

International Center for Tropical Agriculture Since 1967 Science to cultivate change

research program on Livestock

Agricultural intensification pathways and agroenvironmental trade-offs in the Greater Mekong

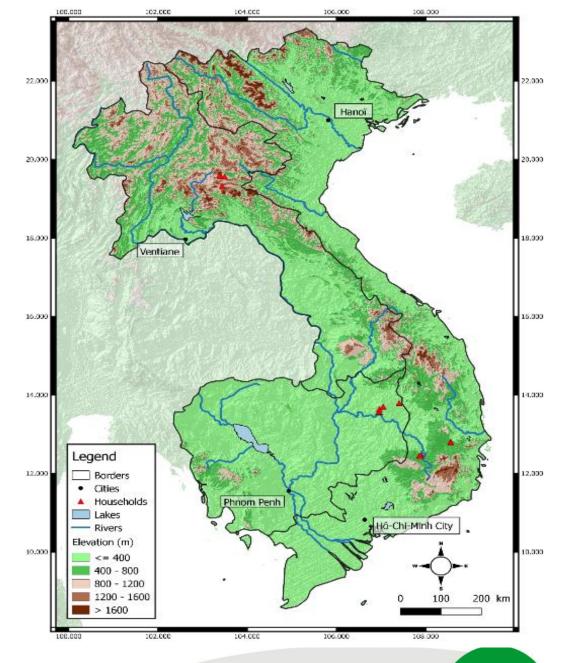
20th of August 2019, Montevideo, Uruguay Farming Systems Design Conference 'Strategies to reduce environmental impacts of agricultural systems'

Birthe K. Paul, Victor Tungani, Carole Epper, Damien Tschopp, Dharani Burra, Chau Thi Minh Long, Sabine Douxchamps

B.Paul@cgiar.org

Introduction

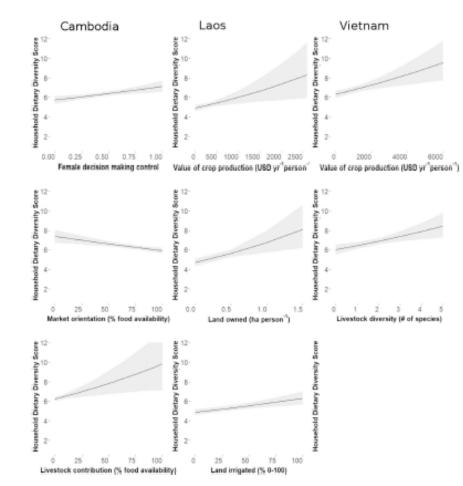
- Greater Mekong Subregion: Cambodia, China, Laos, Myanmar, Thailand, Vietnam
- Rapid and profound agricultural transformation from subsistence agriculture to commercial production
- Drivers include infrastructure development, improved market access and government policy
- Growing population and increasing incomes leading to higher demand for animal source foods
- Environmental implications of these developments include rising GHG emissions, nutrient cycling/pollution, deforestation
- Sustainable intensification pathways are needed



Introduction: study sites

Three contrasting study sites to capture different levels of agricultural transition:

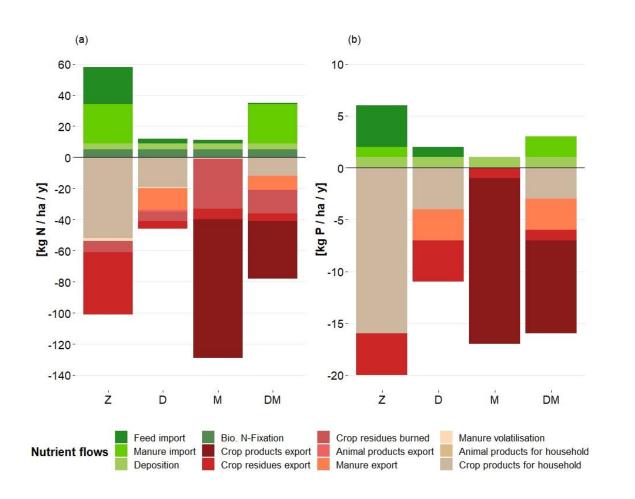
- XiangKhouang region, Laos: mixed croplivestock, 1200 masl, 16 persons/m², subsistence oriented
- Ratanakiri province, Cambodia: low input monoculture, 200-400 masl, 17 persons/m²
- Central Highlands, Vietnam: intensive agricultural production, 400-800 masl, 110 persons/m², market oriented



