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Abstract There is an ongoing debate on what constitutes

sustainable intensification of agriculture (SIA). In this paper,

we propose that a paradigm for sustainable intensification

can be defined and translated into an operational framework

for agricultural development. We argue that this paradigm

must now be defined—at all scales—in the context of rapidly

rising global environmental changes in the Anthropocene,

while focusing on eradicating poverty and hunger and

contributing to human wellbeing. The criteria and approach

we propose, for a paradigm shift towards sustainable

intensification of agriculture, integrates the dual and

interdependent goals of using sustainable practices to meet

rising human needs while contributing to resilience and

sustainability of landscapes, the biosphere, and the Earth

system. Both of these, in turn, are required to sustain the

future viability of agriculture. This paradigm shift aims at

repositioning world agriculture from its current role as the

world’s single largest driver of global environmental change,

to becoming a key contributor of a global transition to a

sustainable world within a safe operating space on Earth.

Keywords Agriculture development � Anthropocene �
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INTRODUCTION

A global food revolution based on a new paradigm for

agricultural development is urgently required. Without this

shift, we are unlikely to attain the twin objectives of feeding

humanity and living within boundaries of biophysical pro-

cesses that define the safe operating space of a stable and

resilient Earth system (Steffen et al. 2015b). Global sus-

tainability is increasingly understood as a prerequisite to

attain human development (UN GSP 2012) at all scales,

from local farming communities to cities, nations, and the

world (Folke et al. 2005). The reason is that we have entered

a new geological epoch, the Anthropocene, where human

pressures are causing rising global environmental risks and

for the first time constitute the largest driver of planetary

change (Steffen et al. 2007, 2015b). Agriculture is at the

heart of this challenge. It is the world’s single largest driver

of global environmental change (Tilman et al. 2001; Foley

et al. 2005; Godfray and Garnett 2014; Kuyper and Struik

2014) and, at the same time, is most affected by these

changes (IPCC 2014). Agriculture is the key to attaining the

UN Sustainable Development Goals of eradicating hunger

and securing food for a growing world population of

9–10 billion by 2050, which may require an increase in

global food production of between 60 and 110 % (Foley

et al. 2005; IAASTD 2008; Tilman et al. 2011; Pardey et al.

2014) in a world of rising global environmental risks.

Agriculture is also the direct livelihood of 2.5 billion

smallholder farmers (FAO 2013a), and the resilience of

these livelihoods to rising shocks and stresses is currently

gravely under-addressed (FAO 2013b).

Together, these insights provide a strong scientific justi-

fication for a shift from our current paradigm for agriculture

of focusing on productivity first and sustainability as a

question of reducing environmental impacts, to a paradigm

where sustainability constitutes the core strategy for agri-

cultural development. The planetary boundary definition of a

safe operating space for a stable and resilient Earth system

provides an operational framework for defining what con-

stitutes sustainable agriculture. It has been proposed (Keat-

ing et al. 2014) that the ‘‘safe operating space’’ exploration of

food security (Beddington et al. 2012), based on these prin-

ciples (Rockström et al. 2009), analytically frames the

problem and describes the interconnected forces of
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population growth, consumption growth, environmental

change, and food security.

The definition of a biophysical safe operating space of

the Earth system, within which it has a high likelihood of

remaining in a stable inter-glacial state, emerges from the

advancements in Earth system science over the past dec-

ades, providing evidence of interactions, feedbacks, and

thresholds among environmental processes that regulate

the Earth system (Lenton et al. 2008), and the conclusion

that humanity has entered a new geological Epoch, the

Anthropocene (Waters et al. 2016), where the world con-

stitutes the largest driver of change on Earth.

Therefore, in the Anthropocene, humanity faces the

imperative question of how to transform agriculture that

feeds the world, contributes to eradicate poverty, and

contributes to a stable planet. Given the decisive role of

world agriculture on human development and on Earth

system processes, we argue in this paper that sustainable

agriculture is the only strategy that can deliver productivity

enhancements to meet rising food needs and enable an

Earth system operating within planetary boundaries.

There is a well-documented debate (Garnett and God-

fray 2012; Kuyper and Struik 2014) on what constitutes

sustainable intensification of agriculture (SIA) (Garnett

et al. 2013; Godfray and Garnett 2014; Struik et al. 2014),

its evolution (Kuyper and Struik 2014; Struik et al. 2014),

and its role in addressing global food security (van

Noordwijk and Brussaard 2014).

Here, SIA is largely on how to enhance agricultural pro-

ductivity while reducing its environmental impacts (Conway

1997; Godfray and Garnett 2014; Kuyper and Struik 2014).

The task is how to produce more food with fewer resources.

