry season, average feed basket quality is enhanced by an average of 67%. An increase of 
20 % in productivity is the level of investment at which most environmental efficiency goals are met. 
At 20%, several environmental footprints can be lessened by 14% across dairy-intensifying farms: land 
required (ha/MT FPCM), erosion (Kg soil/Kg FPCM), water use (m3/kg milk), and GHG emission intensity 
(Kg C02eq/ kg milk). However, each farm requires an average of 3% more land to enable this productivity 
boost. Generally, all this study’s scenarios result in neutral or positive environmental change, except 
for the absolute increases in land requirements. This study’s recommendations can inform dairy policy 
development in Tanzania and help development partners to promote climate-smart dairy.

Keywords: Environmental assessment, greenhouse gases, livestock enterprise
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1Assessing the environmental impacts of smallholder dairy intensification through improved feeding strategies in 
the Southern Highlands of Tanzania

       An Notenbaert/ Alliance of Bioversity International and CIAT 

1. Introduction
Sixty to seventy percent of farmers across rural Africa depend on livestock for their livelihoods (FAO 2013, AU-
IBAR 2016, Cornelis 2016, WEF 2019). Trends indicate that between 2030 and 2050, the demand for livestock 
and livestock products will increase two to eight-fold (LiDeSA 2015). Similar growth is expected in Sub-Saharan 
Africa, where demand for animal source foods (ASFs) will surge alongside a growing population and rising 
middle class (Thornton 2010, Robinson & Pozzi 2011, Henchion et al. 2017). Tanzania’s livestock industry has 
multifaceted benefits. For example, it uses manure to produce crops via draught power and nutrient cycling, 
it produces meat and milk for human consumption, it produces capital and insurance, and it carries cultural 
importance and status (Ministry of Livestock and Fisheries Department 2015). It also contributes 7.4% of the 
county’s gross domestic product (Michael et al. 2018). 

In Tanzania, dairy farming is practiced predominantly under mixed crop and livestock farming systems (Alonso 
et al. 2014). Most of the improved dairy cattle are concentrated in the high potential, cooler highland regions 
with subtropical climates. These regions are found around Kilimanjaro, Arusha, Tanga, and Mbeya (Lusato et al. 
2012). Dairy cattle farming in Tanzania’s southern highlands is practiced under intensive, semi-intensive, and 
extensive production systems. In intensive farming systems, cattle are kept and fed in enclosures throughout 
the day and require intensive labor. In extensive production systems, animals are grazed out on the fields 
on a day-to-day basis. A semi-intensive production system is a mix of the previous two: In a semi-intensive 
production system, animals are grazed outside for some time before taken back to an enclosure (Farmers’ 
trend 2019).

Mixed crop and smallholder dairy farming systems are acknowledged as sustainable due to their 
complementarity and synergy, contribution to welfare, food security, income, and poverty alleviation (Amejo 
et al. 2019). The disparity between supply and demand for ASFs indicates enormous potential to increase dairy 
production and improve the welfare of producers and their market agents (Omore et al. 2019). Moreover, 
smallholder dairy farming is quick to recover its initial investment in profit (Michael et al. 2018). Although the 
sector has burgeoning opportunities, achieving optimal and efficient production is a point at issue. Low quality 
feeds, insufficient feeds, poor animal health, and a myriad of other issues that are exacerbated by climate 
change have hindered milk and meat productivity (Swai & Karimuribo 2011, Marc & Martucci 2019, Maleko et 
al. 2018). Strategies to modernize the dairy livestock sector are underway with additional investments such 
as animal feeding, animal health, research, and value addition considered as vital initiatives that can reach 
a target production of 3, 816 million liters of milk countrywide by 2022 (Michael et al. 2018). However, the 
inception and anticipation of these initiatives, for example, improved animal feeding may pose a threat to the 
environment. Therefore, it is often necessary to assess their upshot in existing ecosystem services.

The environmental impacts of dairy livestock production present a significant challenge and source of 
concern for stakeholders (Vries & De Boer 2010, Grossi et al. 2019). Livestock activities significantly impact air 
and climate change, land and soil, water, and biodiversity (Bosire et al. 2016). The traditional intensification 
practices of livestock production in developing countries have resulted in continued expansion of land to 
accommodate forage needs (Steinfeld et al. 2006). Besides its extensive land footprint and significant use of 
biomass, livestock rearing also accounts for almost one third of agricultural water use globally (Mekonnen & 
Hoekstra 2012). Water used in producing feeds has stifled competition in producing forages for animal use 
and food crops for human consumption escalating the water stress index in Sub-Saharan Africa (Peden et al. 
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2009). Moreover, livestock rearing accounts for 15% 
of anthropogenic GHG emissions (FAO 2013). For 
example, in 2016, the agricultural sector contributed 
65.2% of Tanzania’s GHG emissions (WRI 2016). GHG 
emissions in Tanzania increased by 3% between 
1990 and 2016 representing 0.59% of the world’s 
total emissions (WRI 2016). Agricultural emissions 
increased by 65% between 1990 and 2016, mostly 
due to enteric fermentation and manure left on 
pasture (WRI 2016). Overgrazing has also caused 
severe land degradation and soil erosion (Steinfeld 
et al. 2006). 

