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Abstract 

Land scarcity and seasonal feed deficit are the main constraints to increase milk productivity in crop-

livestock systems in Rwanda. Improved forage technologies can not only narrow the feed gap during 

the dry season, but also contribute to the reduction of enteric methane emissions. There are various 

forage technologies on hand but the adoption often remains low because they might not fit into the 

respective contexts. In this study, we used farming systems characterization and the agro-ecological and 

socio-economic characteristics of the forage technologies to quantitatively evaluate their suitability in 

socio-ecological niches in three agroecological zones in Rwanda. Impacts on milk yield and enteric 

methane emission for scenarios of grass and legume integration in banana fields were simulated through 

the Ruminant model. Forage-niche matching results show that the variation in socio-ecological 

suitability is largely determined by the household’s labour and land availability, income, and the yield 

of the forage. In comparison to other plants, Pennisetum purpureum had a fairly consistent high score 

across all niches. Desmodium intortum had high average scores in the three sites, while Brachiaria 

brizantha had the lowest scores. The Ruminant model results further confirmed the impacs of matching 

forages to a socio-ecological niche. Integrating forages in the socio-ecological niches had raised average 

milk production from 2.8 l/day to 3.9 l/day when matching with grass, and to 4.2 l/day with legume. At 

the same time, enteric methane emission intensity reduced from 83.7 l CH4/l milk to 44.8 l CH4/l milk 

and 40.3 l CH4/l milk respectively. The study has provided a method for operationalizing the socio-

ecological niche concept on matching forages to the niches. It further showed that improving livestock 

diets through matching forages to the socio-ecological niches can increase milk yield while reducing 

enteric methane produced per liter of milk. 

 

Keywords: Climate-smart dairy systems, smallholders, forage intensification, socio-ecological niche, 

intercropping, agro-forestry 
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1. Introduction  

1.1. Opportunities and challenges in livestock farming systems 

Progress towards higher agricultural productivity has been made in the past few decades. 

Agricultural development has created benefits in multiple aspects. It provides job opportunities, with 

around 24.5% of the world employment are in agricultural sector in 2020 (World Bank, 2020). It feeds 

the increasing food demand from the growing population. Agricultural research and development draws 

attention to opening market access and constructing infrastructures in rural areas (Cunguara & Darhofer, 

2011). Nonetheless, the industrialized agricultural system evolves at a cost to social and environmental 

conditions such as unequal spatial and temporal distribution of food, low women welfare, water 

pollution, biodiversity loss (FAO, 2018). In the year 2010, non-CO2 greenhouse gases (GHG) emitted 

from agricultural, forestry and other land use sector took up 24% of the total emission (IPCC, 2014), 

ranking the second largest contributor. Within the agricultural sector, enteric fermentation and manure 

management from livestock represented over a quarter of the methane (CH4) emission (EPA, 2018).  

Even though livestock rearing is a major source of GHG emission, it is important in the agricultural 

sector in Sub-Saharan Africa, contributing to nutrition security and rural livelihoods (Otte & Chilonda, 

2002). In Rwanda, around 80% of the smallholder farmers keep livestock, especially cattle, for various 

purposes. Farmers deem cattle not only as a source of protein and of income, but also as an attribute to 

social status. It is also used as a capital asset and for draught power. In addition, livestock as part of the 

agroecosystem, accelerates nutrient cycling (Herrero et al., 2013). In Rwanda, many policies and 

reforms have been implemented to get the most out of livestock rearing, such as Girinka (also known as 

"one cow per poor family") and improved feeding, both of which have proven to be very effective. 

However, current livestock production is still lower than the attainable yield (Umunezero et al., 2016). 

Deficits in feed quantity caused by land scarcity have been identified as the largest constraint to animal 

production improvement (Klapwijk et al., 2014; Shapiro et al., 2017). Feed deficits occur especially 

during the dry season (June to September), where almost no rainfall occurs. However, crop-based food 

and feed production is excessive in the long rain season. Strong seasonality in feed production was also 

reported in other studies (Umunezero et al., 2016; Paul et al., 2020). To compensate the limited 

production, some farmers make use of crop residues from home-grown crops as well as purchases from 

industrial by-products, which are expensive and with low nutrient values. Furthermore, low productivity 

and environmental degradation have been reported by farmers (Paul et al., 2018). Therefore, finding 

solutions to close yield gaps with improved land use efficiency and mitigated environmental impacts is 

crucial.  

1.2. Attempts to sustainable livestock production systems 

Climate-smart agriculture (CSA) is one of the approaches to address sustainability issues in 

livestock production systems A CSA baseline study in Rwanda has been conducted by the International 

Center for Tropical Agriculture (CIAT) and the World Bank to show the potential of CSA as an 
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agricultural transition approach (World Bank & CIAT, 2015). The approaches to combat temporal 

variation in feed supply and lack of high-quality feed has been widely researched (Romney et al., 2003; 

Hassen et al., 2017; Paul et al., 2020). There are two broad forage-based strategies to fill the seasonal 

feed gap: conserving excessive rainy season feeds for the dry season and increasing forage production 

in the dry season. Forage conservation techniques were conveyed to farmers by trainings and a manual 

(Lukuyu et al., 2012). However, low use of conserved feed was still reported in Nyagatare district 

(Mazimpaka et al., 2017), possibly owing to their limited feed production at the first place (Mutimura 

et al., 2013). For the second strategy, research on high-yield tropical forage species has been conducted 

extensively on different types of forages: grasses (such as Pennisetum purpureum and Brachiaria hybrid 

cv. Mulato II), herbaceous legumes (Baudron et al., 2014), and tree legumes (such as Leucaena 

leucocephala, Shelton & Brewbaker, 1994). Most of them have been proven to have multiple benefits 

for household economics, forage productivity and quality, soil quality, food crop productivity, and 

livestock productivity depending on types of technologies (Paul et al., 2020).  

1.3. Tailoring forage technologies to the diverse farming systems 

Not every technology is perfect for all sites and farming systems. As an example, the yields of 

climbing beans differed among farms’ resource endowment types because of their limitation in choosing 

stacking materials (Descheemaeker et al., 2019). To help select proper forage species for a specific agro-

ecological condition, tools have been developed for screening the abundant tropical forage species 

(https://www.tropicalforages.info/text/intro/index.html). In addition to the biophysical environment, the 

socio-economic and cultural environment such as labour availability and household’s financial condition 

also determine whether a forage technology is suitable for on-farm integration. Misplacing forage 

technologies into the wrong socio-economic context is one of the reasons why improved forages are still 

not widely adopted by farmers. Forage technology adaptation research is abundant but joint analyses of 

biophysical and socio-economic aspects of farms are scarce. The socio-ecological niche concept 

proposed by Ojiem et al. (2006) for pairing legume technologies with suitable smallholder farming 

systems in western Kenya has provided a good example to match technology with specific niche 

considering agro-ecological and socio-economic environment collectively. It is an extension of the 

ecological niche that uses socio-economic factors as one of its boundaries. The concept was further 

practiced by Descheemaeker et al. (2019), who proved tailored options selected through the socio-

ecological niche approach performed better than the non-tailored ones. Paul et al. (2016) assessed agro-

ecological adaptation of improved forages as well as a participatory research to understand farmers’ 

decision on which forage and how it was integrated into their own production systems. Bucagu et al. 

(2013) used the concept to study farmers’ interest in agroforestry in terms of tree species, management 

practices, and on-farm location for implementation. Despite all the efforts in operationalization, the 

approaches and criteria boundaries were vaguely set.  

2. Objectives  

Preliminary niches were identified and characterized for potential forage production nationwide by 

Umunezero (2016), including marshy areas, woodlots, intercropping, farm boundaries, soil erosion 
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control structures, cropped land, and lowland and drier areas. However, a localized characterization and 

assessment of the practicality of utilizing these niches has not been researched. Therefore, the aim of 

this research is to further characterize the socio-ecological niches for forage integration in the study sites 

and match them with the best-bet forage species to determine whether it can narrow the feed gap of 

dairy cows during the dry season. It is achieved by addressing the following subsidiary objectives:  

1) Identifying and characterizing socio-ecological niches for forage integration to supplement the 

existing feed basket. 

2) Matching forage species to the socio-ecological niches for filling the feed gap of dairy cows;  

3) Quantifying the impacts of filling the forage niches on milk productivity and enteric methane 

emission intensity at farm level across the three agro-ecological zones. 

Since socio-ecological niches are shaped by a broader context (i.e. market, institution and policy) 

where social interactions play a substantial role, mixed methods (socio-economic household survey and 

quantitative modelling) will be used to address the research question. Niches and their contexts were 

described and explained through the socio-ecological niches approach, while the ex-ante impact 

assessment of the forage interventions at farm level was conducted using a quantitative modelling 

approach. The results of this research may provide a scope for 1) farmers to decide whether the forage 

integration could achieve their own production objectives, 2) extension services to give more accurate 

advice on adopting forage technologies. 