Sustainable intensification, in this context, seeks to increase

agricultural output while keeping the ecological footprint as

small as possible. This is, in no doubt, a useful and relatively

important feature of sustainable agriculture, particularly as

mainstream agriculture development still concentrates on

productivity and places limited focus on sustainability. It

remains focused though on avenues for resource efficiency,

e.g., based on assumptions that efficiency in water and fer-

tilizer use represents the avenues towards sustainable agri-

culture. Particularly in agricultural development in poverty-

stricken regions, this ‘‘productivity first’’ paradigm, while

potentially reducing environmental impacts, prevails.

There is an urgent need to shift this around and instead

use sustainable principles as the entry point for generating

productivity enhancements, which fundamentally requires

real progress in increasing agricultural output by capital-

izing on ecological processes in agro-ecosystems (Struik

et al. 2014; van Noordwijk and Brussaard 2014). This can

be achieved by managing farmers’ fields, watersheds,

landscapes, and regions using strategies and practices that

maintain biophysical stability and uphold critical

feedbacks, such as moisture feedback from forests gener-

ating downwind rainfall (Gordon et al. 2008) and carbon

sinks in soils and biomass (Le Quéré et al. 2015).

Incorporating ecological landscape approaches that

make smart use of the natural functionalities that ecosys-

tems offer is now an important part of the development of

sustainable intensification of agriculture. The aim is to

design multi-functional agro-ecosystems that are both

sustained by nature and sustainable in their nature (Tit-

tonell 2014).

In this paper, we propose that a new paradigm for SIA can

be quantitatively defined from scientific advancements of the

Anthropocene and biosphere resilience and translated into an

operational framework for agricultural development. At its

foundation, the new paradigm recognizes that the biophysi-

cal boundaries of Planet Earth impose a hierarchy of criteria

on the definition of sustainability: sustainability is not a

relative concept or an act of balancing competing claims; it

sets absolute biophysical limits. It is only within such bio-

physically defined boundaries, such as operating within a

1.5 �C global carbon budget or within environmental water

flows for river basins, which—as far as our current scientific

knowledge shows—we stand a high probability of avoiding

irreversible shifts in environmental conditions. The plane-

tary boundary analysis sets the boundary for a stable climate

system at 350 ppm of CO2 (uncertainty range of

350–450 ppm) or maximum 1 W/m2 of climate forcing

(uncertainty range 1–1.5 W/m2), which translates to an

average global temperature rise of approximately 1.5 �C
(Rogelj et al. 2015; Steffen et al. 2015a). As has been sug-

gested, only by defining development within such techni-

cally defined criteria or boundaries, social and economic

trade-offs can be assessed (Fischer et al. 2007). Recentworks

(Jackson et al. 2012; Tittonell 2014; van Noordwijk and

Brussaard 2014) signal mechanisms and demonstrate prin-

ciples that suggest that such a transformative approach to SIA

is possible and this paper presents examples ofways forward.

We suggest adding a new dimension to sustainable agri-

cultural development, namely managing natural capital for

long-termproductivity and social–ecological resilience at field,

watershed, and regional scales, in agricultural systems that

operate within planetary boundaries to safeguard Earth system.

Our approach builds on existing research and the current

evolution of the frameworks for SIA giving further emphasis

to land-use planning and management of natural capital in

both agro-ecosystems and natural ecosystems across scales.

A resilience (capacity to deal with shocks and stress) and

Earth system (in the Anthropocene) focus is key to deal with

a rising frequency of multiple shocks triggered by regional

and global changes unprecedented in human history.

Furthermore, such a comprehensive sustainability para-

digm, which not only minimizes environmental impacts but

also uses sustainability as the strategy to raise productivity,
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improve livelihoods, and build resilience and Earth system

stability, must meet the dramatic rise in food requirements

from a world population of nearly 10 billion by 2050,

which most likely will reach 11 billion by the end of the

century (Gerland et al. 2014). Together, these challenges—

the social dimension of meeting rapidly rising food

requirements and the ecological dimension of building

agricultural resilience and Earth system stability—form a

social–ecological framework for sustainable intensification

of world agriculture (Jackson et al. 2012).

The criteria and approach we propose, for a paradigm shift

towards SIA, integrates the dual and interdependent goals of

using sustainable practices to meet rising human needs while

contributing to resilience and sustainability across scales.

Both of these, in turn, are required to sustain the future via-

bility of agriculture. This paradigm shift aims at repositioning

world agriculture from its current role as the world’s single

largest driver of global environmental change, to becoming a

critical agent of a world transition to global sustainability

within the biophysical safe operating space on Earth.

A transformation to sustainable intensification is thus

justified both by necessity (to safeguard global sustain-

ability, a precondition for long-term agricultural viability)

and by opportunity (to use sustainable practices as a

vehicle for a second green revolution).