Perpetuating and protecting the environment, while 
intensifying dairy production systems to harness 
their potential, remains a challenge in the region. 
Data and research on the environmental impacts of 
dairy farming in the Southern Highlands is limited 
(Tungaraza 2013). This missing data is vital for 
decision-makers such as farmers, policymakers, 
and scientists. This study looks at how to design 
eco-efficient systems and better understand their 
environmental tradeoffs. In this case, a minimum 
data ex-ante model, CLEANED, assessed the potential 

environmental impacts of improved feeding and 
increased productivity in smallholder dairy farming 
systems to reach a solution that satisfies consumer-
driven demand while maintaining ecological integrity. 

This study assesses the environmental impacts of 
increasing productivity through improved feeding 
as livestock intensification pathway in smallholder 
dairy farming in the Southern Highlands of Tanzania. 
Specifically, the study explores the following research 
questions:

1. What are the land, soil, water and GHG 
footprints of the current feeding practices in 
dairy intensified farming systems in Rungwe, 
Mufindi, and Njombe?

2. What are the changes in baseline feed 
basket quality when you introduce improved 
forages?

3. What tradeoffs and synergies result when 
you increase dairy productivity by 10%, 
15%, 20%, 25% and 30% through improved 
feeding strategies?



3Assessing the environmental impacts of smallholder dairy intensification through improved feeding strategies in 
the Southern Highlands of Tanzania

Figure 1: Map of the study district

2. Materials and methods
2.1 Description of the study area
The study was undertaken within a CIAT-led, IFAD-funded research project called ‘Climate-smart dairy systems 
in East Africa through improved forages and feeding strategies: enhancing productivity and adaptive capacity 
while mitigating GHG emissions.’ This study focuses on the Rungwe, Mufindi, and Njombe Districts of the 
Southern Highlands of Tanzania (Figure 1).

Physical and socio-economic attributes of the study area
Rungwe is an administrative district located in the Mbeya region. It is bordered by the rural Mbeya District in 
the north, the Njombe Region in the east, the Kyela District in the southeast, the Ilege District in the southwest, 
and the Mbeya Urban District in the west. Rungwe District lies between latitude 9°15’00.0”S and longitude 
33°40’00.0”E (Google Earth 2019). It covers a total area of 2,221 square kilometers and is one of the most 
densely populated districts in Tanzania, with a total population of 339,157 people and a population density 
of forty-five people per square kilometer (Paul et al. 2017, Tanzania National Bureau of Statistics 2013). The 
study site is located in Lufingo ward, 1,303 meters above sea level. It receives an average annual precipitation 
of 1100 mm, with an average temperature of twenty degrees centigrade (Climate Data Organization 2019). 
Lufingo ward has deep and well-drained fertile soil that is composed of sandy clay loam and sandy loam 
soils. These soils are classified as Acrisols by the Food and Agriculture Organization. Agriculture is the main 
economic activity of Rungwe District. According to the 2019 Rungwe Dairy Livestock Report, Rungwe District 
produced 44,758,989 L of milk in 2018 and 2019, which is equivalent to nearly 146,751 L per day. Production 
decreased by 29%, or from 62,971,875 L to 18,212,886 L between 2017 and 2018. Rungwe is also one of the 
leading food baskets of Tanzania. The predominant crop is maize. Other crops include cooking bananas, 
beans, round potatoes, sweet potatoes, and cassava. The major cash crops grown in the area are tea, coffee, 
and pyrethrum. 

Mufindi is an administrative district located in the Iringa region of Tanzania. It lies between latitude 8°30›00.0»S 
and longitude 35°15›00.0»E (Google Earth 2019). Its total land size of 6,170,000 ha, of which 4,504,000 ha is 
suitable for cultivation (Paul et al. 2017). Mufindi District has a total population of 265,829, with a population 
density of twenty-seven people per square kilometer (NBS & OCGS 2012). The study site is located in Igowole 
Ward, 1,934 meters above sea level. This zone usually receives an average annual precipitation of 1400 mm, 
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with temperatures between thirteen and eighteen degrees centigrade (Paul et al. 2017). Igowole Ward is 
also well endowed with reddish loam and clay soils, which favor various crops. Farmers in this area practice 
mixed crop-livestock and tree farming systems. The main economic activity in Mufindi District is cropping 
wheat, potato, common bean, and vegetables, and selling livestock products such as beef and milk. Timber 
harvesting is also common in some areas.

Njombe is an administrative district located in the Njombe region. It was under the Iringa region’s 
administration until 2012, when it was declared an independent region with four district zones. It falls 
between latitude 9°15’00.0”S and longitude 35°00’00.0”E (Google Earth 2019). Njombe District Council borders 
Njombe Town Council in the south and the southwest. Wanging’ombe District borders Njombe District in the 
west. Njombe District is bordered by the Morogoro region in the east and Mufindi District in the north. Its 
total land surface area is 3134 square km (Paul et al. 2017). According to the 2012 National Population and 
Housing Census General Report, Njombe had a total population of 85,747 people, with a population density of 
thirty-three people per square km. The study site is in Kichiwa Ward, 1,826 meters above sea level. This area 
usually receives an average annual precipitation of 1160 mm, with an average temperature of sixteen degrees 
centigrade (Climate Data Organization 2019). The soils are composed of reddish loams and clay with medium 
fertility. Agriculture is the main economic activity in Njombe. Food crops include maize, wheat, beans, and 
Irish potatoes. Cash crops grown in the area include tea, pyrethrum, and flowers. Other economic activities 
include livestock keeping and forestry. The photo below shows maize, a predominant crop in the study area. 

       Beatus Nzogela/CIAT, 2018.