3. Materials and methods 

3.1. Study sites and farming system selection  

The study was conducted in three districts in Rwanda: Burera, Nyagatare, and Nyanza. They are 

located in the three agro-ecological zones (AEZs) in Rwanda, Eastern Africa: Buberuka Highland (AEZ 

1), Eastern Savanna (AEZ 2), and Central Plateau (AEZ 3), respectively (Figure 1). The three AEZs 

show a gradient in temperature, annual precipitation and elevation within Rwanda (Table 1). Buberuka 

Highland is more prone to soil erosion than the other two because of its higher average precipitation and 

steeper slopes. Soil in the Central Plateau is generally more suitable for a wide range of crops than the 

Eastern Savanna which is characterized by scattered indigenous acacia trees on farm (Iiyama et al., 

2018). Though annual precipitation varies among AEZs, they generally have four seasons: short dry 

season (January to February), short rain season (March to May), long dry season (June to August), and 

long rain season (September to December). 

The majority of Rwanda is covered by rain-fed sub-humid/humid or temperate/highland areas (Paul, 

2020). The main crop production for home consumption includes maize, bean, plantain banana, cassava, 

sweet potato, and Irish potato. In addition to food crops, Napier grass is commonly grown though with 

limited land allocation. Ruminants such as local and cross/improved cow, sheep, and goat are more 

popular in the districts than non-ruminants. Natural grass and Napier grass are both basal feeds in the 

three districts, though pastures in Nyagatare were found to have more diverse forage species (CIAT, 

2018). Burera and Nyanza were practicing zero-grazing system due to the Zero Grazing Program 

encouraged by The Government of Rwanda, while Nyagatare was under extensive to semi-intensive 
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grazing system. Demographically, Burera was more densely populated, with a population density of 522 

inhabitants per km2 (NISR, 2012), than Nyanza (482 inhabitants per km2) and Nyagatare (242 

inhabitants per km2). Economically, they were both regarded as the city center of its province. However, 

Nyanza has a lower percentage of population identified as poor (38.0%), while this number is 50.4% in 

Burera and 44.1% in Nyagatare (NISR, 2015). 

A socio-economic baseline survey of 36 households (12 from each district and from 2 villages in 

each district) has been conducted before this study by the CIAT project ‘Climate-smart dairy systems in 

East Africa through improved forages and feeding strategies’. It is a detailed household survey covering 

multiple dimensions for characterizing a farm (i.e., farm size, land use, agricultural products and 

activities, farm assets, nutrition security, and group memberships etc. in the year 2018). The households 

were selected within Innovation Platforms, which are farmer groups or primary societies in the AEZs 

who are willing to participate in the project. Small to medium size smallholder farms with similar age 

distribution in the households were selected (Nyangaga, 2019). For this study, four farms were excluded 

because there was no milking cow on-farm at the time of the household survey was done. Eight farms 

were excluded because there were no crossbred female cow on farm. For identifying and charactering 

on-farm forage niches and assessing potential impacts, six farms (two from each district) were selected 

as representatives for the district with average farm size, household size, and number of ruminants in 

their districts.  

 

 
Fig. 1. A map of the three study districts and their locations in the AEZs. Sourced from Mukashema et 

al. (2014).  
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Table 1. AEZ-level variables between the study areas.   
Burera (AEZ 1) Nyagatare (AEZ 2) Nyanza (AEZ 3) 

Regional physical    

Sector Nemba Tabagwe Rwabicuma 

AEZ classification Buberuka highland Eastern savanna Central plateau 

Grazing system Zero grazing Extensive/semi-intensive 

grazing 

Zero grazing 

Annual precipitation1 (mm) 1200-1300 800-1000 1000-1500 

Temperature1 (°C) 15-18 >21 18-20 

Elevation1 (m above sea 

level) 

1900-2000 1200-1400 1100-1700 

Soil characteristics    

Texture2 Silty clay loam Loam Loam to silty clay loam 

pH (H2O)3 6.2 5.9 5.1 

C3 (%) 4.65 2.86 1.49 

N3 (%) 0.47 0.22 0.13 

P3 (ppm) 25.13 45.28 7.50 

Demographic    

Population density4 

(inhabitants per km2) 

522 242 482 

Number of members per 

household 

5.8 6.5 5.1 

Farming system    

Farm size 0.74 4.22 1.55 

Number of cow 1.5 4.5 2.2 

Main cultivated crops Maize, common bean, 

Irish potato 

Maize, Common bean, 

banana 

Common bean, sorghum, 

banana  
1Annual precipitation, temperature, and elevation are derived from Iiyama et al. (2018).  
2Soil texture was determined visually on a soil data map derived from the ISRIC Soilgrids. 

(https://maps.isric.org/mapserv?map=/map/wrb.map) in ArcGIS. 
3Secondary data from literatures. Data of Buberuka highland and Eastern savanna was derived from soil 

samples in Burera and Bugesera district respectively (Reckling, 2011); data of Central plateau was 

derived from Simbi district (Bucagu et al., 2014). 
4 Rwanda 4th Population and Housing Census, 2012 (NISR) 

Other parameters are mean values obtained from the household survey (N=36). 

 

3.2. Conceptual framework 

To capture the farm heterogeneities in the study areas, the socio-ecological niche concept (Ojiem, 

2006) was used in the study to guide the data collection for forage niche characterization and matching 

for optimal forage-niche combination. Adapting from his socio-ecological niche framework, six criteria 

influencing the forage integration suitability were identified (Table 2). The criteria have set boundaries 

limiting the choice of forage varieties of a household. Determinants or boundaries defining each criterion 
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were selected through reviewing theories from previous research.  

Criterion 1: Agro-ecological environment 

 Regional agro-ecological environment predominantly determines the adaptability of a forage 

species into the farming system. Significant variations in dry matter yield, plant height, germination rate, 

and biological nitrogen fixation of legume forages were found in different agro-ecological zones (Paul 

et al., 2016; Ojiem, 2006; Davey & Simpson, 1990). Therefore, agro-ecological characteristics including 

elevation, average annual precipitation, annual temperature, soil pH, carbon, nitrogen, and phosphorus 

content were chosen to describe the forage niche. 

 Criterion 2: Cultural environment 

 Type of livestock rearing system influences farmer’s habit in livestock feeding, determining how 

much farmer prefer to integrate forages in their farm. In extensive grazing systems, planting forage on-

farm is less preferred by farmers (Paul et al., 2016). Forage plants are also incorporated into livestock 

production systems in various ways. A review by Rao et al. (2015) indicates that grasses are commonly 

used in grazing systems or making processed feeds, while legumes have less application in processing 

feed. Moreover, forages that can survive in treading and manure patches would be more adaptive in 

extensive grazing systems than those does not. 

 Criterion 3: Socio-economic environment 

 In this research, the distance to the market refers to the geographical distance from the observed 

farm to the nearest market that trades crop and livestock. As an alternative, if data is available, distance 

to a market can be characterized collectively as travel time to market, taking account the facilitation by 

intermediate agencies (Staal et al., 2002). Markets interact with crop-livestock systems by exchanging 

crop and livestock products with food, feed, and cash. Having access to markets for forage or animal 

products can increase the adoption of improved forages even if the farm is less unlikely an adopter 

(Gebremedhin et al., 2003).  

 Criterion 4: Institutional support 

 Institutional support such as adequate extension services, well-developed seed dealerships, 

supportive policies and subsidies facilitates the diffusion of the improved forage technologies, especially 

those with higher integration complexity (Rudel et al., 2015). For example, transitioning to legume-

Brachiaria systems might not only introduce a new crop variety but often needs a series of changes like 

new management in the cropping systems. 

 Criterion 5: Production objectives  

 Borrowing the on-farm survey results from the study in Kenya (Ojiem, 2006) into our research 

context, we assume that farmers integrate forages on farm out of their interests in feeding livestock and 

producing food. Biomass production was reported by Paul et al. (2016) as the top criterion for farmers 

to plant forages among farmers in Sud-Kivu, DR Congo. Metabolizable energy (ME) and metabolizable 

protein (MP) in forages strongly determine their nutritional value. Taking into account the objectives of 

climate-smart agriculture, quantifying methane emission from enteric fermentation is also important to 

characterize a forage niche. Enteric methane production is affected by the content of structural 

carbohydrates in the plant-based feeds, which can be measured by the neutral detergent fiber (NDF) 

(Moe & Tyrrell, 1979).   

 Criterion 6: Farm production environment 

According to Gebremedhin’s analysis on determinants of improved forage adoption, labour 

availability and land availability have positive influence on adoption rate and intensity (Gebremedhin et 

al., 2003). Households with larger farm area are more willing to adopt a new technology because there 
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is more spare land.  