Introduction: Household dietary diversity

		Cam	bodia	L	aos	Viet	tnam
Household Dietary Diversity Score (median):		6		5		7	
Agricultural Transiti	on	Level	cv•	Level	CV*	Level	CV*
Market Orientation	Market Orientation for FA	High	(-)***	Low	(-)*	High	
Specialisation	Crops	Low		Med		Med	
l	Livestock	High		Med	(-)**	High	(-)**
Intensification	N Fertiliser	Low	-	Low	(+)	High	
l	Irrigation	Low		Low	(+)***	High	
Farm	Land Owned	High	(+)	Low	(+)**	Low	
Characteristics	Livestock Holdings	Low		High		Low	
Farm Performance	Value Crop Production	Med	(+)*	Low	(+)**	High	(+)***
	Crop Productivity	Low		Med		High	
	Value Livestock Production	Low		Med		High	
	Livestock Productivity	Low		Med	(-)	High	
	Livestock Contribution to FA	Low	(+)**	Low		Low	-
Other HH Char's	Female Decision Control	Med	(+)**	Med		Med	
	Off-farm Income	Med	(+)*	Low	(+)*	High	

*CV = Correlated Variation


*, **, and *** indicate significance levels for variables. ⁸CV - Correlated Variation.

> Drivers of dietary diversity and agricultural transition pathways are site-specific

Ritzema, R.S., Douxchamps, S., Fraval, S., Bolliger, A., Hok, L., Phengsavanh, P., Long, C.T.M., Hammond, J., van Wijk, M. 2019. Household level drivers of dietary diversity in transitioning agricultural systems: Evidence from the Greater Subregion. *Agricultural Systems*, 176, 102657.

Introduction: Nutrient balances in Laos

N-Balance N-Balance М 150 150 Ζ 100 100 50 P-Balance P-Balance Incor Income Land productivity N-NRI Land productivity N-Balance N-Balance DM 150 150 D 100 100 501 P-Balance Income P-Balance Income — Recycling – Rotating Land productivity N-NRI ····· Fattening Land productivity N-NRI

Principles for sustainable intensification of these systems: no residue burning, stay diverse, integrate livestock, use small amounts of P fertilizer

Epper, C., Paul, B.K., Burra, D., Phengsavanh, P., Ritzema, R., Syfongxay, C., Groot, J.C.J., Six, J., Frossard, E., Oberson, A., Douxchamps, S. Nutrient flows and intensification options for smallholder farmers of the Lao uplands. *Revisions submitted to Agricultural Systems*.

Introduction: Cattle fattening impacts in Vietnam

Profitability (USD/farm/year)

Returns		Baseline	Forage- based cattle fattening sc.	Grain-based cattle fatting sc.
	Gross margin crops	5093.24	4238.99	5481.54
	Risk crop margin	0	0	0
	Gross margin animals	38.41	2837.18	1569.37
Costs				
	Fertilizers/Manure costs	598.07	577.94	165.53
	Crop protection costs	62.59	92.19	49.14
	Hired casual labor costs	376.74	508.37	316.91
	Hired regular labor costs	0	379.11	0
Totals				
	Operating profit (+return farm. labor)	4094.25	5518.56	6519.33
	Change from baseline		35%	59%
	Own labor costs	702.82	702.84	504.08
	Return to own labor	3.92	5.28	5.82
	Home consumption	551.78	211.64	211.64

SOM balance (kg/ha)

		Baseline	Forage- based cattle fattening sc.	Grain-based cattle fatting sc.
Inputs				
	Root biomass and stubble	557	604	536
	Surface residue retention	0	0	0
	Own manure	759	2377	0
	Imported manure	0	0	0
Outputs				
	Manure degradation	688	2156	0
	SOM degradation	536	536	536
	Erosion losses	0	0	0
Balance				
	Balance	93	290	1
	Change from baseline		212%	-99%

Birnholz, C., Bolliger, A., Tan Khanh, T., Groot, J., Paul, B. (2017). Bio-economic evaluation and optimization of livestock intensification options in the Central Highlands of Vietnam. *Working Paper No. 433. International Center for Tropical Agriculture (CIAT)*, Nairobi, Kenya. 31 p. <u>http://hdl.handle.net/10568/79446</u>

