

CLEANED R tool:

"Quick but not too dirty" modeling of environmental impacts from transforming livestock value chains

SAIRLA ILA Arusha, Tanzania May 2019 Catherine Pfeifer (Research Centre of Organic Agriculture, FiBL), Joanne Morris (Stockholm Environment Institute, SEI)

Objective

Combining open access GIS data with participatory modeling to develop a quick and but "good enough" context specific environmental impact assessment simulation tool to explore consequences of possible livestock value chain transformations in the developing world

ase	rel	evance
	Ra	pidly implementable

Modelling methodology

Reconnaissance tour

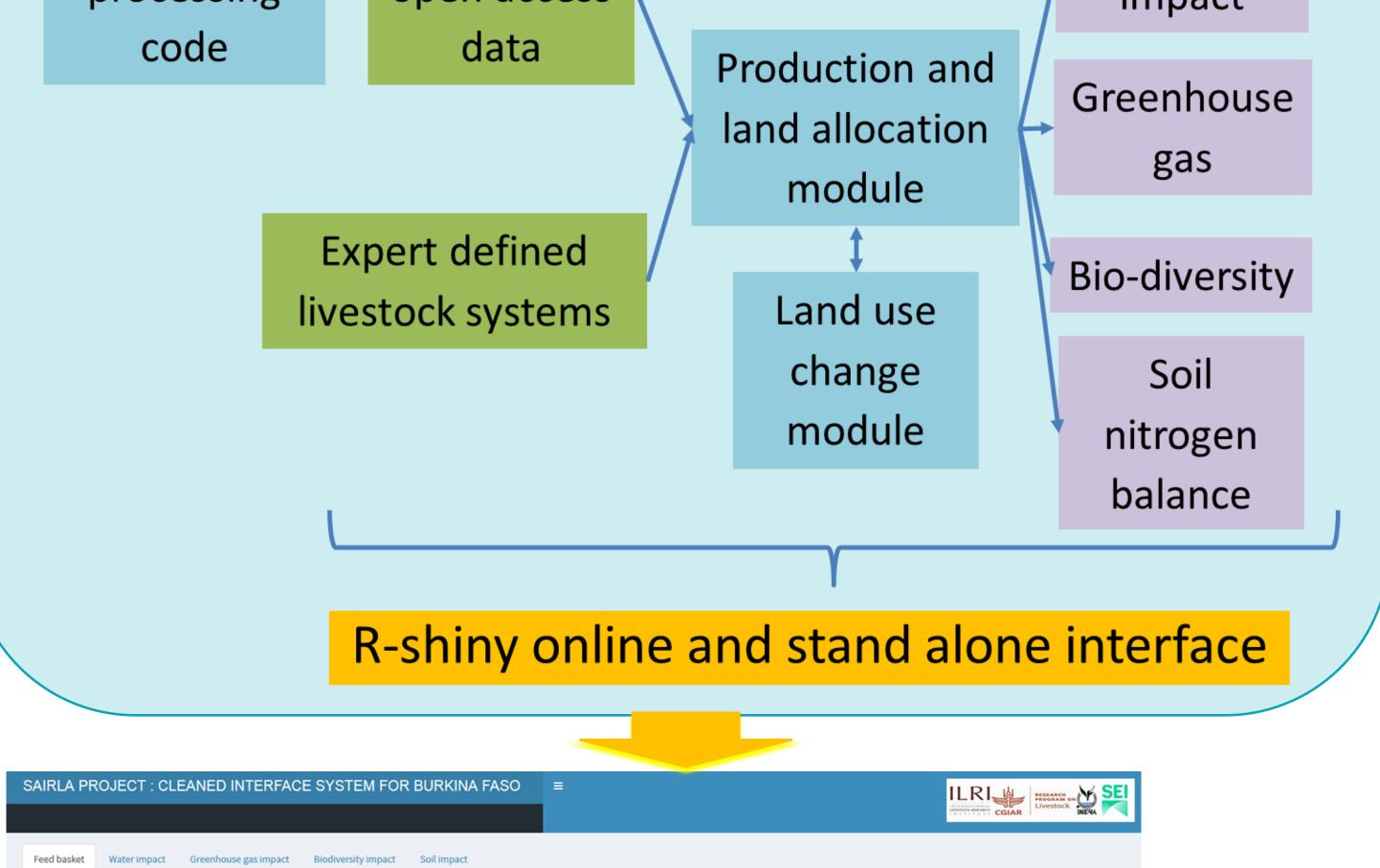
- Understand the local context
- Identify major drivers of change
- Identify stakeholders

Participatory workshop

- Understand how stakeholders see their livestock systems
- Understand the future ambition of stakeholders

Environmental modelling

- Define the livestock categories
- Identify the relevant land use change dynamics


Expert validation

CLEANED R tool development

- Preparing GIS layers, adjusting other parameters, defining a base run
- Expert validation

Set up of the CLEANED R tool											
GIS pre-		resampled			Water						
processing		open access		1	impact						

	module	Model used	GIS layer
	Production and land allocation	IPCC energy requirement per animal in each category Allocates the total energy to land cover based on crop and grazing land	Land cover (OSS) Maize, legume and grass productivity (GAEZ)
	Land use change	Grazing land is converted to cropland based on suitability	Suitability for cropland (GAEZ)
	Water	Evapotranspiration of the biomass fed to livestock	Evapotranspiration (GAEZ) Rainfall (worldClim)
	Greenhouse gas emissions	IPCC tiers II computation	IPCC soil & climate layer Temperature (worldclim)
	Biodiversity	UICN red list allocated to land cover	
	Soil nitrogen balance	Nitrogen balance (Smaling 1993) including an erosion model (RUSLE)	Soil characteristics (soilgrids) Elevation (CSI) Soil erosivity factor (A.Vrieling) LAI (modis)

As part of a learning space with decision makers with the aim to :

1. Identify trade-offs and synergies in livestock

Number of animals per troup Number of Animals Number of animals crossing area: 200000	100 v 120 × **	238 v 120 v		20	I I	N/A 1400	×	N/ 55 7:11 8:11			- 10 + - 5 + - 0 + + - E: H	4.6 -4.5 -4		-42
SELECT PRESET SCENARIOS :	Dairy Fatten	Draft	:					differenc	ce between water consump water consu water consumptio	umption per cow n per ton of milk	1.708709e+06 1.239000e+03 5.597300e+04	-6892.000 59.000 19489.000	5.0 -0.4 5.0 53.4	evaluation low low low high
◎ A2									water consumption average water consu			712.000 0.003	5.0 4.0	low

value chains Mediate existing conflict

3. Develop an inclusive and sustainable shared

vision of the future

Catherine Pfeifer, catherine.pfeifer@fibl.org Research Centre of Organic Agriculture (FiBL), Switzerland The CLEANED-R code and tools for all countries are available via: https://github.com/ilri/CLEANED-R/ This project was funded by the SAIRLA program from DFID

lick here to update feed baske

This document is licensed for use under the Creative Commons Attribution 4.0 International Licence. ILRI thanks all donors and organizations which globally support its work through their contributions to the CGIAR Trust Fund. May 2019.