Forages not only differ in DM yield in relation to agro-ecological conditions, they also have their 

specialties in filling the milk yield gap and accomplishing farmers’ objectives. For example, legume 

forages have higher protein content than grass forages because of their nitrogen-fixing ability. Thus, 

legume can supplement grass-based diets with high protein content when protein supply is low. By 

comparing the forage characteristics and the boundaries of a niche, scores were given to the proposed 

forages to quantitatively predicting the suitability of its integration into the niche (see Section 3.4. for 

details on matching). 

3.3. Identifying and characterizing niches 

Rapid farming systems characterization can identify the regional enabling factors and constraints 

(Descheemaeker et al., 2016). In this study, a rapid farming systems characterization was conducted 

with the average values from the survey of 36 household. Differences among districts in farm size, 

household size, number of cow, and crops in different seasons were compared using the data retrieved 

from the household survey. Woodlots, banana (Musa spp., including cooking banana and fruit banana), 

and Napier grass (Pennisetum purpureum) were identified as the on-farm niches for forage production 

Though contributing greatly to the DM in the feed basket, it is low in protein content. Shifting from 

Napier grass in pure stands to grass-legume intercropping shows potential in increasing milk yield, thus 

it is identified as an on-farm niche in this study. To validate the status of these niches in our study sites, 

the percentage of the farm area allocated to each niche to the total farm area was calculated per farm. 

Borrowing the definition of social norms (Bicchieri et al., 2018), forage planting norms are behavioral 

patterns of how farmers normally interact with forages. Regional variation in forage planting norms can 

be distinguished by detail on-farm survey (Ojiem, 2006). Participatory evaluation was used by Paul et 

al. (2016) to identify farmers’ preferences on on-farm forage planting. In this study, norms of on-farm 

forage planting were indicated through the area and percentage of land planted with Napier grass, input, 

labour, and its distance from homestead. Climatic and soil information were collected from literatures 

or geographic maps from the International Soil Reference and Information Centre soil database (ISRIC 

Soilgrids). 

 At farm level, baseline characteristics of the 6 selected farms throughout a year were investigated 

through detailed farm characterization. Household labour availability was calculated by multiplying the 

number of household members working on-farm with 249 working days and 8 hours per day. Working 

hours for off-farm employment during the dry season were subtracted. Hired and unpaid laborers were 

not included in the household labour availability. Net farm income was calculated by the sum of 

livestock and crop product sales minors the costs on crop and livestock production and costs on hiring 

off-farm laborers (including permanent and temporary employments). Off-farm cash flows were not 

recorded by the survey, therefore these were not included in total net farm income calculation. Milk 

production and enteric methane emission intensity were simulated through the Ruminant model (Herrero, 

1998) using the feed basket composition in the household survey. Due to inadequate records on feed 

quantity and milk production in different lactation periods, feed quantity was estimated by the dry matter 

(DM) intake capacity (DMI) in relation to cow body weight (BW=250 kg, DMI=3% BW in long rainy 

season, DMI=2% BW in short rainy and short dry season, DMI=1.5% BW in long dry season). The DM 

quantity of each feed in the feed basket was estimated by multiplying the total feed quantity by the 

percentage of each feed in the basket. The baseline of daily milk yield and methane emission were 

generated from the estimated feed quantity using the Ruminant model (Herrero, 1998). Feed parameters 
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were calibrated using the nutrient values from Feedipedia and from Shikuku et al. (2017).  

3.4. Matching forages and niches 

The information collected from the 6 selected farms was used to evaluate niches’ boundary for 

forage integration according to Table 2. Each niche characteristic was given a condition of constraining, 

medium, or facilitating the forage integration. It sets the socio-ecological niche boundaries for matching 

forages and niches. Table 4 provides a list of suitable forage species/varieties and their yield range for 

each AEZs based on the results from demonstration plot, on-farm trial results, and farmers’ report. 

Forage characteristics such as agro-ecological distribution (elevation, annual precipitation, annual 

temperature, soil pH, and soil fertility), common utilization in livestock systems, yield range, DM 

content, protein content, NDF content, water requirement, compatibility with the main crop, and shade 

tolerance of the forages were obtained from Feedipedia and Tropical forages 

(https://www.tropicalforages.info/). These data were used for evaluating the level of demand of each 

forage variety from the niche environment according to the criteria in Table 3. Comparative labour 

requirement in each niche were gathered through interviewing forage specialist in Rwanda for the reason 

that recording actual labour investment for each species and forage-niche combination is time-

consuming. More importantly, some combinations were not practiced in the existing households. Only 

estimations can be given. The scores from each criterion were summed. Therefore, in total 58 forage-

niche combinations had their final matching score. 

 To quantitatively evaluate the level of match of the forage-niche combination, scores were given to 

each forage species in the three selected niches following the niche characteristics shown in Table 2. 

Score of 1 to 3 was given to each characteristic. Score of 3 means a high match between the forage and 

niche, 2 means medium match, 1 means low match.  

For agro-ecological supply and demand, the conditions were not judged. A score of 3 was given to 

a combination when the agro-ecological demand from the forage is within the agro-ecological condition 

of the niche. It received a score of 2 if the forage demand is different from the agro-ecological condition 

of the niche but sometimes found in those regions. A score of 1 was given to the combination in which 

the forage variety is rarely distributed in the regions with similar agro-ecological conditions as the niche. 

Scoring of the other characteristics followed the rules below. 

A characteristic of forage-niche combination is given a score of 3 when: 

1) The niche has facilitating boundary for forage-integration and the forage species have a 

high/medium/low demand in the corresponding characteristic. 

2) The niche has medium boundary for forage-integration and the forage species have a medium/low 

demand in the corresponding characteristic. 

3) The niche has a constraining boundary for forage-integration and the forage species have a low 

demand in the corresponding characteristic. 

 A characteristic of forage-niche combination is given a score of 2 when: 

1) The niche has medium boundary for forage-integration and the forage species have high demand 

2) The niche has constraining boundary for forage-integration and the forage species have medium 

demand 

 A characteristic of forage-niche combination is given a score of 1 when: 

1) The niche has constraining boundary for forage-integration and the forage have high demand 
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Table. 2. Main niche characteristics and criteria for diagnosing its boundary of forage integration. “Facilitating” means the niche condition of that criteria is 

desirable for on-farm forage integration. “Constraining” means the niche cannot provide the desirable condition for forage integration. “Medium” refers to the 

condition in between “facilitating” and “constraining”. Agro-ecological conditions were not evaluated as their level of supply is species-specific.The table is 

adapted from the socio-ecological niche concept framework by Ojiem (2006). 

 Niche boundary for forage integration 

Niche characteristic  Constraining Medium  Facilitating 

Criterion 1: Agro-ecological conditions  
Elevation 

- 

 

- - 

 
Annual precipitation  
Annual temperature  
Soil pH 

 
Soil fertility 

 

Criterion 2: Cultural environment 
   

 
Norms on forage planting No forage is planted on farm Percentage of area allocated to 

forage production < 5% 

Percentage of area allocated 

to forage production ≥ 5% 

 
Livestock feeding habit Extensive grazing Semi-extensive grazing Zero grazing 

Criterion 3: Socio-economic environment 
   

 
Distance to the market No market available Market available at large 

distance (> 3 hours travel) 

Market available at short 

distance (< 3 hours travel) 

 Income and capital1 ≤ 500 USD/year > 500 USD/year and ≤ 1000 

USD/year 

> 1000 USD/year 

 Household labour availability2 ≤ 4482 hour/household/year > 4482 hour/year and ≤ 6474 

hour/household/year 

> 6474 hour/household/year 

Criterion 4: Institutional support 
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Frequency of extension services No extension services Scarce extension services Frequent and competent 

extension services are 

available  
Seed/planting material accessibility No access to improved 

seed/planting material 

Have access to improved 

seed/planting materials of 

limited varieties 

Have access to improved 

seed/planting materials of 

various varieties 

Criterion 5: Production objectives 
   

 
Food security3 Severely food insecure Moderately to mildly food 

insecure 

Food secure 

 
Feed availability Feed deficit ≤ 1 month Feed deficit > 1 month and ≤ 2 

months 

Feed deficit > 2 months  

 
Feed quality Sufficient feed quality is 

supplied 

ME or MP is limiting ME and MP are both 

limiting  
Enteric methane production intensity4 ≤ 131 L CH4/L milk  > 131 and ≤ 160 L CH4/L milk  > 160 L CH4/L milk 

 

Criterion 6: Farm production environment 
   

 
Land availability Farm land area per household 

member ≤ 0.1 ha/household 

member 

Farm land area per household 

member > 0.1 and ≤ 0.2 

ha/household member 

Farm land area per 

household member > 0.2 

ha/household member 
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Water availability Water shortage and no 

irrigation 

Sufficient rainfall, no irrigation Generally favorable water 

availability, and be 

supplemented with 

irrigation in case of drought. 