ciat.cgiar.org

Building a sustainable future

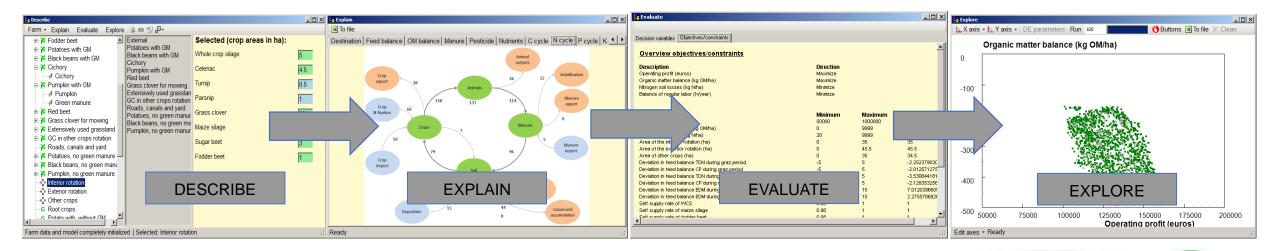
Study objectives

Systematic exploration of agro-environmental trade-offs of various intensification pathways across the Greater Mekong

- Describe farming systems and quantify agroenvironmental performance and trade-offs in sites of various stages of agricultural transition
- Assess how market orientation and production diversity influence agroenvironmental trade-offs
- Explore alternative future intensification pathways

MM: Household survey

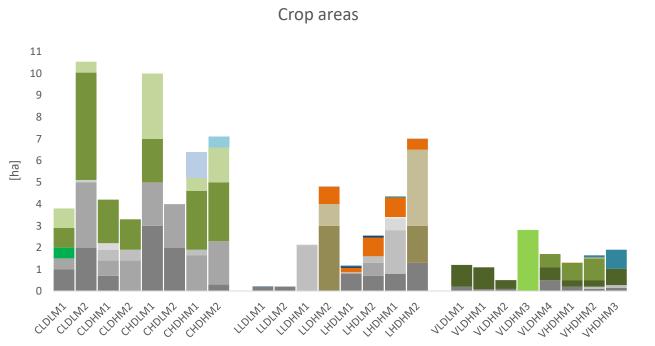
1,300 households sampled using the RHoMIS survey tool from Dec 2015 – Mar 2016


- Market orientation and production diversity score was calculated
- Households were then categorized into four farm types
 - Low diversity low market orientation (LDLM)
 - Low diversity high market orientation (LDHM)
 - High diversity low market orientation (HDLM)
 - High diversity high market orientation (HDHM)

Same RHoMIS dataset used as in Ritzema et al. 2019

MM: Whole farm modeling

- Random selection of 24 households for farming system modeling: eight households per country, two per type (in Vietnam only three types represented as low market situation uncommon)
- Additional data collection included a more detailed household survey, soil samples, and nutrient flow maps
- Farming systems modeled and compared with whole-farm bio-economic model FarmDESIGN



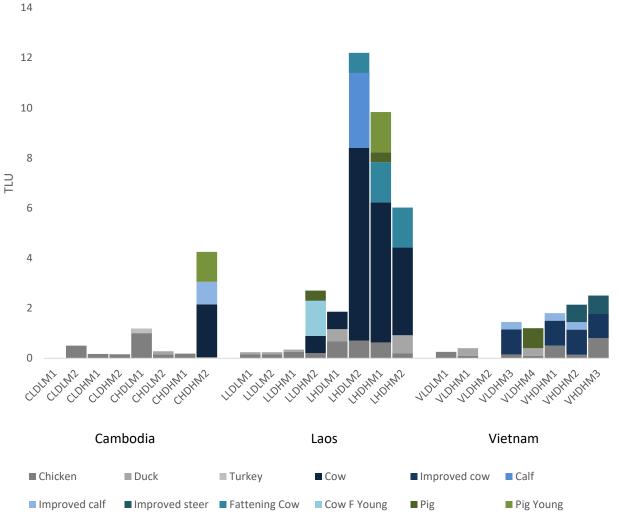
MM: Approaches to farming system selection