BACKGROUND

The necessity of a transformation of sustainable

intensification of agriculture

The case for intensification has been well articulated in the

literature, both from a perspective of increased production,

through high-yielding crops, increased irrigation, mecha-

nization, and the role of chemicals that increase production

levels (World Bank 2007), and from a conservation per-

spective, in terms of the millions of hectares of forests which

otherwise would be converted into farm land, unquantifiable

amount of ecosystem services saved, and of some 590 bil-

lion tons of CO2 prevented from being released into the

atmosphere (Burney et al. 2010). We however underline the

fact that much of such intensification has taken place with

production increases being the primary, if not the sole,

objective, whose negative consequences were understood

after-the-fact and are now well documented.

Convincing evidence has emerged that humanity has

entered the Anthropocene, where human pressures have

reached a planetary scale in terms of ecosystem and resource

constraints and rising risks of environmental shocks and

large-scale tipping points (Lenton et al. 2008; Rockström

et al. 2014; Steffen et al. 2015a; Waters et al. 2016). A rapid

world transformation to global sustainability is increasingly

acknowledged as necessary to enable human development

within a functioning and healthy environment.

Agriculture is a primary driver of global change and is the

single largest contributor to the rising environmental risks of

theAnthropocene (Foley et al. 2011; Steffen et al. 2011; Struik

et al. 2014). It is also in theAnthropocene that the challenge of

feeding humanity needs to be resolved. The number of hungry

people in the world remains at approximately 900 million

(FAO, Ifad and WFP. 2013). At the same time, with rising

living standards of the growingmiddle class, diets are shifting

towards more livestock products that require more land and

water resources than vegetarian sources of nutrition. In order

to feed the world in 2050, global food productionmay have to

increase by 60–110 % (Pretty 2008; IAASTD 2008; Tilman

et al. 2011; Ray et al. 2013; Pardey et al. 2014). The challenge

is further complicated by the need not only to produce more,

but also to manage the entire food supply chain much more

efficiently, reducing waste which has reached unaccept-

able proportions (estimated at 30%) along with promoting

better distribution, access, and nutrition (FAO 2011a). This

requires nothing less than a planetary food revolution which,

for the foreseeable future, will largely be driven by the

2.5 billion smallholders that control 500 million small farms

and which provide up to 80 % of the food supply in Asia and

sub-Saharan Africa (FAO 2012) while residing in some of the

world’s most social–ecologically vulnerable regions.

Today, approximately 40 % of the world’s terrestrial sur-

face has been transformed to agriculture (crop, fiber, biofuel,

and livestock production systems) (Ramankutty et al. 2008).

Appropriate land for food production, however, is a finite

resource and hence further expansion could compromise

development within Earth’s safe operating space (approxi-

mately 25% of anthropogenic emissions of greenhouse gases

are sequestered on land, of which all occurs in terrestrial non-

cultivated ecosystems). If business-as-usual prevails, the

expected range of cropland expansion (123–495 Mha per

annum)would overshoot the preliminary estimate of the ‘‘safe

operating space’’ of 1640Mhawell before2050 (UNEP2014).

Sustainable intensification of agriculture, in our proposed

paradigm, aims at hunger reduction through biodiversity con-

servation that secures ecological functions in agricultural land-

scapes. It will require well-informed regional and targeted

solutions (Tscharntke et al. 2012) drawing upon the strengths of

both land-sparing and land-sharing approaches underpinned by

strategic land-use planning and allocation (Law et al. 2015)

across local, regional, and basin scales. Fischer et al. (2008)

conclude that land sparing is readily compatible with opti-

mization methods that attempt to allocate land uses in the most

efficient way, while sustainable agro-ecological systems

emphasize heterogeneity, resilience, and ecological interactions

between farmed and unfarmed areas. Both social and biophys-

ical factors influence which approach is feasible or appropriate

in a given landscape. Our approach in this paper seeks to draw
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upon the strengths of each approach, although the focus of this

paper is on transforming agricultural systems into sustainable

agro-ecological systems. As mentioned above, however, con-

servation measures including protected area habitats, areas co-

managed with local communities, and indigenous reserves are

all potentially viable sustainable intensification strategies

(Phalan et al. 2011; Garnett et al. 2013).

Our current agricultural inputs are also a challenge. Agri-

culture is the single largest user of freshwater in the world, with

70 %of the totallywithdrawnwater of almost 6000 km3 year-1

being diverted for agriculture (Kabat 2013), which has resulted

in approximately 25 % of the world’s major river basins no

longer reaching the ocean (Comprehensive Assessment of

Water Management in Agriculture 2007). Agriculture is the

world’s largest contributor to altering the global nitrogen and

phosphorus cycles (Carpenter 2005). Anthropogenic uptake of

N from the atmosphere (for industrial and intentional biological

fixation of N) today exceeds the natural global uptake of N for

biomass growth (Galloway and Cowling 2002; Gruber and

Galloway 2008) and currently at approximately

150 Tg N year-1 the global uptake far exceeds the boundary

value of 62–82 Tg N year-1 (Steffen et al. 2015a).