 
Crop compatibility The crop is highly 

competitive 

The crop can maintain its yield 

with another crop 

The crop is not competitive 

and yield will strongly 

reduce with another crop  
Shade The existing crop provide 

shade that doesn’t allow the 

targeted forage to survive 

 

The existing crop provide 

shade that allows the targeted 

forage to survive though with 

compromised yield 

The existing crop provide 

optimal shade condition to 

the targeted forage 

1Total value of the household produced and off-farm income. Classified according to farm typology result from Hammond et al. (2020).  
2Calculated from the average person available as labour force per household*239 working days/year*8 hours/day ± 1 person. Population data were obtained 

from NISR (2012). 
3Food security is indicated by the Household Food Insecurity Access Scale (HFIAS) developed by USAID (Jennifer et al., 2007).  
4The value represents the average level of methane emission from enteric fermentation of a dairy cow in Africa, calculated from Tier 1 enteric fermentation 

emission factor (46 kg CH4/head/year with average milk production of 475 kg/head/year) suggested by IPCC (2006). 

 

Table. 3. Main forage characteristics and criteria for evaluating its level of demand from the environment. “High”, “Medium”, and “Low” mean the forage have 

a high, medium, or low demand from the condition of the environment. Level of demand from agro-ecological condition were not evaluated solely on the forage 

characteristics as it can be only judged together with niche characteristics. 

  Forage demand 

Forage characteristic Corresponding niche characteristic 
Low Medium High 

Criterion 1: Agro-ecological condition  

 Elevation Elevation 
- - -  Annual precipitation Annual precipitation 
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 Annual temperature Annual temperature 

 Soil pH Soil pH 

 Soil fertility Soil fertility 
 

Criterion 2: Cultural environment  
   

 Frequency presented in feed basket 

Norms on forage planting Being planted on-farm 

and frequently 

presents in the feed 

basket 

Sometime presents in 

the feed basket in a 

small amount 

Never presents in the 

feed basket 

 Intended forage use 

Livestock feeding habit Can be used in pasture, 

cut-and-carry  

 
Have only one 

intended use or can 

only be fed freshly 

Criterion 3: Socio-economic environment  
   

 Market value 
Distance to the market Mainly for on-farm 

utilization 

 
Marketable 

 Purposes of the forage 

Income and capital Can be used as feed, 

mulch, fuel wood and 

more 

Can be used as feed 

and mulch 

Only used as feed 

 Labour requirement 

Household labour availability Require less effort per 

ha than planting 

Napier grass 

Require similar effort 

per ha as planting 

Napier grass 

Require higher effort 

per ha than planting 

Napier grass 

Criterion 4: Institutional support  
   

 Complexity of the technology 

Frequency of extension services Simple innovation 

such as substitution of 

another crop 

 
Complicated 

innovation that 

requires systemic 

changes 
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 Seed/planting material accessibility 

Seed/planting material accessibility Commercially 

available or can be 

propagated by farmers 

Commercially 

available but difficult 

to buy 

Not commercially 

available 

Criterion 5: Production objectives  
   

 Food production 
Food security Edible 

 
Not edible for 

human 

 Biomass yield 

Feed availability Average yield > 20 t 

DM/ha 

Average yield ≤ 20 t 

DM/ha and > 10 t 

DM/ha 

Average yield ≤ 10 t 

DM/ha 

 Protein content 
Feed quality CP content > 100 g/kg 

 
CP content ≤ 100 

g/kg 

 NDF content 

Enteric methane production intensity NDF content < 400 

g/kg DM 

NDF content ≥ 400 

g/kg DM and <600 

g/kg DM 

NDF content ≥ 600 

g/kg DM 

Criterion 6: Farm production environment  
   

 Yield per unit of land area 

Land availability Average yield > 20 t 

DM/ha 

Average yield ≤ 20 t 

DM/ha and > 10 t 

DM/ha 

Average yield ≤ 10 t 

DM/ha 

 Water demand 

Water availability Can tolerate dry 

season for more than 

three months 

Can tolerant dry 

season for less than 

three months 

Requires regular 

irrigation 

 Crop compatibility 

Crop compatibility Can grow with most of 

the crops 

Can grow with 

limited types of 

crops (e.g. only 

grasses or legumes) 

Not commonly grow 

with another crop 

 Shade tolerance 
Shade Can tolerant heavy 

shade 

Can tolerant light 

shade 

Full light 
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Table 4. Selected forage species of the three AEZs with yield range in t DM/ha. Yields range of 

Brachiaria brizantha and Panicum maximum were obtained from Ohmstedt & Mwendia (2018). Others 

were obtained from Feedipedia. 

Burera (AEZ 1) 

Promising species Forage type Yield range (t 

DM/ha) 

Pennisetum purpureum French Cameroon Grass 20-80 

Brachiaria brizantha Grass 10-18  

Calliandra calothyrsus Tree legume 7-20  

Desmodium intortum Herbaceous legume 12-19 

Nyagatare (AEZ 2) 

Promising species Forage type Yield range (t 

DM/ha) 

Pennisetum purpureum Kakamega 1 Grass 20-80 

Brachiaria brizantha Grass 10-18 

Tripsacum laxum Grass 18-22 

Chloris gayana Grass 10-16 

Panicum maximum Grass 20-40 

Mucuna pruriens Vine legume 10-35 

Desmodium intortum Herbaceous legume 12-19 

Medicago sativa Shrub legume 8-15 

Leucaena leucocephala Shrub legume 3-30 

Nyanza (AEZ 3) 

Promising species Forage type Yield range (t 

DM/ha) 

Pennisetum purpureum Kakamega 1 Grass 20-80 

Brachiaria brizantha Grass 10-18 

Setaria sphacelata Grass 10-18 

Desmodium intortum Herbaceous legume 12-19 

 

3.5. Forage integration scenarios   

Productivity and environment are two common domains for assessing farm sustainability (Marinus 

et al., 2018). Considering households’ objectives on farming activities and the aims of climate-smart 

agriculture, milk yield per day and enteric methane emission intensity were selected as indicators to 

assess the performance under each domain. Following a similar method in baseline simulation, milk 

yield and methane emission from the scenarios were simulated by the Ruminant model. 

Two scenarios with forage integration were simulated for banana field (Table 5) to quantitatively 

examine the utility of operationalizing the socio-ecological niche concept and potential impacts from 

forage integration. In the grass integration scenario (GI), the grass forage with the highest matching 

score was added into the current feed baskets as supplement to lactating dairy cow (the initial quantity 

of each feed composition remain unchanged). Forage DM production was assumed to be differ between 
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rainy and dry seasons where the highest recorded yield was used to calculate the daily feed supplement 

in long and short rain seasons and the lowest yield was used for long and short dry seasons. In the legume 

integration scenario (LI), the legume forage with the highest matching score was added to the feed basket 

with the same method as in GI.  

Niche areas were estimated based on the available household survey. Forages were integrated into 

the cropping system by intercropping (or as understory crop in agroforestry system). Forage yield (FY) 

in DM of the integration was calculated as: 

FY in banana intercropping niche (kg DM) =50% of banana field area (ha) x forage yield (kg DM/ha) 

The calculation was suggested by Umunezero et al. (2016) and was adapted to our study sites and 

assumptions. It was assumed that 50% of the banana field area would be available for forage plantation. 

We also assumed that there is no plant-plant interactions other than a shading effect from the other crop 

after forage integration. In this study, shading effect was avoided by limiting the available area for 

forages (i.e. only 50% of the banana field area can be available for forage integration). 

 

Table 5. Current dairy cow feed baskets and scenarios. Only forage-banana niche was assessed. BU, 

NG, NZ refer to Burera, Nyagatare, and Nyanza districts respectively. GI is grass-integrated scenario 

and LI is legume-integrated scenario. LR, SR, LD, SD refer to long rain season, short rain season, long 

dry season, and short dry season respectively.  