2.2 Farm types and case study farms
To understand the farming systems in the Southern Highlands, this study adopted the typology formulated by 
the International Livestock Research Institute (ILRI) through the IFAD-funded Greening Livestock project. The 
ILRI team collected data from 1,200 households in four regions. This study only focuses on the three study 
sites of the Climate-Smart Dairy Project (Table 1). To develop the typology, the team used seven indicators: 
asset index following, progress out of poverty index, household dietary diversity score, Tropical Livestock 
Units, income indicator, diversity indicator, and dependency ratio (Filmer & Pritchett 2001, Innovations for 
Poverty Action 2015, Schreiner 2016, FAO 2011, Njuki et al. 2011). From this assessment, we created a typology 
that consists of five farm types:

1. Poor

2. Dairy intensifying

3. Diversifying households

4. Livestock dependent and off-farm income

5. Non-livestock revenue, mainly crop
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Table 1: Farm types and number of households surveyed in the Greening livestock project per region

Farm types Total number of households 
(without Mvomero Region) % Mufindi % Rungwe % Njombe %

Poor 123 13% 10 4% 68 19% 45 13%

Dairy intensifying 308 33% 76 31% 78 22% 154 45%

Diversifying households 230 25% 62 26% 77 22% 91 26%

Livestock dependent and off-
farm income 108 12% 51 21% 34 10% 23 7%

Non-livestock revenue, mainly 
crop 169 18% 44 18% 93 27% 32 9%

  938 1 243 1 350 1 345 1

33% of all farmers in the Southern Highlands were categorized as dairy intensifying (Kihoro et al. 2021). This 
was the highest in numbers, showing the importance of assessing the dairy intensified type. Characteristics of 
a dairy intensifying farm include around 5.3ha of land, 7.5 Tropical Livestock Units, or (at least two improved 
dairy cows under a zero-grazing system, 9 L of milk yield during the dry season, and 10 L during the wet 
season. In addition to the ILRI criteria, this study required participation in the Feed Gap Assessment (Paul 
et al. 2020) and assessed the 36 households that were part of the Climate Smart Dairy Project. Farms were 
scored based on ILRI’s characteristics of a dairy intensifying farm, and the highest-scoring farm from each 
district was chosen to be modeled. From now on, these farms will be referred to as Rungwe, Mufindi, and 
Njombe. These farms are case studies, and not representative of their district (Table 2).

Table 2: An overview of the case study farms

Case study 
farms

District Population 
density (pp/
km2)

Precipitation 
(mm/yr)

Altitude 
(meter 
above sea 
level)

Topography

Number 
of animals 
(Tropical 
Livestock 
Units/ha)

Productive 
animals

Milk/ 
lactating 
cow (kg/
yr)

Fertilizer

(Kg N/yr)

Rungwe Rungwe 45 1100 1303 Hilly 4.87 1 2135 64

Mufindi Mufindi 27 1400 1934 Steep 6.53 1 1525 5

Njombe Njombe 33 1160 1826  Flat 4.63 1 2440 40

Source :Paul et al. 2018 & Nyangaga 2019.

2.3 Data analysis and modeling
Table 3: A summary of CLEANED indicators used 

Indicator Explanation 
Land 
requirements

Estimates the total land required to grow the feed 
items prerequisite for the animals present on the 
livestock enterprise.

Soil impacts Calculated by nitrogen (N) flows, entering and leaving 
the livestock enterprise.

Water impacts Estimates the amount of water used for feed 
production. It is presented by the actual crop 
evapotranspiration.

GHG impacts It is calculated from different sources of emission 
using the Intercontinental Panel on Climate Change 
tier one and two methodologies. 

CLEANED approach
This study used the CLEANED tool to assess the 
potential environmental footprints of the Southern 
Highlands’ smallholder dairy farming systems. 
CLEANED is a rapid ex-ante environmental impact 
assessment tool that allows the users to explore 
multiple impacts of developing livestock value 
chains in, straightforward ways. The CLEANED tool 
is a minimum data entry tool that consists of inputs, 
results, parameters, and calculations (Mukiri et al. 
2019). The tool was used to model the potential 
consequences of intensifying livestock by examining 
four indicators, which include land requirements, 
impacts on soil, impacts on water, and GHG 
emissions (Table 3). 
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Figure 2: Current annual feed baskets in CSFs

CLEANED inputs and parameterization
For each of the three farms, this study constructed 
a typical feed basket (Figure 2). In order to analyze 
the feeding practices of farmers, the team used two 
data collection tools. The Feed Assessment Tool is a 
general tool that gives an overview of feeding trends 
throughout the year (ILRI 2014). This tool extracted 
essential data on livestock production systems, feed 
management, agro-climatic conditions, and season 
lengths. The second tool, the Feed Gap Assessment, 
gives detailed information about cattle management 
on a daily basis. To understand feeding practices at 
different times of the year, this study conducted two 

The tool was parameterized for each site. The parameterization criteria included agroecological attributes, 
livestock characteristics, crop performance, and nutritional value of feed items. The data for parameterization 
was sourced from experimental data, literature sources, and experts’ opinions. The literature sources used 
for this study included but are not limited to Feedipedia, Bairnsley Highlands, the United States Department 
of Agriculture’s nutritional database, the New South Wales Department of Primary Industries, Access to 
Global Online Research on Agriculture, Food and Agriculture Organization repositories, the International Soil 
Reference and Information Center, tropical forages facts sheets, and CGIAR publications. Appendices 1-4 give 
a breakdown of the data that was used for parameterization and its sources. 