Although the focus of this paper is on sustainability as

the strategy for productive agriculture, it is recognized that

a case for sustainable intensification must also tackle the

challenge of improving the health and livelihoods of the

2.5 billion smallholder farmers who are the primary stew-

ards of our natural resources. As highlighted in the Global

Nutrition Report (IFPRI 2015), improving nutrition status

reduces disease burdens, increases income, improves life

expectancies, and provides a host of additional socioeco-

nomic benefits to families and communities. These benefits

are essential drivers of sustainable development. A key

strategy is investing in food that is healthy for people and

planet, where nutritional food, low in refined sugars, fats,

and meat, can help combat malnourishment and obesity

and reduce emissions of greenhouse gases and resource

footprints (Tilman and Clark 2014; IFPRI 2015).

Together, these social–ecological pressures pose an

unprecedented challenge for the global food system, and we

can see no other pathway to resolve it other than adopting a

paradigm of sustainable intensification, with a dual purpose

of (i) enabling a step-change in productivity and resilience

and (ii) averting unacceptable global environmental risks.

The way forward: transforming sustainable

intensification of agriculture

Recent efforts in defining SIA (Royal Society 2009; Conway

et al. 2010; Godfray et al. 2010; Rockström and Karlberg

2010;Tilmanet al. 2011;Pretty et al. 2011;Garnett et al. 2013;

Godfray and Garnett 2014) provide an emerging framework

built around the simple principle whereby ‘yields are

increased without adverse environmental impact and without

the cultivation of more land’ (Royal Society 2009). Our

conclusion is that these definitions are either not concrete

enough or only partial. World agriculture must now meet

social needs and fulfill sustainability criteria that enables food

and all other agricultural ecosystem services (i.e., climate

stabilization, flood control, support ofmental health, nutrition,

etc.) to be generated within a safe operating space of a

stable and resilient Earth system, which in turn can be defined

from Earth system science applying the planetary boundary

framework (Table 1). This is a comprehensive definition of

sustainable intensification of agriculture in the Anthropocene.

Recognizing the central role agriculture plays in deter-

mining and regulating Earth’s resilience, and the sustain-

ability criteria for agriculture (outlined in Table 1), there is a

strong case for adopting sustainable intensification of agri-

culture as the strategy to meet twin objectives for people and

the planet. The ‘‘human goal,’’ adopted by theUNSustainable

Development Goals (SDGs) in 2015, is to eradicate hunger

and poverty by 2030 (which will require[50 % increase in

food production). The global sustainability goal (as defined by

Table 1) is supported by the SDG goals and targets 2-Healthy

food for all, 6-Sustainable freshwater, 12-Sustainable Con-

sumption and Production, 13-Decarbonising climate system

under 1.5–2 �C, 14-Sustainable oceans, and 15-Halt biodi-

versity loss) and can only be translated as theUNSDGs setting

out to feed humanity this within a safe operating space of a

stable and resilient Earth system. Together, these integrated

goals will require a doubly green revolution (Conway 1997)

within ambitious and absolute targets for sustainability: in

principle (1) net zero emissions of greenhouse gases, (2) very

low or zero expansion of agriculture into remaining natural

ecosystems, while restoring others providing vital ecosystem

services, (3) zero loss of biodiversity, (4) drastic reduction in

excessive use of N and P (recycling nutrient flows), and (5)

major improvement inwater productivity and safeguarding of

environmental water flows. These will require, among others,

conducive legal and institutional frameworks, incentives,

rights, infrastructure, and support services that farmers will

need for implementation.

From these social–ecological criteria emerges a clear def-

inition of sustainable intensification: adopting practices along

the entire value chain of the global food system that meet

rising needs for nutritious and healthy food through practices

that build social–ecological resilience and enhance natural

capital within the safe operating space of the Earth system.

Nature-based solutions for sustainable intensification

of agriculture to build prosperity and resilience

Evidence increasingly shows that sustainable agricultural

practices can raise productivity and meet sustainability
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criteria (Pretty 2008; Royal Society 2009; Conway et al.

2010; Godfray et al. 2010; Rockström and Karlberg 2010;

Tilman et al. 2011; Pretty et al. 2011; Garnett et al. 2013;

Ponisio et al. 2015). A recent WRI report (2013) docu-

ments a worldwide range of sustainable management

practices of land, water, and biodiversity in agro-ecosys-

tems that increase productivity. A key part of the journey to

long-term SIA requires safeguarding not only local (on-

farm) productivity through sustainable practices, but also

ecological functions across scales, from watershed, to

basin, region, and Earth system scales, to avoid, e.g., loss

of rainfall during future growing seasons. It furthermore

requires building the capacity to deal with rising frequency

and amplitude of shocks and stresses as a result of global

changes (e.g., droughts and floods exacerbated by climate

change; disease outbreaks promoted by globalization).