 Feed composition LR SR LD SD 

 BU2 

Baseline feed basket Natural grasses (kg DM/day) 8.2 6.5 4.0 6.5 

 Napier grass (kg DM/day) 1.6 1.1 2.0 1.1 

 Maize stover-green (kg DM/day) 4.9 2.2  2.2 

 Banana trunk/leaves (kg DM/day) 1.6  1.2  

 Pulse straw-dry (kg DM/day) 1.1 0.6 1.1 

 Leucaena (kg DM/day)   0.2  
Scenario GI Brachiaria brizantha (kg DM/day) 1.5 1.5 1.5 1.5 

Scenario LI Desmodium intortum (kg DM/day) 0.4 0.4 0.4 0.4 

 NG1 

 Natural grasses (kg DM/day) 4.9 2.2 1.6 2.2 

 Napier grass (kg DM/day) 6.5 4.4 0.8 4.4 

 Pulse straw-dry (kg DM/day) 4.9    

 Maize stover-green (kg DM/day) 4.4  4.4 

 Maize stover-dry (kg DM/day)  0.8  

 Banana trunk/leaves (kg DM/day)  4.8  
Scenario GI Chloris gayana (kg DM/day) 0.5 0.5 0.5 0.5 

Scenario LI Leucaena leucocephala (kg DM/day) 0.7 0.7 0.7 0.7 

 NZ1 

 Natural grasses (kg DM/day) 9.8 5.5 2.4 6.5 

 Napier grass (kg DM/day) 3.3 2.7 3.2 3.3 

 Setaria (kg DM/day) 3.3 2.7  1.1 

 Irish potatoes vines (kg DM/day)  2.4  
Scenario GI Pennisetum purpureum (kg DM/day) 2.1 2.1 2.1 2.1 

Scenario LI Desmodium intortum (kg DM/day) 0.6 0.6 0.6 0.6 
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 NZ2 

 Natural grasses (kg DM/day) 3.3 4.9 1.6 2.2 

 Napier grass (kg DM/day) 6.5 3.3 0.8 4.4 

 Pulse straw-dry (kg DM/day) 6.5    

 Irish potato vines (kg DM/day) 2.7   

 Banana trunk/leaves (kg DM/day)  5.6  

 Pulse straw-dry (kg DM/day)   4.4 

Scenario GI Pennisetum purpureum (kg DM/day) 3.8 3.8 3.8 3.8 

Scenario LI Desmodium intortum (kg DM/day) 1.2 1.2 1.2 1.2 

 

 Statistical analyses were conducted to compare the significant difference between baseline and 

scenario values using IBM SPSS Statistics 26 software. Univariate analysis of variance was used to 

analyze the difference in mean values among districts in the farm characterization. Paired sample T-tests 

were used to test statistically significant difference (p<0.05) between baseline farm parameters and those 

after forage integration.  

4. Results 

4.1. Baseline characteristics of the selected farms and their potential forage niches 

Figure 2 shows the difference among the three districts in terms of household size, number of 

ruminants on farm, and total farm area. No significant difference was found in household size, which is 

in line with the survey sample selection intention. The average farm area per household was 0.7 ha in 

Burera, 4.2 ha in Nyagatare, and 1.5 ha in Nyanza. Significant difference (p<0.005) is found in the 

number of ruminants kept by the households with an average of 1.5 in Burera, 2 in Nyanza, and 8.5 in 

Nyagatare. There was little difference in number of crop species among districts. However, the number 

was lower during the dry season than the long and short rain seasons. The most planted crops in the dry 

season were Napier grass (52.8% of the households) and banana (including fruit and cooking banana, 

50.0% of the households). 

 

(a

(c) 

(b

(d
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Figure 2. Farming systems differences among the study districts in terms of household size (a), farm 

size (b), number of ruminant (c), and number of crop varieties (d). Statistical data are derived from 36 

households (12 from each district. Values and details from each household see supporting information). 

One-way ANOVA test were conducted to compare the difference between districts. No difference in 

household size (p=0.125); significant difference in number of ruminants (p<0.005); significant 

difference in farm area per household (p<0.005). 

 

The percentages of the farm area that were allocated to banana, woodlot, or Napier grass plantation are 

shown in Figure 3. Among all the households, 66.7% had plots allocated to banana. Woodlots were only 

found in 5 households in Burera and 6 in Nyanza. Over 50% of the households had plot for planting 

Napier grass, with an area ranging from 0.004 to 0.98 ha. No significant differences are found in the 

percentage of area allocated to banana, woodlot, and Napier grass among the districts. 

 
Figure 3. Percentage of the total farm area used for fallowing, banana plantation, woodlot, or Napier 

grass plantation.  

  

 Land scarcity has been identified as one of the characteristics in Rwanda. However, difference in 

cultivated area per household member shows a gradient in the severity of land scarcity. An average of 

0.12 ha per household member is found while the values in Nyanza and Nyagatare are 0.32 and 0.70 ha 

per household member, respectively. It reveals a more acute issue in land availability in Burera. 

Surprisingly, intercropping was not a popular practice in all the households. One third of them has 

intercropped during the long rain season, among them, common bean was usually planted with maize 

and sometimes maize planted with a tuber crop.  

Six farms were selected as prototype representing the average household size, farm area, and 

number of ruminants of their districts. Table 6 shows the baseline features of the selected farms from 

the survey data and the Ruminant model outputs. BU1 had severe land constraint with only 0.1 ha of 

farm area per household member. Cost of external labour was low compared to other households. The 



  
 

18 

main cost was on crop production while the return from crop and livestock products were comparable. 

BU2 had a negative net farm income with the most cost spent on external labour and low return from 

livestock sales. NG1 had most of its income from crop product sales. Its high return rates from crop and 

livestock production contributed to its comparable net farm income. NG2 had a negative net farm 

income mainly due to its high cost on external labour and low return rate from crop production. In the 

year data was collected, the household spent 353.5 USD on marketing the crop products, which was 97% 

of its crop input cost. NZ1 should be highlighted for its high return from cow milk and manure 

production. Regarding to the household labour availability, BU1 and NZ1 had the highest supply (7968 

hour/year) while NG2 and NZ2 had the lowest (3984 hour/year). Milk yield in most of the households 

were limited by energy intake, where protein limitation sometimes happened in the long rain and long 

dry season. 

 

Table 6. Baseline features of the six study farms in Burera (BU), Nyagatare (NG), and Nyanza (NZ). 

Total farm area, household size, number of cow, and net farm income were calculated from household 

survey. Food insecurity was indicated by the answer to the question “Was there ever no food to eat of 

any kind in your household because of lack of resources to get food?” Milk yield and enteric methane 

emission intensity were generated from the Ruminant model using the feed compositions in four seasons 

recorded by the household survey. MP: metabolizable protein; ME: metabolizable energy. 

Baseline features 
Burera Nyagatare Nyanza 

BU1 BU2 NG1 NG2 NZ1 NZ2 

Farm physical characteristics       

Total farm area (ha) 0.81 0.61 3.06 2.78 1.20 1.36 

Cultivated area (ha) 0.76 0.58 3.01 2.73 1.13 0.93 

Household size (number of member) 8 6 6 6 5 4 

Number of cow 1 2 5 3 4 2 

Socio-economic characteristics       

Household labour availability (hour/year) 7968 6736 7968 3984 7968 3984 

Land availability (ha/household) 0.1 0.1 0.5 0.5 0.2 0.3 

Net farm income (USD) 180 -144 259 -189 427 139 

Cost of external labour (USD) 25 184 50 253 194 265 

Input cost for crop production (USD) 58 15 4 364 8 32 

Input cost for livestock production (USD) 9 6 8 3 10 1 

Returns from crop sales (USD) 122 58 295 385 53 172 

Returns from livestock sales (USD) 150 3 21 46 586 265 

Production constraints       

Food insecurity Severe 

food in

secure 

Mode

rately 

to 

mildl

y 

food 

insec

ure 

Food 

secur

e 

Severe

ly 

food 

insecu

re 

Severely 

food 

insecure 

Mode

rately 

to 

mildl

y 

food 

insec

ure 

Month(s) of feed deficit 2.5 1 3 3 3 3 
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Water shortage (in the past 5 years) 0 0 0 0 2 0 

Milk yield limiting factor       

Long rain season ME MP ME ME ME ME 

Short rain season ME ME ME ME ME ME 

Long rain season ME ME MP ME ME MP 

Short rain season ME ME ME ME ME ME 

  

There was no external input in any of the possible forage niche plots (Table 7). The major inputs 

were farmyard manure (FYM) and mulch which were both produced on-farm. The percentage of farm 

area occupied by the niches was small in general but showed a large range from almost ignorable to 

37%. The Napier grass plot in BU1 had exceptionally high labour intensity invested mainly due to the 

extended days spent on harvesting, gathering the harvest, and transporting. Except for the plots that were 

newly established (NZ1 Napier grass and NZ2 banana), the main activities were manure application, 

weeding, harvesting, and transport. Mulching was specific to banana plots while transportation was more 

common for Napier grass. There was no obvious trend in niche type and its distance from homestead. 

The information on woodlot management and characteristics are lacking in the survey.  

 

Table 7. Characteristics of the forage niches in the selected households. Only area and distance of the 

plot from homestead were recorded for woodlots in the survey. FYM: farmyard manure. 