Improved feeding scenarios
Once the processes of parametrization and inputting were complete, it was possible to run baselines and 
different feed intervention scenarios (Table 4).

Table 4: Improved feeding scenarios

Scenario Explanation
Improved wet season feeding (scenario one) This scenario involved replacing food crop residues such as groundnut and maize stover with 

Brachiaria, so that Brachiaria was taking up 15% of the feed basket.

Improved dry season feeding (scenario two) Low-quality feed such as maize crop residue was replaced with Rhodes and Brachiaria hay, with the 
hay taking up 40% of the feed basket.

Improved wet and dry season feeding (scenario three) A combination of the first two scenarios, comprising of a high-quality feed intake in the wet season 
and high-quality hay in the dry season to maintain a constant supply of quality forage.

data collections per farm in wet and dry seasons. The 
team then extracted input:

i. Current feed baskets and their quantities

ii. Livestock numbers

iii. Daily milk yields

iv. Heart girth, circumference, (later converted 
to weight)

Other input data included crop residue uses and 
management and farm inputs. This data was 
obtained from the IFAD socio-economic household 
survey (Nyangaga 2019). 
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It is imperative to note that, during both seasons, the percentage of natural pasture intake was reduced 
to improve the quality of the animals’ diet. Brachiaria and Rhodes grass were chosen because of their 
high CP levels (Appendix 4). These grasses are extensively piloted by farmers in the region, with promising 
performance. Brachiaria and Rhodes grass varieties have a higher DM content than food crop residues. 
An additional advantage of Brachiaria is its high tolerance to drought; thus, it performs better during the 
beginning of the drier months (Osele et al. 2018).

Productivity scenarios
This study assessed each of the three aforementioned feed intervention scenarios within the context of a 
10%, 15%, 20%, 25%, and 30% increases in milk yield. This resulted in fifteen separate analyses. A feasibility 
test, meant to assess whether daily DM requirements were less than or equal to three or four percent of the 
animals’ body weight, concluded that these increases were realistic (Table 5).

Table 5: Productivity increases in relation to daily DM requirements 

 Farms Feeding scenarios 10% 15% 20% 25% 30%

2.2% 
of body 
weight

3.5 % 
of body 
weight

4% of 
body 
weight

Rungwe - Daily 
DM requirements

scenario 1 11.97 12.17 12.37 12.57 12.77

12.41 19.74 22.56scenario 2 12.64 12.85 13.06 13.27 13.48

scenario 3 12.35 12.60 12.85 13.09 13.34

Mufindi - Daily 
DM requirements

scenario 1 9.30 9.48 9.66 9.83 10.01

8.38 13.34 15.24scenario 2 8.66 8.80 8.94 9.08 9.22

scenario 3 8.72 8.86 9.00 9.14 9.28

Njombe - Daily 
DM requirements

scenario 1 12.14 12.46 12.78 13.10 13.42

10.03 15.96 18.24scenario 2 11.92 12.20 12.48 12.76 13.04

scenario 3 11.68 11.95 12.22 12.50 12.77

The CLEANED model then quantified smallholder dairy farming’s environmental footprints for each scenario. 
These footprints were analyzed in terms of land requirements, impacts on soil, impacts on water, and 
GHG emissions (Table 3). The differences between the aforementioned baseline and these scenarios were 
presented using a legend (Figure 3).

Figure 3:  Different color shades and intervals used to visualize feed 
and productivity scenarios

Scenarios that result in a positive environmental 
change are referred to as best scenarios and are 
represented in this study’s tables by + signs. They 
represent an eco-efficient path and increased 
milk yields. Any scenario that results in a negative 
change is referred to as a worst-case scenario 
and considered undesirable because it negatively 
affects the environment. Worst-case scenarios are 
represented in this study’s tables by - signs.

Most e�cient

Least e�cient

Legend
Above -11

Above -11

-7 to -11
-1 to -6

0
1 to 6
7 to 11

       An Notenbaert /CIAT, 2018. 
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3. Results and discussion
The baseline results were computed using the current livestock enterprise’s inputs. These inputs include feed 
basket and milk production data. The projected environmental responses to changes in feed and productivity 
are results of the scenarios formulated by this study. To understand the differences between the baseline 
results and the scenarios, see the overview of the case study farms (Table 2). 

3.1 Environmental footprints of current feeding practices 
across case study farms
The case study farms’ total on and off-farm land requirements varied between 0.86 and 1.4 ha. Under the 
current feeding and milk production system, Mufindi requires more land than Rungwe and Njombe (Figure 
4). This is because Mufindi has more livestock per ha than Rungwe and Njombe (Table 2). Results show that 
Njombe is likely to be more intensive in terms of production, as it needs less land to produce more milk. 
This is because the region has some of the highest percentages of improved or purebred cattle, thanks to a 
Sokoine University research program. Crop residues account for 48% of the farms’ total land requirements. 
For example, maize, a staple food in the region, occupies a large portion of land in Mufindi and Njombe 
showing the importance of Mixed crop-livestock farming systems in these regions. Grasses and food crops 
compete for land on these farms (Maleko et al. 2018). Smallholders face a formidable challenge in choosing 
whether to grow food crops or forages on their limited land (Thornton 2010). This issue calls for sustainable 
intensification efforts. 

The area on each farm that is dedicated exclusively to planted grass varies from 0.1 to 0.4 ha. These areas 
account for only 20% of the farms’ total land requirements. This percentage can be attributed to competition 
with other, more profitable, land uses and decreasing land sizes (Bosire et al. 2019).