For example, with rising risks of water shocks at the local

scale—droughts, floods, and dry spells, it is increasingly

important to manage water across scales—from local farm

fields to watersheds and river basins. Spatial planning

strategies are required to safeguard multi-functional land-

scapes, with a diverse set of ecosystems that are able to

dampen the effects of storm-floods and maximize sub-sur-

face flows of water rather than erosive surface runoff.

Wetlands, meandering rivers, forests, and landscape

mosaics are important natural capital assets that build

resilience. Moreover, watershed and river basin manage-

ment is required to safeguard rainfall. In many parts of the

world, a large portion of rainfall (often[50 %) is convec-

tive, originating from local scale to meso-scale vapor flows,

in particular from upwind evaporating forests contributing

moisture flows that generate rainfall downwind. This so-

called moisture feedback is common to the Sahel region

where moisture from the West African rainforests in the

south provides rainfall on the semi-arid savannah in the

north. These examples demonstrate the importance of

managing water at the watershed and regional scale in order

to secure rainfall and therefore future food production at the

local scale. This landscape approach needs to be nurtured

and facilitated by a social–ecological framework for policy

design and on-ground implementation (IAASTD 2008;

Garnett et al. 2013; Godfray and Garnett 2014) (see Box 1).

SIA requires a radical refocusing of food production that

encapsulates the twofold aims of increasing yields and the

ecosystem services provided by agriculture (Godfray and

Garnett 2014). In some areas, increases in yield will be

compatible with environmental improvements. In others,

yield reductions or land reallocation will be needed to

ensure sustainability and deliver benefits such as biodi-

versity conservation, carbon storage, flood protection, and

recreation (see Box 1). An overall increase in production

does not mean that yields should increase everywhere or at

any cost: the challenge is context and location specific.

Hence, SIA is about strategic land-use planning to maintain

and improve the interacting stocks and flows involving

water, nutrients, energy, carbon, and biodiversity across

landscape mosaics of natural, semi-natural, and agricultural

land uses, so that multi-functionality of the whole land-

scape is manageable across scales from local to basin to

national levels.

From a production perspective (see Box 2), SIA should

now entail a three-step approach: (1) at the basis be as

resource efficient as possible combining locally relevant

crop and animal genetic improvement and practices that

minimize inputs and close nutrient, carbon, and water

cycles, (2) adopt practices that build landscape-scale

resilience by sustaining ecosystem functions and services,

such as water flows and biodiversity, and (3) connect

thinking, planning, and practice across scales to fully

grasp field to biome and global interactions in the

Anthropocene. This must go with improved and more

equitable access to knowledge and resources including

land tenure, common property, markets, and social rela-

tions. Building on the work of Pretty et al. (2011) and

others (e.g., van Noordwijk and Brussaard 2014; Tittonell

2014), a paradigm shift towards SIA translates to some

key operational strategies:

• Plan and implement farm-level practices in the context

of cross-scale interactions with catchments, biomes,

and the landscape as a whole. Maximize farm-level

productivity by maximizing ecological functions, from

moisture feedback to disease abatement, across scales.

• Integrate ecosystem-based strategies with practical

farm practices, where natural capital (soil, biodiversity,

nutrients, water) and multi-functional ecosystems are

used as tools to develop productive and resilient

farming systems.

• Develop system-based farming practices that integrate

land, water, nutrient, livestock, and crop management.

• Utilize crop varieties and livestock breeds with a high

ratio of productivity to use of externally and internally

derived inputs.

• Adopt circular approaches to managing natural

resources (e.g., nutrient recycling) and mixing organic

and inorganic sources of nutrients.

• Harness agro-ecological processes such as nutrient

cycling, biological nitrogen fixation, allelopathy, pre-

dation, and parasitism.

• Assist farmers in overcoming immediate SIA adoption

barriers and build incentives for their sustained adop-

tion, rendering the ecological approach profitable in the

long run (See Box 2).

• Build robust institutions of small farmers, led especially

by women, which enable an equitable interface with

both markets and government.
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Box 1 China’s dream: ecosystem function conservation areas

China is experiencing some of the world’s most extreme challenges of environment and human development. There is now open

recognition, at the highest levels of government, that environmental security is vital to national security and economic prosperity (Daily

et al. 2013). In the spring of 2013, the National Development and Reform Commission declared China’s Dream: ‘‘to become the

Ecological Civilization of the 21st Century.’’ The backdrop to China’s Dream is that ecologically vulnerable areas account for more than

60 % of the country and cannot sustain current human impacts. Agricultural security—and ecological security more generally—is at high

risk, with severe biodiversity loss, soil erosion, flooding, sandstorms, and water and air pollution. With the world’s largest population

(over 1.35 billion), the second largest land area, and the second largest economy, the stakes are high.