AEZ ID  Niche 
Area  

(ha) 

Percentage 

of total 

farm area 

Input type 

Input 

cost 

(USD) 

Labour 

intensity  

(hour/ha) 

Distance 

from 

homestead  

(m) 

Buberuka 

highland 

BU1 
Woodlot 0.09 11% NA NA NA  400 

Napier grass 0.02 2% FYM 0 32875 350 

BU2 
Banana  0.08 13% FYM, mulch 0 1430 0 

Woodlot 0.23 37% NA NA NA  400 

Eastern 

savanna 

NG1 
Banana  0.18 6% Mulch 0 537 300 

Napier grass 0.30 10% None 0 420 650 

NG2 Napier grass 0.20 7% FYM 0 1636 0 

Central 

plateau 

NZ1 
Banana  0.03 3% FYM 0 5200 300 

Napier grass 0.05 4% None 0 157 500 

NZ2 

Banana 0.06 4% FYM, mulch 0 2931 200 

Woodlot 0.01 0% NA NA NA  100 

Napier grass 0.02 2% None 0 2048 200 

 

4.2. Matching forages to the socio-ecological niches 

The total score from each forage-niche combination is shown in Tables 8 to 10. Subtotal scores on 

individual criteria can be found in Appendix 4.1-4.6. In general, there was little variation among the 

scores, ranging from 46 to 59 out of 60. Total scores under criterion 1 were the same for each species 

under the same district. They showed little variations ranging from 12 to 13 in Burera, 13 to 15 in 

Nyagatare, and 12 to 13 in Nyanza. Therefore, variation between different niches lies in the different 
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production objectives and farm production environment among households. Difference between forages 

under the same type of niche varied because of both adaptability to the AEZ and to the heterogeneity 

among households.The suitability of forage integration is influenced by the initial land use of the niche. 

Among the different land use, combination of banana field and forages had the highest average score in 

all districts. Intercropping Napier grass with another forage had the lowest score in every districts.  

Among all the species and forage-niche combinations, Brachiaria brizantha received the lowest 

matching score. Pennisetum purpureum had a relatively high score in all niches compared to other grass 

forages, while Brachiaria brizantha fluctuated the most, even though they have comparable scores in 

fitting agro-ecological characteristics. Among all the promising species in Burera, Pennisetum 

purpureum and Desmodium intortum have the same highest average score whereas Leucaena 

leucocephala is the highest in Nyagatare.  

 

Table 8. Matching score of the promising forage species in Burera district. WL: woodlot, NG: Napier 

grass, BNN: banana. Pennisetum purpureum is not applicable for Napier grass intercropping niche, 

therefore receiving no score. Values in the bracket are the subtotal score of Criterion 1 (agro-ecological 

condition). 

Forage species 
BU1 

WL 

BU1 

NG 

BU2 

BNN 

BU2 

WL 
Mean 

Standard 

deviation 

Pennisetum 

purpureum  
50 (12) - 54 (12) 54 (12) 53 2.3 

Brachiaria brizantha 49 (12) 48 (12) 50 (12) 50 (12) 49 1.0 

Calliandra calothyrsus 53 (13) 52 (13) 52 (13) 52 (13) 52 0.5 

Desmodium intortum 51 (13) 50 (13) 58 (13) 51 (13) 53 3.7 

 

Table 9. Matching score of the promising forage species in Nyagatare district. WL: woodlot, NG: Napier 

grass, BNN: banana. Pennisetum purpureum is not applicable for Napier grass intercropping niche, 

therefore receiving no score. Values in the bracket are the subtotal score of Criterion 1 (agro-ecological 

condition). 

Forage species 
NG1 

BNN 
NG1 NG NG2 NG Mean 

Standard 

deviation 

Pennisetum purpureum 55 (13) - - 55 0.0 

Brachiaria brizantha 53 (14) 52 (14) 47 (14) 51 2.6 

Tripsacum laxum 54 (15) 53 (15) 48 (15) 52 2.6 

Chloris gayana 54 (15) 54 (15) 49 (15) 52 2.4 

Panicum maximum 54 (15) 54 (15) 51 (15) 53 1.4 

Mucuna pruriens 54 (15) 53 (15) 53 (15) 53 0.5 

Desmodium intortum 54 (14) 53 (14) 50 (14) 52 1.7 

Medicago sativa 54 (14) 54 (14) 53 (14) 54 0.5 

Leucaena leucocephala 59 (15) 58 (15) 55 (15) 57 1.7 

 

Table 10. Matching score of the promising forage species in Nyanza district. WL: woodlot, NG: Napier 

grass, BNN: banana. Pennisetum purpureum is not applicable for Napier grass intercropping niche, 

therefore receiving no score. Values in the bracket are the subtotal score of Criterion 1 (agro-ecological 

condition). 
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Forage species 
NZ1 

BNN 

NZ1 

NG 

NZ2 

BNN 

NZ2 

WL 

NZ2 

NG 
Mean 

Standard 

deviation 

Pennisetum 

purpureum 
50 (12) - 51 (12) 51 (12) - 51 0.5 

Brachiaria brizantha 50 (13) 49 (13) 49 (13) 49 (13) 48 (13) 49 0.6 

Setaria sphacelata 50 (13) 49 (13) 50 (13) 50 (13) 49 (13) 50 0.5 

Desmodium intortum 49 (13) 49 (13) 52 (13) 52 (13) 51 (13) 51 1.4 

4.3. Assessing the impacts of forage integration through scenarios analysis 

Table 11 shows the percentage changes of milk yield and enteric methane emission intensity in the 

two forage-integrated scenarios in the banana fields compared to the baseline feeding regimes. The 

average changes in milk yield increased by 129% under GI scenario and 193% in LI scenario. On 

average, enteric methane emission intensity would decrease in both scenarios by 28% and 35%. Seasonal 

variations were found in the two scenarios. In general, they boosted milk yield in all seasons, particularly 

during the short rainy season followed by short dry season. Under scenario GI, the largest decrease in 

enteric methane emission intensity was found in the long dry season. Enteric methane emission intensity 

has greater decrease under scenario LI than GI, however, the seasonal difference was not significant. 

Households experienced various consequences as a result of the scenarios. BU2 owned the highest mean 

increase in milk yield and the most decrease rate in enteric methane emission intensity in both scenarios. 

Though all the households had positive average increase in milk yield under GI scenario, decreases were 

presented in NG1 with the long and short rain and short dry season feed baskets. Decrease in milk yield 

was not found under LI scenario.
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Table 11. Simulated milk yield and enteric methane emission intensity changes in the two forage-integrated scenarios compared to their baseline feed baskets. 

Description of the LR, SR, LD, SD and the two scenarios are presented in Table 5. Milk yield and methane were not able to be simulated for LD in BU2 because 

the number of feedstuff exceed model limit. The indicators in the baseline are shown in absolute values and are shown as percentage changes compared to the 

baseline. 

Indicators ID Baseline Scenario GI Scenario LI 

 
 LR SR LD SD LR SR LD SD Mean LR SR LD SD Mean 

Milk yield  BU2 2.0 0.4 2.2 0.4 35.0 600.0  475.0 370.0 70.0 1050.0  800.0 640.0 

(L/day/head) NG1 4.0 3.4 0.8 3.4 -5.0 -5.9 50.0 -2.9 9.0 10.0 17.6 37.5 2.9 17.0 

 NZ1 3.0 3.0 5.5 1.8 60.0 63.3 32.7 105.6 65.4 46.7 50.0 23.6 72.2 48.1 

 NZ2 4.1 6.5 0.8 3.5 12.2 16.9 250.0 14.3 73.4 17.1 27.7 200.0 20.0 66.2 

Mean     25.5 168.6 110.9 148.0 129.4 35.9 286.3 87.0 223.8 192.8 

 
               

Methane emission BU2 64.3 260.0 54.2 260.0 -21.5 -79.0  -78.4 -59.6 -32.2 -87.4 -100.0 -86.0 -76.4 

(L CH4/L milk/day) NG1 36.5 41.0 147.3 41.0 4.3 5.3 -26.1 2.5 -3.5 -6.3 -11.5 -24.4 -1.8 -11.0 

 NZ1 48.7 46.2 28.9 68.4 -32.6 -29.7 -15.8 -43.1 -30.3 -74.6 -24.9 -12.6 -35.0 -36.8 

 NZ2 34.4 25.8 142.4 40.1 -3.4 -7.2 -60.6 -9.0 -20.1 -7.3 -11.3 -56.5 -11.9 -21.7 

Mean     -13.3 -27.7 -34.2 -32.0 -28.4 -30.1 -33.8 -48.4 -33.7 -36.5 
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5. Discussion 

5.1. Socio-ecological niches differ among AEZs 

On-farm pure-stand banana plot, woodlot, and Napier grass plot were identified as suitable 

ecological niches for forage technology integration because of their popularity in the regions and 

potential space for another crop. Banana planted in pure stands was found in 24 among 36 households, 

taking up on average 7% of the total farm area. It not only was a source of income but also provided 

stems and leaves as feed during the dry season. It is of higher importance to poor farmers to compensate 

the low forage grass production because of limited land (Klapwijk et al., 2014). Only 3 households had 

intercropped another crop in their banana field, and only during the rainy seasons. Therefore, planting 

another crop in banana fields is achievable and can provide weed control, conserve soil moisture and 

improve livestock diet (Tixier et al., 2011; Umunezero et al., 2016). 