		Geographic scope	Number of farming systems	Reference	
Farming system population modeling		Mali: Koutiala	30	Falconnier et al. 2015	
		India: Uttarakhand	42	Ditzler et al. 2018	
		Tanzania: Lushoto district164		Shikuku et al. 2017	
		India: Bihar	269	Lopez-Ridaura et al. 2018	
		Burkina Faso, Ghana, Senegal	600	Douxchamps et al. 2016	
		Rwanda: different districts	884	Paul et al. 2018	
		Kenya, Tanzania, Uganda, Ethiopia, Senegal, Burkina Faso	1019	Henderson et al. 2016	
		East and West Africa: 7 countries	1800	Ritzema et al. 2017	
		Sub-Saharan Africa	13000	Frelat et al. 2018	
Farming system type modeling	Constructed farming systems from survey averages, government census, expert knowledge, policy documents	India, Ethiopia	4	Mayberry et al. 2018	
		India, Ethiopia	5	Mayberry et al. 2017	
		Mexico: Yucatan	1	Parsons et al. 2011	
		Zimbabwe: Nkayi	6	Descheemaeker et al. 2018	
	Real farming systems selected from surveys, multivariate- statistics, purposive selection	Tanzania: Babati	4	Paul et al. in review	
		Burkina Faso: Yatenga	2	Rigolot et al. 2017	
		China: Gansu	3	Komarek et al. 2012	
		Kenya: Vihiga	9	Waithaka et al. 2006	
		Mexico: Michoacan	6	Cortez-Arriola et al. 2014	
		Ghana: three regions	9	Michaelscheck et al. 2018	
		Vietnam: Son La	2	Ditzler et al. 2019	
		Brazil: Cerrados	6	Alary et al. 2016	

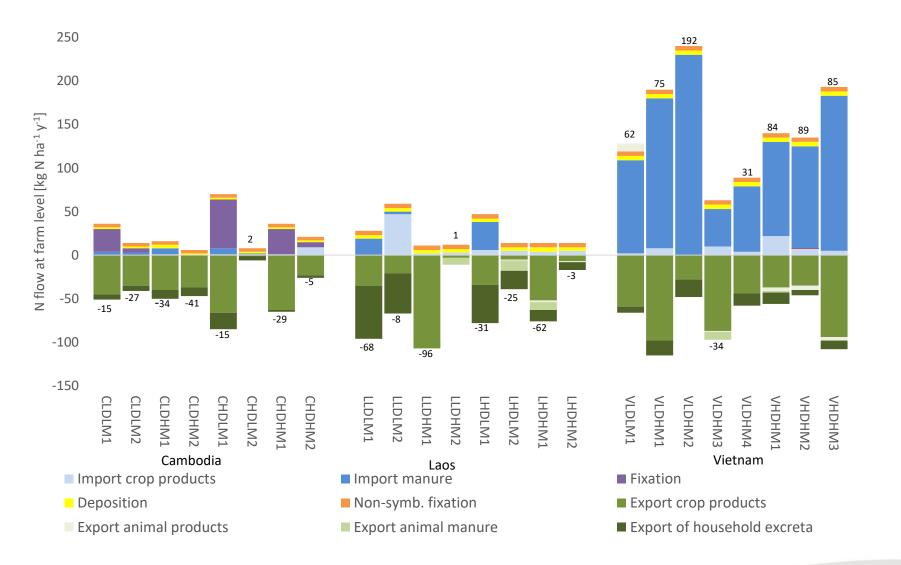
Results: Farming systems diversity

Laos

Cambodia La
Rice
Maize
SweetCorn
Sugarcane
Cashew
Rubber
Wild Tea
VA06
 Cucumber+beans+coriander+spring onion+garlic Cassava+Soybean+Pumpkin+Chilli


	Victores
	Vietnam
Cassava	
Banana	
Mango	
Coffee	
Soybean	
Tea plantation	
Pasture	
Homegarden	
Vegetables	
Maize+Cucumber+	Soybean