Figure 4: Total land area required for feed production

This study also analyzed nutrient mining within smallholder dairy systems (Figure 5). It is imperative to note 
that soil loss and nutrient loss can decrease efficiency. Rungwe displays more nutrient mining than Mufindi and 
Njombe. Despite having an inorganic fertilizer application rate of 64 Kg nitrogen (N) per year, with additional 
organic animal manure, Rungwe was unable to meet nutrient requirements. During the dry season, when 
there was little natural pasture and planted forage, Mufindi and Njombe use more than 95% of their food crop 
residues as feed, leaving little biomass on the ground. This is a common farming practice (Maleko et al. 2018). 
Despite Rungwe and Njombe farmers’ efforts to balance nutrients by using organic and inorganic sources of 
N and planting N-fixing crops such as legumes, they were unable to replenish the soil’s N. Mufindi’s minimal 
mineral fertilizer application amounted to 5 Kg nitrogen (N) per year. Most soils in Tanzania are severely 
weathered and have limited but variable capacities to hold and release nutrients in plant-available forms and 
to sustain low-input subsistence agriculture (Funakawa et al. 2012). It is therefore important for Tanzanian 
farms to leave substantial amounts of biomass on their fields to help in regaining N in the soil. However, 
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these intensifying dairy farms play a critical role in soil fertility, as their manure is recycled rather than wasted 
(Nyangaga 2019). Even though these organic and inorganic fertilizer inputs do not have a broad visible effect 
on the soil’s N balance, they count as efforts towards maintaining a nutrient balanced cycle. 

Njombe recorded the least soil erosion because the farm lies on flat topography. Rungwe and Mufindi are 
situated on hills with different slope angles. Mufindi experiences more erosion due to steep topography and 
planting crops with minimal cover. Increased cultivation on terraneous land can compromise soil stability and 
compactness (Fu et al. 2016). This is evident in Mufindi. Forages are soil stabilizers that assist in revegetation 
(Singer et al. 2009). Stabilization and revegetation are crucial for agricultural lands that are situated on hills, 
such as Mufindi and Rungwe. The important food crops in Rungwe and Njombe, such as banana and maize, 
have minimal cover factor. This study advises planting more forage at these farms to curb erosion.

Figure 5: Nutrient mining and soil loss in the case study farms

While the farms used similar 
amounts of water, water use varied 
considerably depending on feed 
area. The dairy intensifying farms 
were entirely dependent on rain-
fed crop and feed production. In 
fact, more than 80% of Tanzania’s 
population depends on climate-
sensitive, rain-fed agriculture (Natai 
2016). Tanzania is therefore likely 
to be vulnerable to the effects of 
climate change. However, the farms’ 
predominant feeding systems 
used an average of 45m3 per ton 
of water. This is below the global 
average of 200 m3 per ton (Gerbens-
Leenes et al. 2013). In producing a 
liter of milk, these farms display 
great efficiency when compared 
to the global average (Ritchie & 
Roser 2020). In general, these dairy 
intensified farms seem to be water 
efficient. Appendix 5  shows the 
farms’ water use.
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Testing different forage varieties like Brachiaria for yield and drought resilience. Local livestock feed 
does not have the same nutritional value as improved varieties. Livestock farmers in  Tanzania, are 
finding ways of boosting their production and lowering their environmental impact by planting 
improved forages.        Georgina Smith/CIAT 
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GHG emission intensity varied greatly across the farms (Figure 6). Enteric fermentation was the farms’ main 
source of GHG emission and is in accordance with existing estimates (WRI 2016). This type of fermentation 
is a result of low-quality feeding practices, such as using natural pastures and crop residues with high fiber 
content. This slows the animals’ digestive process and creates more room for methane emissions. The farms 
report similar off-farm emissions. Nitrous oxide (N20) emissions result from mineral N fertilizers, animal 
manures, crop residues, N-fixing crops, and sewage sludge (Bockman & Olfs 1998). It is therefore important 
to ensure that fertilizers are used correctly to avoid excessive N20 emissions. 
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Figure 6: GHG emission intensity per ha in the case study farms

Absolute GHG emission intensities are similar across the farms (Figure 7). In relative terms, Mufindi requires 
more emission intensity to produce a kilogram of protein than Rungwe and Njombe. The average global 
emission intensity required to produce a liter of milk is 2.8 kg of CO2eq per kg of FPCM (FAO 2013). Only 
Njombe falls below this number, which indicates a possible reduction in farm’s GHG footprints at the lowest 
production unit. Mufindi’s emission intensity is twice the global average, while Rungwe is slightly above the 
average. Farming practices in Rungwe and Mufindi are further increasing the concentration of GHG in the 
atmosphere.
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Responses to changes in baseline feed basket
Reducing natural pasture intake and improving wet season feed with 15% Brachiaria hybrid increased CP 
content by 5%, 1%, and 4% in Rungwe, Mufindi, and Njombe respectively. However, after adding Brachiaria 
hay and reducing the intake of banana crop residue during the dry season in Rungwe, DM, CP, and ME 
contents doubled. During the dry season, replacing maize stover with Brachiaria and Rhodes hay in Mufindi 
and Njombe increased the overall feed basket quality by 41% and 44% respectively. Improving feeding during 
both the wet and dry seasons reduced the overall quality of the feed basket in Rungwe by 8% but had no 
effect in Mufindi and Njombe. However, during the dry season, feed basket quality improved by an average of 
67% in dairy intensifying farms. It is patently clear that these smallholder farms’ priority should be improving 
feeding during the dry season. In addition, data shows that Rhodes grass and Brachiaria hybrid grass yield 
more per ha than food crops. These grasses also boast high CP levels, which is necessary for improving 
feed digestibility. Increased ME in these farms supports the cattle’s growth and other metabolic processes. 
Increased DM content can help smallholders resist drought, especially when forage is scanty. Appendix 6 
shows the data that supports these conclusions.