Households with on-farm woodlot were located in Burera and Nyanza districts. Surprisingly, the 

area and percentage of farm area allocated to woodlot was the highest in Burera. It is the opposite of the 

finding from Bucagu et al. (2013) that wealthier farms have larger woodlot areas than moderate and 

poor farms. Households in Burera had a poorer economic condition than in Nyanza with 54.8% and 

50.2% of the population identified as non-poor, respectively. Noteworthy, on-farm forage plantation was 

not rare amongst the study districts, which could potentially facilitate the implementation of integrating 

forage on farm. 

Napier grass was the most popular forage variety and one of the basal ingredients in the cow’s diet 

(CIAT, 2018; Klapwijk et al., 2014). It can also be reflected from the fact that around half of the 

households planted Napier grass on their cropland. Some of the farms had already planted Napier grass 

with maize as intercrop during the rainy seasons. Plots planted with Napier grass took up on average 

3.7% of the total farm area (n=36) in the three study districts. The total farm area planted with Napier 

grass was the highest in Nyagatare, however, the percentage of land allocated to Napier grass was half 

of that in Burera. It can be explained by the overall larger farm size and its dominated extensive grazing 

system. This Napier grass planting regime can possibly enable the development of socio-ecological 

niche for forages by familiarizing farmers with forage planting practices especially grass forage similar 

to Napier grass.  

Though the above on-farm locations were ecologically suitable for forage integration, their 

suitability as socio-ecological niches varied because of the diverse social and economic conditions. In 

Burera, farm area was significantly smaller than the other two districts due to the highest population 

density and land fragmentation, indicating that land scarcity was stronger constraint in Burera than in 

the other two districts. Despite land scarcity, its soil erosion rate is much higher due to the hilly 

topography and higher annual precipitation (Karamage et al., 2016). Therefore, efficient while 

sustainable land use should be emphasized. One of the universal approaches to overcome land scarcity 

is to increase productivity per ha of land (van der Lee et al., 2016). Zero-grazing is encouraged in Burera 

and Nyanza by the Rwanda government. The on-farm forage niche development can be encouraged by 

the less time spent on cut-and-carry for stall-feeding. Intensifying crop production by intercropping a 

forage is another approach to improve land productivity. Without changing the current cropping plan, 

high yield and high quality forages from on-farm production can be added into the diet. This 

intensification scenario is assumed to increase milk yield of crossbred cow by 81% (Paul et al., 2018). 
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Given these two main limitations in Burera, forage integration as intercrop or understory species in 

agroforestry system can carry out multiple benefits. Productive forages that can withstand seasonal high 

precipitation, such as Desmodium intortum, and forages with significant erosion control ability, such as 

Chloris gayana, would be advantageous. 

In Nyagatare, the main constraint to implement forage integration technology lies on its extensive 

grazing system, borrowing the theory from Paul et al. (2016) on forage technology adoption preference.  

Farmers in free livestock roaming systems show less interest in planting forage. Additionally, lack of 

labour for managing the comparatively larger size of land might also limits the implementation. 

Therefore, forages, such as Leucaena leucocephala, that require less management effort and can 

supplement the proteins generally lacking in grasses will be suitable for the households in Nyagatare. In 

spite of forage intensification by intercropping, improved pasture with low labour requirement may be 

a better choice in Nyagatare considering that 45% of the farm area was pasture. 

 The production objectives were diverse between households depending on their resource 

endowment (Tittonell et al., 2008). Interestingly, most of the households in Burera did not sell milk 

products, while all the households in Nyanza and Nyagatare sold their milk. Lack of market interaction 

might be an indication of low productivity or market unavailability. Food insecurity was not acute in the 

study households. Therefore, improved crop residues or multi-purposes forages with high productivity 

per unit area such as Mucuna pruriens would be better choices to minimize food-feed competition for 

land. However, using the quantity of food cannot fully indicates the food security and their production 

objective on food, assessing their nutrient security and dietary diversity are also important to fulfill a 

balanced requirement for macro- and micro-nutrients (Headey & Ecker, 2012; FAO, 1996). 

The highly grass-based diet in the study sites though provides carbohydrates, it is deficient in protein 

and potentially increases enteric methane production. Corresponding to the detail farm characterization 

results, the higher milk yield in rainy seasons were due to a higher grass supply providing more energy 

than dry seasons. Protein supply limitation usually happens in long dry season, with exception of 

occurrence in long rain season in BU2. Therefore, it confirms that increasing the quantity of feed will 

be a priority while supplementing proteins can be further improved especially for households with poor 

resource endowment (Klapwijk et al., 2014).  

5.2. Matching approach to select best-bet forage-niche combination  

The approach for matching provides a guideline for researchers and extension workers to tailor-

made forage intensification scenarios to farmers. This tentative matching approach shows a possibility 

to quantitatively differentiate the suitability of the forage-niche combinations in the socio-ecological 

niche framework. Subtle differences among the forage technologies and among the respective contexts 

can be unraveled. 

The nominated forages within the same AEZ (Table 4) received similar subtotal scores in Criterion 

1 because they have already proven to be suitable for the local agro-ecological conditions through 

experiments. However, soil characteristics and climatic variations can differ even within the same zone, 

particularly in a hilly environment. Therefore, more refinement is possible such as on-farm soil 

measurements to improve the matching accuracy. The variations in their final score were largely 

determined by socio-economic condition and production objectives of individual household. For 

example, though Brachiaria brizantha has a comparable score for Criterion 1 as other grass forages, its 

low final score in NG2 Napier grass field is a result from the low match of household’s limited income, 

low labour availability, food insecurity, and high enteric methane emission from dairy cows to the 



  
 

25 

forage’s characteristics. A comparable result of Brachiaria was also found in Kenya where converting 

Napier grass to Brachiaria, even though Brachiaria might present higher drought tolerant (Osele et al., 

2018). Though Brachiaria spp. has the highest protein content in the grass forages, its matching score 

may suggest that alternative forages such as Tripsaum laxum and Chloris gayana may perform better in 

fitting the farming systems than the ones with higher feed quality. Households with severe constraints 

in their production environments, such as NG2 and NZ1, might choose perennial multi-purposes legume 

forages rather than grasses to have better forage integration. 

 Limited seed or planting material sources has been reported to be responsible for low forage 

technology adoption. The suggested forage species in this study are supported by Rwanda Agriculture 

Board (RAB) and/or CIAT, therefore issues on seed accessibility is minor. Distance to the market only 

significantly determines the matching process when the farm is market-oriented. The forage and milk 

production were merely for home consumption in the selected households. The parts of production that 

were sold were mainly to their neighbors and brokers, which means their distance to markets was short 

and their interaction with markets was fairly simple if the distance to markets is defined as the time spent 

on moving from plot to the market. In a nutshell, institutional support in this case is less relevant 

Some improvements can be made to refine the accuracy of the matching score. For example, the 

importance of each variables can be weighed differently under different farming systems. Study on tree 

species and canopy densities in specific farms can be further elaborated. Timewise, the period of growth 

and conservation of the forages is also important. As protein limitations often occur during long dry 

season, conserving feedstuff high in protein for dry season use is crucial to narrow the milk yield gap. 

The time before having harvestable yield should be considered into judging its profitability. 

5.3. Impacts of the two forage-integrated scenarios 

Though giving scores to the forage-niche combinations can prioritize the most suitable forage into 

the household’s agro-ecological and socio-economic context, potential impacts on milk yield and enteric 

methane emission should be analyzed. The Ruminant model approach in our study predicts the milk 

yield and enteric methane emission when feeding the improved diet under two scenarios. Result shows 

that either integrating grass or legume forage into the banana field can raise the milk yield by over 100% 

while decreasing enteric methane emission intensity.  

Lower enteric methane emission intensity is found with higher milk yield. This is in line with the 

finding by FAO (n.d.) and Rao et al. (2015) indicating that increasing milk productivity is an efficient 

way to reduce methane production intensity while also providing other social and economic benefits. 

Though enteric methane production is significant influenced by the amount of DMI, the nutrient 

composition of the diet may affect the emission factor (Niu et al., 2018). This is confirmed by the 

different in reducing methane emission intensity between the two scenarios with grass and legume-

added diets.  

