

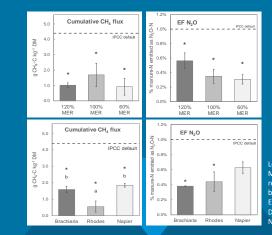
Experimental setup of manure heap experiment (left) simulating conditions on East African smallholder mixed crop-livestock farms (right).

Context

- 15% of agricultural GHG emissions come from Africa, 25% of which are related to manure.
- Due to low productivity, GHG emission intensities (i.e. emissions per unit of product) in Africa are high compared to rest of the world.
- Reliable emission baselines (e.g. through *in situ* measurements with local breeds fed on local diets) are missing, hampering development of sustainable intensification strategies.

Our innovative approach

- We conducted two animal feeding trials with Kenyan Boran cattle and incubated fresh manure in uncovered solid heaps typical for smallholder farms.
- Trial 1: Animals were fed on sub-maintenance energy levels (i.e. cows were hungry).
- Trial 2: Animals were fed on local tropical forage grasses (Napier, Rhodes, Brachiaria) without energy or N supplements.



CLIMATE CHANGE & GREENHOUSE GAS REDUCTION

N₂O and CH₄ emissions from cattle manure heaps in Kenya are lower than IPCC estimates

Sonja Leitner, Dónal Ring, George Wanyama, Daniel Korir, David Pelster, John Goopy, Lutz Merbold

- Current IPCC default factors for manure N₂O and CH₄ are too high compared to *in situ* measurements.
- This potentially invalidates current mitigation practices in SSA because baselines are incorrect; also reporting under UNFCCC is biased.
- With improved management, productivity could go up faster than emissions, reducing GHG emission intensities.

research program on Livestock

ENVIRONMENT

Sonja Leitner, ILRI s.leitner@cgiar.org

egend: MER = Maintenance-energy dequirement (energy supporting basic bodily functions) EF N₂O = N₂O emission factor DM = manure dry matter N = nitrogen

Outcomes

- Manure from hungry cows emits less N₂O and CH₄ compared to well-fed cows.
- Manure from Rhodes grass diet had lower CH₄ emissions than Brachiaria or Napier; no difference in N₂O emissions between grasses.
- All manure CH₄ and N₂O emissions were lower than IPCC default values from IPCC 2019 guidelines.
- Manure from all diets had lower N concentrations compared to "European-style" diet, indicating N deficiency of animals and resulting in low fertilizer value of the manure.

Future steps

- These are the first reliable baselines of manure heap GHG emissions reflecting East African conditions.
- Next steps are animal feeding trials with improved diets linked with manure management intervention testing to decrease nutrient losses and improve fertilizer value of the manure.

Partners

Trinity College Dublin, University of Dublin, Ireland KIT, Garmisch-Partenkirchen, Germany

The CGIAR Research Program on Livestock thanks all donors & organizations which globally support its work through their contributions to the CGIAR Trust Fund. cgiar.org/funders

This document is licensed for use under the Creative Commons Attribution 4.0 International Licence. June 2020