In support of China’s Dream, leaders are fostering intense policy innovation, pioneering new mechanisms for achieving the twin goals of

securing the environment and human wellbeing. What is learned in China will have relevance everywhere.

Ecosystem Function Conservation Areas (EFCAs) are a new system of zoning land so as to focus conservation and restoration in places

with highest return-on-investment for public benefit, to halt and reverse degradation of vital ecosystems and their life-support services,

especially to poor and vulnerable people (NRDC 2013; CCICED 2014). The zoning is also meant to help secure people from flooding,

improve drinking and irrigation water supply, maintain efficient hydropower production, protect biodiversity, stabilize climate, reduce

sand storms and soil loss, and create more sustainable agricultural systems (see below figure).

Figure showing China’s new Ecosystem Function Conservation Areas (EFCAs), zoned to protect nationally critical biodiversity and

ecosystem services, and to alleviate poverty, now span 49 % of the country. The Natural Capital Project’s InVEST models were co-

developed with the Chinese Academy of Sciences and are used to define the locations of EFCAs. China has invested over US$150 billion

in restoring natural capital since 2000, through a suite of pioneering initiatives. Now entering a new phase of investment, over 200

million people are being paid to perform restoration and conservation activities. Figure courtesy of H. Zheng and Z. Ouyang, Research

Center for Eco-Environmental Sciences, Chinese Academy of Sciences (MEP & CAS 1998; State Council of China 2010).

EFCAs are also a way of focusing poverty alleviation efforts in places where the stakes are highest, both for local residents and for distant

beneficiaries of ecosystem services. EFCAs encompass rural areas in deep poverty that face great challenges in harmonizing people and

nature. The government aims to change the economic structure of these regions to increase local household income while making local

households’ rural livelihoods more sustainable.
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Sustainable intensification can deliver more food, better

ecosystems, and improved livelihoods

Scientific and practical evidence clearly indicates that

agriculture can shift from ‘‘foe,’’ in terms of being the

single large contributing sector to global environmental

risks, to ‘‘friend,’’ thereby contributing to global sustain-

ability, and, in so doing, build natural capital and resi-

lience, while increasing productivity and improving

livelihoods (Pretty et al. 2006, Pretty 2008; IAASTD 2008;

Foley et al. 2011; Pretty et al. 2011). The sources of sus-

tainable practices range across all areas of agricultural

development, in soil tillage systems, water resource man-

agement, crop and nutrient management, livestock prac-

tices, integrated landscape management, pest management,

and management of ecosystem services are already evident

and what is required is a scaling up. For example:

• The Comprehensive Assessment of Water Management

in Agriculture (2007) showed that there is a large

untapped potential in upgrading rainfed agriculture in

savannah regions (covering 40 % of the Earth’s

surface) by enhancing rainwater harvesting. As an

example, in semi-arid areas of Niger and Burkina Faso,

small-scale farmers use planting pits to harvest rain

water and rehabilitate degraded land for the cultivation

of millet and sorghum. In Burkina Faso alone, these

practices have helped rehabilitate up to 300 000

hectares of land and produce an additional 80 000 tons

of food per year (Reij et al. 2009). In addition, in

southern Niger, farmers are innovatively regenerating

and multiplying valuable trees on their lands, and this

has improved about 5 million hectares while producing

more than 500 000 additional tons of food per year

resulting in improved food security for about 3 million

people. Other ecosystem benefits registered included

reduced wind speed and evaporation (Reij et al. 2009),

and incomes for women from different products of

baobab up to $210 per household per year.

• In Ethiopia, farmers capture flood water and runoff from

ephemeral rivers, roadsides, and hillsides using tempo-

rary stone and earth embankments, to irrigate crops and

pasture. In the central and western part of the country,

total irrigated land is approximately 65 500 ha, and some

344 000 (approximately 90 %) of the households have

benefited from doubling of sorghum yields as well as

75 % sustainable expansion production of pepper,

onions, and tomatoes (Binyam and Desale 2015). Other

ecosystem benefits have included improved moisture and

fertility in the cultivated fields and reduction of down-

stream flooding (Awulachew 2010; Liniger et al. 2011).

• In Brazil, conservation agriculture (CA) which is prac-

ticed on over 25 million ha (accounting for over 25.5 %

of arable land) is defeating erosion and drought. For

example, severe drought in 2008–2009 caused an

average yield loss of 50 % among conventional maize

producers; producers who applied CA, however, expe-

rienced smaller losses of around 20 %, demonstrating

greater resilience of the latter system (Altieri et al. 2012).