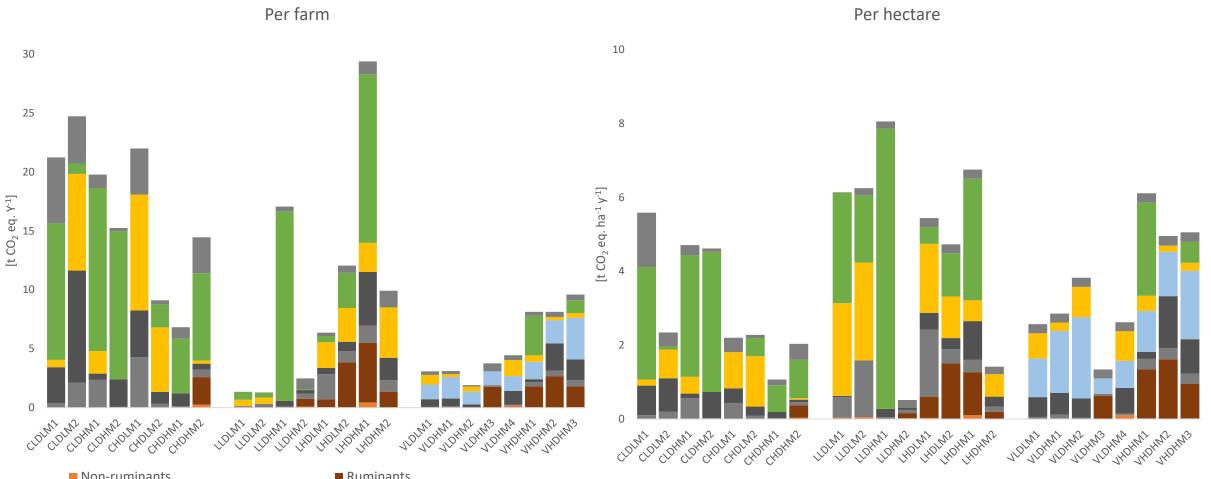
Results: Farming systems diversity



Building a sustainable future

CIAT

Results environmental impacts: N balance



ciat.cgiar.org

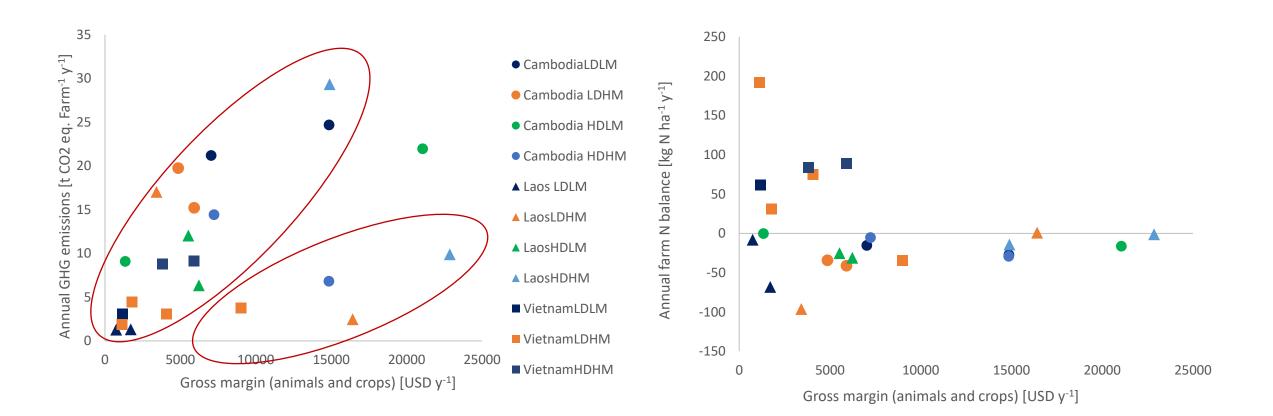
Building a sustainable future

Results environmental impacts: GHG emissions

Non-ruminants
 Manure
 Mineral fertilizers
 Burning of organic material

Ruminants
 Green manure
 Rice management
 N fixation and N deposition

Non-ruminants
 Green manure
 Burning of organic material
 N fi


Ruminants
 Mineral fertilizers
 N fixation and N deposition

Building a sustainable future

Manure emissions
 Rice management

Agro-environmental trade-offs

Building a sustainable future

CIAT

Conclusions

- Intensification not always leading to higher environmental impacts e.g. residue burning a large GHG source in Cambodia and Laos
- Nutrient management: In Vietnam risk of nutrient pollution, other countries need more inputs through fertilizer, manure recycling and residue use (mulching or feeding) instead of burning, integration of legumes
- Between-country trends seem to be more important in determining environmental impacts than market orientation or diversity – though statistical analysis is pending
- Potential role of livestock in sustainable intensification and mitigating agroenvironmental trade-offs – converting residues into animal source food and manure for fertilization, reducing residue burning
- Optimization can explore potential agro-environmental impacts of various agricultural intensification pathways

Thank you!

Funding from

- BMZ through project 'Hands and Minds Connected to Boost Eco-efficiency in Smallholder Livestock-Crop Systems: Participatory approaches in Laos, Cambodia and Vietnam'
- CGIAR Research Programs on Livestock and Humidtropics
- ETH Zurich Plant Nutrition Group

Thanks to Lyda Hok, RUA in Cambodia and Seuth Phengsavan, NAFRI in Laos for advice

All pictures by Birthe Paul, Neil Palmer and Georgina Smith, CIAT

WE'RE PROUD TO HAVE CELEBRATED 50 YEARS OF AGRICULTURAL RESEARCH FOR DEVELOPMENT

International Center for Tropical Agriculture - CIAT

Headquarters and Regional Office for South America and the Caribbean

+57 2 445 0000
 Km 17 Recta Cali-Palmira
 A.A. 6713, Cali, Colombia

☑ ciat@cgiar.org⊕ ciat.cgiar.org