Trade-offs in environmental impacts following increased 
productivity through improved forages
Feed production and increased milk productivity requires more land (Bosire et al. 2019, Notenbaert et al. 
2020). Increased milk production in Njombe can augment the livestock industry’s land footprint by 8% as 
introducing planted forages requires land. This can result in converting new areas, such as forests, into farms 
and negatively affecting other ecosystems. A reduced demand for land indicates that intensification may help 
reduce land requirement and promote environmental conservation (Steinfeld et al. 2006, Bosire et al. 2016). 
However, very few studies have analyzed the consequences of reduced demand for land due to increased 
productivity in livestock production (Wirsenius et al. 2010, Tilman et al. 2011). This presents an opportunity 
for scientists and breeders to increase production on small portions of land.

The proposed interventions did not have a visible effect on the farms’ percentage of mined and leached land. 
Moreover, increased productivity did not affect absolute erosion but rather reducing erosion per kg milk. 
It is possible to minimize soil loss in hilly areas such as those of Rungwe and Mufindi by planting forages 
while increasing productivity. It is important to note that soil quality and health are vital to productivity in 
sustainable agro-ecosystems. 

The farms’ absolute water requirements remained unchanged in all the scenarios. However, within the 
context of producing kgs of milk and protein, water requirements decreased. This implies increased 
production efficiency per unit product. When productivity increased by 15%, the protein water requirements 
for Mufindi reduced, indicating a possible maximum efficiency threshold. This reduced water requirement can 
be attributed to improved feed baskets that consist of climate-smart forage such as Brachiaria, which is well 
known for its efficiency, quick maturation rate, and fast absorption (Njarui et al. 2016). 

The results did not show changes in the farms’ absolute GHG emissions. However, as productivity increases, 
GHG emissions in relation to milk and protein production decrease. Mufindi, for example, shows a 12% 
reduction in GHG emissions related to milk if productivity increases by 15% during the dry season or both 
seasons. The farms’ gross energy efficiency improved with the introduction of improved forages, reducing 
their relative emission intensities. Studies have found that more energy-efficient animals produce less waste 
in the forms of methane and N excretion (Chagunda et al. 2009). Enteric methane can also be mitigated 
because it is a short-lived climate pollutant (FAO 2017). Farms with low emission intensities are the most 
environmentally sustainable (Osele et al. 2018). In general, the farms’ production tends towards increased 
efficiency and productivity. This bodes well for both a reduced carbon footprint and food security (FAO & GDP 
2018). A variety of factors also changed in relation to improved productivity (Table 6-9).
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Table 6: Land required in relation to increased productivity through improved forages

Case study farms and 
improved feeding 
scenarios

Land requirements 

10% 15% 20% 25% 30%

ha/yr
ha/MT 
FPCM ha/yr

ha/MT 
FPCM ha/yr

ha/MT 
FPCM ha/yr

ha/MT 
FPCM ha/yr

ha/MT 
FPCM

Rungwe

Improved wet 
season feeding - ++ - ++ - +++ - +++ - +++

Improved dry 
season feeding - ++ - ++ - +++ - +++ - +++

Improved wet and 
dry season feeding - ++ - ++ - +++ - +++ - +++

Mufindi

Improved wet 
season feeding - ++ - ++ - +++ - +++ - +++

Improved dry 
season feeding - ++ - +++ - +++ - +++ - +++

Improved wet and 
dry season feeding - ++ - +++ - +++ - +++ - +++

Njombe

Improved wet 
season feeding - ++ - ++ - +++ -- +++ -- +++

Improved dry 
season feeding - ++ - ++ - +++ - +++ -- +++

Improved wet and 
dry season feeding - ++ - ++ - +++ - +++ -- +++
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Table 7: Increased productivity through improved forages and impacts on soil

Case study farms and 
improved feeding 
scenarios

Soil impacts
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Rungw
e

Improved 
wet season 
feeding    ++    ++    +++    +++    +++

Improved 
dry season 
feeding    ++    ++    +++    +++    +++

Improved 
wet and 
dry season 
feeding    ++    ++    +++    +++    +++

M
ufindi

Improved 
wet season 
feeding    ++    ++    +++    +++    +++

Improved 
dry season 
feeding    ++    +++    +++    +++    +++

Improved 
wet and 
dry season 
feeding    ++    +++    +++    +++    +++

Njom
be

Improved 
wet season 
feeding    ++    ++    +++    +++    +++

Improved 
dry season 
feeding    ++    ++    +++    +++    +++

Improved 
wet and 
dry season 
feeding    ++    ++    +++    +++    +++
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Table 8: Increased productivity through improved forages and impacts on water

Case study farms and 
improved feeding scenarios Water impacts
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Rungwe

Improved wet 
season feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Improved dry 
season feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Improved 
wet and dry 
season feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Mufindi