• Too often, agro-ecosystems have been considered as

separate from other natural ecosystems and insufficient

attention has been paid to the way in which services can

flow to and from the agro-ecosystem to surrounding

ecosystems. Recent research (Poppy et al. 2014)

illustrates that an ecosystem services approach to food

security using a case study from the Zomba district of

Malawi allows key issues in food security/environmen-

tal stability to be addressed, including scale, the identity

of beneficiaries, trade-offs, and the winners and losers

from management and mitigation strategies. The study

illustrates the power of an ecosystem services approach

to strategic land-use planning and implementation.

Box 1 continued

Implementing EFCAs involves new, experimental compensation mechanisms, whereby regional beneficiaries—for example, Beijing—

invest in the transformation to more sustainable livelihoods and improvements in wellbeing among the landholders producing the

ecosystem services. EFCAs are expanding in both biophysical and financial terms. They spanned 27 % of the country in 2008, 40 % in

2010, and grew to 49 % of the country in 2015. Financial transfer payments increased from 6 billion Yuan RMB (to 221 counties) in

2008 to 48 billion Yuan RMB (to 512 counties) in 2014, for a total of 200 billion Yuan RMB (USD 32 billion) since inception.

While EFCA initiatives are driving massive scientific and policy shifts, there is still little understanding of their local costs of

implementation, their success in reversing environmental degradation, or their effects on poor and vulnerable populations. The initiatives

represent a new paradigm for integrating conservation and human development, in China and potentially elsewhere. Success hinges on

careful testing, evaluation, and refinement.

Further, while the idea of a green GDP has been discussed for decades, China is the first nation to implement it. In March 2014, the

Ministry of Environmental Protection of China approved reporting Gross Ecosystem Product (GEP) alongside Gross Domestic Product

at all levels of government, from local to national. GEP is the total value of final ecosystem goods and services to human welfare,

including production of agricultural goods, as well as generation of regulating services and cultural values (Ouyang et al. 2013). The

objective of GEP accounting is to determine the total economic value of ecosystem contributions to human wellbeing, to build the links

between ecosystem service providers and beneficiaries, and to assess the achievements of ecological protection and government

management, instead of only GDP.
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Box 2 Smart solar pumps: a potential solution to groundwater exploitation in India

In Karnataka, southwest India, the local electric company is required to buy back surplus solar power from farmers—similar to programs in

parts of Germany, Japan, and the United States. The buyback policy, signed by Karnataka’s governor in September 2014, is consistent

with recommendations to treat solar power as a ‘cash crop.’ The rationale is that if farmers can make money by selling excess power,

they then will have an economic incentive to irrigate their crops efficiently, thus helping to conserve groundwater and energy use.

Despite inheriting the world’s largest canal irrigation network built during British colonial rule, India has become the biggest groundwater

irrigation economy, with nearly 20 million electric and diesel pumps irrigating more than 67 million hectares of land a year. Heavily

subsidized pumps have driven groundwater depletion in western India and other parts of the country. An unreliable electric grid,

bankrupted utilities, and power theft have contributed to the problem.

India’s National Solar Mission, which aspires to develop 22 gigawatts of solar power by 2020, largely by constructing massive solar power

plants. However, India could achieve its solar goal with 2 million solar irrigation pumps instead and ‘‘put cash in farmers’ hands’’ in the

process. The approach that is being promoted in Karnataka is presented. This approach of selling excess electricity back into the national

grid could be used elsewhere in developing and emerging economies to drive significant decreases in CO2 emissions from fossil fuels

used to pump groundwater, a shift to more sustainable utilization of groundwater, as well as enhanced food security.

Figure addressing the challenge of over-exploited groundwater reserves in India through the co-generation of power from solar panels for

pump sets to pump water for irrigation and satisfy national energy requirements in India
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• Science and innovation that strengthens sustainability,

while improving productivity and on-farm profits, is

possible. Such systems have been developed in Aus-

tralia (Williams and McKenzie 2008a, b) and elsewhere

and have been adopted by grain growers who are

moving increasingly to conservation farming tech-

niques, such as no-till farming—improved agronomy

through more sophisticated crop rotations to minimize

nutrient leakage and maximize nutrient cycling, inter-

faced with integrated weed and pest management

options that rely less on chemicals.

• In the southern Indian state of Andhra Pradesh, a million

farmers have come together, in an FAO-supported

project, to restore depleted groundwater tables, adopting

an approach to governing the commons delineated by

Nobel Laureate Elinor Ostrom (World Bank 2010). Food

security is increased, utilizing ecosystem services,

without exhausting the endangered resource.