Improved wet 
season feeding  ++ +  ++ +  +++ ++  +++ ++  +++ ++

Improved dry 
season feeding  ++ +  +++ +  +++ ++  +++ ++  +++ ++

Improved 
wet and dry 
season feeding  ++ +  +++ +  +++ ++  +++ ++  +++ ++

Njombe

Improved wet 
season feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Improved dry 
season feeding  ++ +  ++ ++  +++ ++  +++ +++  +++ +++

Improved 
wet and dry 
season feeding  ++ +  ++ ++  +++ ++  +++ +++  +++ +++
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Table 9: Increased productivity through improved forages and impacts on GHG emissions

Case study farms and improved 
feeding scenarios GHG emissions
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Rungwe

Improved wet season 
feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Improved dry season 
feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Improved wet and dry 
season feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Mufindi

Improved wet season 
feeding  ++ +  ++ +  +++ ++  +++ ++  +++ ++

Improved dry season 
feeding  ++ +  +++ +  +++ ++  +++ ++  +++ ++

Improved wet and dry 
season feeding  ++ +  +++ +  +++ ++  +++ ++  +++ ++

Njombe

Improved wet season 
feeding  ++ +  ++ ++  +++ ++  +++ ++  +++ +++

Improved dry season 
feeding  ++ +  ++ ++  +++ ++  +++ +++  +++ +++

Improved wet and dry 
season feeding  ++ +  ++ ++  +++ ++  +++ +++  +++ +++
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4. Conclusions and recommendations
This study shows that current smallholder dairy farming practices in the Southern Highlands have large land, 
soil, and GHG emission footprints but little environmental impact per unit of output. Njombe farm is more 
intensified than other farms as it produces more milk with less land. Rungwe and Mufindi experience more 
erosion because of their topography. Enteric fermentation is a major source of GHG emissions, mainly due to 
increased crop residue feeding and readily available natural pasture. Also, the feed baskets of the Southern 
Highlands are similar to those of the Tanga region.

This analysis shows that the dairy industry’s feeding and productivity strategies result in neutral and positive 
environmental impacts, apart from the absolute increases in land requirements. Improving the baseline feed 
basket with Brachiaria and Rhodes grass during both the wet and dry seasons reduced the quality of the feed 
basket in Rungwe by 8% but had no effect on Mufindi and Njombe. Improving feeding during the dry season 
yields an average of 67% improvement in the DM, CP, and ME contents of the feed basket, and is therefore 
an optimal strategy.

From an environmental point of view, a 20% increase in production is ideal, as most environmental efficiencies 
are improved. At this level, land requirements (ha/MT FPCM), erosion (kg soil/ kg FPCM), water use (m3/kg 
milk), and GHG emission intensity (kg CO2eq/kg milk) became 14 % more efficient in the case study farms. 
Each farm requires an average of 3% more land at this level. The results of this study show that smallholder 
dairy farmers can fill gaps in the milk market because of surplus milk production. With a 20% increase in 
productivity, these farms can produce an average of 12L of milk per day per crossbred cow. Although this 
is not the recommended average, it could begin to shift Tanzania’s milk industry from sustenance farming 
towards commercial farming. 

This study also shows that scenarios that analyze both feed and productivity better inform decision-making. 
Finally, this study presents a tool that can help stakeholders make plans and update policies geared towards 
intensifying livestock systems within environmental limits. 

Testing different forage varieties like Brachiaria for yield and drought resilience. Local livestock feed does not have the same nutritional value as improved 
varieties. Livestock farmers in  Tanzania, are finding ways of boosting their production and lowering their environmental impact by planting improved 
forages.       Georgina Smith/CIAT 
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Appendix 1: Area parameters
Rungwe Mufindi Njombe Source

Annual precipitation mm/yr. 1100 1400 1160 1

Rainy season No. of months/year 7 7 7 1

Soil type FAO Acrisols Lixisols Lixisols 2

SoilN g/kg 0.5 0.3 0.8 2

SoilC g/kg 2 1.3 1.7 3

Soil clay % 32 34 39 2

Bulk density g/c m3 1.3 1.5 1.5 2

Soil depth M 1.25 2 2 4

ET0 mm/year 1460 1460 1460 5

Notes: 1. Paul et al. 2017. 2. ISRIC 2020. 3. Experimental data from soil tests. 4. ISRIC – World Soil Information. 
Lixisols (LX). 5. FAO. 1998a.

Appendix 2: Livestock parameters
Category Average Body 

weight (kg)
Grazing 
displacement 
(km/day)

calving 
interval 
(years)

Sources Notes

Rungwe Cows – improved 564 0 1.2 1, 2 The average body weight given represent a 
disaggregated number of cows, i.e., 1 cow

Steers/heifers 
improved

327 0 1, 2 “

Mufindi Cows – improved 381 0 1.2 1, 2 “

Steers/heifers 
improved

290 0 1, 2 “

Njombe Cows – improved 456 0 1.2 1, 2 “

Steers/heifers 
improved

246 0 1, 2 “

Notes: 1. Bairnsley Highlands 2009. 2. Paul et al. 2017.
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Appendix 3: Crop parameters

Crop product

M
ain product  

fresh yield  
(t FW

/ha)

M
ain product DM

 
content fraction

Average harvest 
 index

M
ain product N 

content (kg N/kg 
DM

)

Crop residue N 
content (kg N/kg 
DM

)

C (crop cover)  
factor

Energy (kcal per FW
 

100g)

W
ater content (g 

per 100 g)

Energy (kcal per 100 
g DM

)