• Rehabilitating degraded landscapes in the Highlands is

a high-priority of the Ethiopian government and its

partners. Research by CGIAR Centers and programs

working with national partners has helped lay the

groundwork. An ICRISAT-led activity is promoting

integrated watershed management in the Yewol water-

shed in the Amhara Regional State, Ethiopia. By

strengthening local capacity, facilitating collective

action, using research to identify niches for integration

of technologies at farm and landscape scales, and

introducing system compatible technologies, the project

has led to improved productivity, crop diversification,

improved downstream water availability, and strength-

ened livelihoods for an estimated 15 000 beneficiaries

(Evaluation of WLE 2016, p. 52).

CONCLUSIONS

Challenges for science

Adopting a livelihood-centered paradigm for sustainable

intensification within planetary boundaries is a major

challenge for research and development that will require

new approaches to how research for development is for-

mulated, managed, and executed.

Pursuing SIA will entail approaches that integrate social

and natural sciences, in solution-oriented knowledge gen-

eration that couples academic and practical knowledge

through co-design and co-development of research. The

implementation of SIA will require an understanding of the

political economy in which food is traded and prices are

determined and the business economy along the value chain

from field to consumer. A major reason why farmers persist

in growing water-intensive crops even in water-scarce

regions is that State support for prices and procurement is

limited to such crops and is not available for more ecolog-

ically appropriate crops such as pulses and millets. The

result has been the emergence, for example of the ‘‘Punjab

Water Syndrome,’’ where falling water tables combine

dangerously with waterlogging in other parts of the state in

India (Kulkarni and Shah 2013). However, the aforemen-

tioned could be addressed through innovative incentive-

based approaches that result in distinct behavior changes

(see Box 2).

A lasting paradigm shift will require the ability to place

research into policy and enable large-scale change. Influ-

encing policy requires an understanding of the power

dynamics and political systems that both enable and

undermine the shift to SIA, associated improvements in

livelihoods, and protection of the environment. Institu-

tional trust will need to be built among the many stake-

holders in the food system, all of whom will be required to

make compromises. While SIA needs to be central to the

way we produce food in the future, it also needs to be

integrated within a nexus of strategies aimed at achieving

food system sustainability, in the broadest sense of the

phrase (Godfray and Garnett 2014).

Grand experiments for transformation, co-design,

and learning

It should be recognized that SIA is a new, evolving concept,

and its meaning and objectives subject to debate and con-

test. Sustainable intensification is only part of what is

needed to improve food system viability and sustainability

and is not synonymous with food security. Both sustain-

ability and food security have multiple social, ethical, and

environmental dimensions. Achieving a sustainable,

health-enhancing food system for all will require more than

just changes in agricultural production, essential though

these are. Equally radical agendas will need to be pursued

to reduce resource-intensive consumption and waste and to

improve governance, e.g., on trade, incentives and equity.

Much hope has been generated by India’s 12th Five Year

Plan, which adopts a paradigm shift in water resource

management, exactly along the lines proposed in this paper

(Shah 2013). A promising development is the emphasis in

the strategic plan of the CGIAR until 2030 (CGIAR 2015),

which places reduced poverty, improved food and nutrition

security for health, and improved natural resources and

ecosystem services, as its three highest level system out-

comes. As the CGIAR played a pivotal role in the 1st

Green Revolution, this creates the potential framework for

a 2nd Green Revolution based on SIA principles.

Similarly, FAO pursues a strategic transformation,

which endorses an ecosystem approach in agricultural
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management for sustainable crop production intensifica-

tion, provides associated policy advice, and envisages a

vision of sustainable food and agriculture that merges

access by all to nutritious food with ecosystem-focused

natural resources management (FAO 2011b, 2014).

The shift outlined in this article demands a new framework

for research and development. Major productivity enhance-

ments are required, and the strategy is through sustainable

intensification of agricultural practices for livelihoods that

build farm, community, and biosphere resilience. New

research and development is required to advance fresh inte-

grated whole-of-systems approaches for sustainable intensifi-

cation,which can inspire and influence all domains involved in

agricultural development, from economics to biotechnology.

We believe one strategy forward is the investment in

spatially concentrated major ‘‘grand experiments’’ where

knowledge from different domains, ranging from irrigated

to rainfed agriculture, ecology and agronomy, equity to

business development, work together to pilot sustainable

intensification at scale (e.g., in a region or basin), to pool

experience, explore synergies and trade-offs, testing the

hypothesis that sustainable intensification can deliver food,

livelihoods, and resilience, while contributing to develop-

ment within Earth’s safe operating space. These would be

large R&D investments. They would deviate from the

normal business-as-usual approaches of discipline by dis-

cipline, sector-by-sector, scale-by-scale approaches to

agricultural development. They would be system-integrat-

ing and innovative ventures, and thus challenging but, as

argued in this paper, necessary. Evidence strongly suggests

that sustainable transformations of agricultural systems are

direly and urgently required to meet World and Earth needs.
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