Kc: Initial

Kc: M
idseason

Kc: Late

Banana 73.063 0.222 0.4413 0.01511 0.01411 0.6004 89.0011 74.9111 346.0011 0.50012 1.10012 1.00012

Brachiaria hybrid 57.001 0.261 0.901 0.0221 0.000 0.0104 - - - 0.60012 1.10012 1.05012

Brachiaria hay 57.001 0.841 0.901 0.0081 0.000 0.0104 - - - 0.60012 1.10012 1.05012

Rhodes hay 54.002 0.862 0.901 0.0162 0.000 0.0104 - - - 0.60012 1.10012 1.05012

Groundnut 2.323 0.242 0.458 0.01013 0.01313 0.1504 567.0011 6.5012 606.4211 0.00012 1.05012 0.60012

Lablab 8.001 0.222 0.909 0.0372 0.000 0.1504 - - - 0.40012 1.15012 0.55012

Napier 105.006 0.216 0.906 0.0135 0.000 0.0104 - - - 0.60012 1.10012 1.05012

Natural pasture 45.002 0.282 0.901 0.0082 0.000 0.0104 - - - 0.30012 0.75012 0.75012

Desmodium 51.002 0.242 0.901 0.0252 0.000 0.1504 - - - 0.40012 1.15012 0.55012

Bothriochloa 36.005 0.372 0.901 0.0132 0.000 0.0504 - - - 0.3001 0.7501 0.7501

Rhodes 54.002 0.252 0.901 0.0142 0.000 0.0104 - - - 0.5501 1.0001 0.8501

Hyparrhenia rufa 42.002 0.262 0.901 0.0112 0.000 0.0504 - - - 0.30012 0.75012 0.75012

Guatemala 90.002 0.222 0.901 0.0142 0.000 0.0104 - - - 0.60012 1.10012 1.05012

Buffel 45.002 0.302 0.901 0.0112 0.000 0.0104 - - - 0.60012 1.10012 1.05012

Maize 4.333 0.302 0.5210 0.01312 0.00614 0.1004 36511 10.371 407.2311 0.15012 1.20012 0.60012

Natural pasture-
Njombe  
(average of natural 
pasture,  
Bothriocloa & 
Hyparrhenia rufa)

411 0.301 0.901 0.0111 0.0111 0.0501 - - - 0.30012 0.75012 0.75012

Natural pasture-
Mufindi  
(average of natural 
pasture  
and Cenchrus 
ciliaris)

451 0.291 0.901 0.0101 0.0001 0.0501 - - - 0.30012 0.75012 0.75012

Notes: 1. Expert data from Dr. Solomon Mwendia – forage agronomist, Alliance of Bioversity and CIAT; Jessica Mukiri 
– research associate, Tropical Forages Program, Alliance of Bioversity and CIAT; and Emmanuel Mwema – research 
consultant, Alliance of Bioversity and CIAT. 2. Feedipedia 2019. 3. Paul 2017. 4. Ahmed et al. 2014. 5. The Alliance 
of Bioversity International and CIAT & Australian Government 2019. 6. Osele et al. 2018. 7. Trevor Wilson 2015. 8. 
Maheswarappa et al. 2011. 9. Grotelüschen et al. 2014. 10. Australian Society of Plant Scientists et al. 2018. 11. USDA 
2019. 12. FAO 1998b. 13. New South Wales Government Nutritional Database. 14. National Research Council 1978. 
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Appendix 4: Feed parameters
Feed DM content (%) ME content  

(megaJoules/kg DM)
CP content (% 
DM)

Banana (Musa acuminata) - crop residue 9.004 8.664 9.504

Groundnut (Arachis hypogaea) - crop residue 89.834 8.42 14.52

Lablab (Lablab purpureus) - forage 18.304 11.434 22.942

Napier grass (Pennisetum purpureum) - forage 15.003 9.883 11.003

Rhodes grass (Chloris gayana) - hay 86.402 8.102 10.102

Brachiaria hybrid – hay 84.001 7.003 9.003

Greenleaf desmodium (Desmodium intortum) -forage 24.202 7.402,3 15.502

Creeping bluegrass (Bothriochloa insculpta) - forage 36.602 8.102 4.302

Hyparrhenia rufa (forage) 31.102 7.802 4.202

Rhodes grass (Chloris gayana) - forage 24.902 8.102 10.102

Naturally occuring pasture - grazing 28.001 5.001 6.001

Guatemala grass (Tripsacum andersonii) - forage 22.002 8.201 5.501

Buffel grass (Cenchrus ciliaris) - forage 30.102 8.102 9.002

Brachiaria hybrid (forage) 26.003 7.003 9.003

Maize (Zea mays) – stover 87.005 6.92 3.902

Natural pasture – Njombe (average of natural pasture, Bothriocloa & Hyparrhenia 
rufa)

31.901 6.971 4.831

Natural pasture - Mufindi (average of natural pasture & Cenchrus ciliaris) 29.051 6.551 7.501

Notes. 1: Expert data from Dr. Solomon Mwendia – forage agronomist, Alliance of Bioversity and CIAT; Jessica Mukiri 
– research associate, Tropical Forages Program, Alliance of Bioversity and CIAT; and Emmanuel Mwema – research 
consultant, Alliance of Bioversity and CIAT. 2. Feedipedia 2019. 3. Osele et al. 2018. 4. New South Wales Government 
Nutritional Database. 5. National Research Council 1978. 

Appendix 5: Water requirements 
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Appendix 6: Response to changes in 
baseline feed baskets
Rungwe

Mufindi
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