Scenario GI has the most benefit in BU2 compared to other households. It is most likely resulted 

from the higher protein content in the Brachiaria brizantha comparing to the other selected grass forages 

(i.e. Chloris gayana and Pennisetum purpureum). The larger plot size in BU2 might have also 

contributed to the result. Exceptionally, grass-integrated diet had an undesirable impact in NG1, which 

underpins the necessity of ex-ante assessment before implementing the intervention. Model output 

presents decreases in MP and ME supply from the diet though DMI is constant. As a result, the decrease 

in milk yield could be attributed to decreased feed digestibility (Appendix 4.3). Scenario LI is more 

effective in improving milk yield and reducing enteric methane emission intensity than scenario GI.  
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 The Ruminant model might have underestimated the DMI since the predicted feed refusal rate 

(above 50% DM) is much higher than the previous research in which almost no feed is refused (Klapwijk 

et al., 2014). In reality, milk production throughout the year is not realistic. However, the results can 

provide an insight on how and when to allocate the produced forages for the most efficient milk 

production while reducing methane emission intensity. 

6. Conclusions and recommendations 

Banana, woodlot, and Napier grass fields were identified as the potential on-farm socio-ecological 

niches for forage integration. More than half of the study households had plots allocated to banana and 

Napier grass production, while woodlots were only found at a small scale in Burera and Nyanza. The 

percentages of the niche areas per household ranged from 0 to 42.6%, but there is no significant 

difference among the districts. Intercropping was not a common practice in these niches, which gives 

opportunities for growing forages as understory crops and soil covers. Except for farmyard manure and 

mulching material, inputs on the identified niches were rare.  

The study households showed different levels of constraining or facilitating conditions to the choices 

of forage varieties. According to the final matching scores of the selected forage species and niches, 

Pennisetum purpureum and Desmodium intortum are the most suitable forages for the identified socio-

ecological niches. Leucaena leucocephala might be more favoured in farming systems in Nyagatare 

district than other species. In households with severe constraining conditions, the species with high 

scores are commonly multi-purposes legumes such as Leucaena leucocephala and Mucuna pruriens.  

Matching forages into socio-ecological niches can not only likely to increase forage technology 

adaptions but also potentially increase milk production and mitigate enteric methane emission intensity. 

Predicted results from the Ruminant model demonstrated that grass produced from the socio-ecological 

niche can increase milk yield from 2.8 l/day to 3.9 l/day when added to the initial dairy cow diet. Adding 

legumes increased milk yield to 4.2 l/day. Both addition of grass and legumes reduced enteric methane 

emission intensity by more than 30%. 

In the research, obtaining data on feed quantity had been a challenge. Further feed assessments in 

the study sites will help to improve the reliability of diagnosing the milk production limiting factor and 

to validate the results from the Ruminant model. Biological aspect, feed conservation skills of the 

households is lacking in this socio-ecological matching approach, which might needs further research. 

More efficient land use on off-farm niches is also likely to close the gap in milk yield, though more 

intense communication and agreements should be discussed among households and the institutions than 

integrating forages in on-farm socio-ecological niches. 

  



  
 

27 

Acknowledgements 

 This thesis was conducted with the Farming Systems Ecology Group of Wageningen University & 

Research and the Alliance of Bioversity International and CIAT. Thanks to Jeroen Groot and Birthe Paul 

for all the inspirations and patient guidance throughout the process, and Paulin Mutanguha for providing 

local data and information support. Thanks to my family and friends, Songkers who has been 

understanding and patient with my frequent absence. Special thanks to Mingyue Hu for the six years we 

spent together, from Zhuhai to Wageningen, as well as all the milestones we have witnessed for each 

other and Frédéric Chopin whose masterpieces have emotionally helped me survive in the stresses and 

anxieties. 

 

References 

Baudron, F., Jaleta, M., Okitoi, O., & Tegegn, A. (2014). Conservation agriculture in African mixed 

crop-livestock systems: expanding the niche. Agriculture, Ecosystems & Environment, 187, 171-

182. 

Bucagu, C., Vanlauwe, B., Van Wijk, M. T., & Giller, K. E. (2013). Assessing farmers’ interest in 

agroforestry in two contrasting agro-ecological zones of Rwanda. Agroforestry systems, 87(1), 

141-158. 

Campbell, B. M., Thornton, P., Zougmoré, R., Van Asten, P., & Lipper, L. (2014). Sustainable 

intensification: What is its role in climate smart agriculture?. Current Opinion in Environmental 

Sustainability, 8, 39-43. 

CIAT. (2018). Feed gap first assessment Report – Rwanda. Working paper. 

Cunguara, B., & Darnhofer, I. (2011). Assessing the impact of improved agricultural technologies on 

household income in rural Mozambique. Food Policy, 36(3), 378-390. 

DAVEY, A. G., & SIMPSON, R. J. (1990). Nitrogen fixation by subterranean clover at varying stages 

of nodule dehydration: I. carbohydrate status and short-term recovery of nodulated root 

respiration. Journal of Experimental Botany, 41(9), 1175-1187. 

Descheemaeker, K., Ronner, E., Ollenburger, M., Franke, A. C., Klapwijk, C. J., Falconnier, G. N., ... & 

Giller, K. E. (2019). Which options fit best? Operationalizing the socio-ecological niche concept. 

Experimental Agriculture, 55(S1), 169-190. 

De Groote H, Vanlauwe B, Rutto E, Odhiambo GD, Kanampiu F, Khan ZR (2010) Economic analysis 

ofdifferent options in integrated pest and soil fertility management in maize systems of Western 

Kenya. Agric Econ 41(5):471–482. https://doi.org/10.1111/j.1574-0862. 2010.00459.x 

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J. C., Farahani, E., Susanne, K., ... & Zwickel, T. 

(2014). AR5 climate change 2014: Mitigation of climate change. IPCC, New York, USA, Tech. 

Rep. 

FAO (Food and Agriculture Organization of the United Nations). (1996). Rome Declaration on World 

Food Security and World Food Summit Plan of Action. Retrieved from 

www.fao.org/DOCREP/003/W3613E/W3613E00.HTM.  

FAO (Food and Agriculture Organization of the United Nations). (2018). Transforming food and 

agriculture to achieve the SDGs: 20 interconnected actions to guide decision-makers. 

FAO ((Food and Agriculture Organization of the United Nations). (n.d.). Reducing Enteric Methane for 

improving food security and livelihoods. Retrieved from http://www.fao.org/in-action/enteric-



  
 

28 

methane/background/reducing-emission-intensity/en/  

Gebremedhin, B., Ahmed, M. M., & Ehui, S. K. (2003). Determinants of adoption of improved forage 

technologies in crop-livestock mixed systems: evidence from the highlands of Ethiopia. In Tropical 

Grasslands (Vol. 37). https://cgspace.cgiar.org/handle/10568/27820  

Hassen, A., Talore, D. G., Tesfamariam, E. H., Friend, M. A., & Mpanza, T. D. E. (2017). Potential use 

of forage-legume intercropping technologies to adapt to climate-change impacts on mixed crop-

livestock systems in Africa: a review. Regional Environmental Change, 17(6), 1713-1724. 

Headey, D. D., & Ecker, O. (2012). Improving the measurement of food security. 

Herrero, M. (1998). Modelling dairy grazing systems: an integrated approach. 

Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S., & Rufino, M. C. (2013). The 

roles of livestock in developing countries. Animal: an international journal of animal 

bioscience, 7(s1), 3. 

Iiyama, M., Mukuralinda, A., Ndayambaje, J. D., Musana, B., Ndoli, A., Mowo, J. G., ... & Ruganzu, V. 

(2018). Tree-Based Ecosystem Approaches (TBEAs) as Multi-Functional Land Management 

Strategies—Evidence from Rwanda. Sustainability, 10(5), 1360. 

Jennifer, C., Swindale, A., & Bilinsky, P.. (2007). Household Food Insecurity Access Scale (HFIAS) for 

Measurement of Household Food Access: Indicator Guide (v. 3). Washington, D.C.: Food and 

Nutrition Technical Assistance Project, Academy for Educational Development. Retrieved from 

http://www.fao.org/fileadmin/user_upload/eufao-fsi4dm/doc-training/hfias.pdf  

Klapwijk, C. J., Bucagu, C., van Wijk, M. T., Udo, H. M. J., Vanlauwe, B., Munyanziza, E., & Giller, 

K. E. (2014). The ‘One cow per poor family’programme: Current and potential fodder availability 

within smallholder farming systems in southwest Rwanda. Agricultural Systems, 131, 11-22. 

Lukuyu, B. A., Gachuiri, C. K., Lukuyu, M. N., Lusweti, C., & Mwendia, S. W. (2012). Feeding dairy 

cattle in East Africa. 

Marinus, W., Ronner, E., Ven, G. W. J. Van De, Kanampiu, F., Adjei-nsiah, S., & Giller, K. E. (2018). 

The devil is in the detail! Sustainability assessment of African smallholder farming. Routledge 

Handbook of Sustainability Indicators, Part 2, 427–450. https://doi.org/10.4324/9781315561103-

28 

Mazimpaka, E., Mbuza, F., Michael, T., Gatari, E. N., Bukenya, E. M., & James, O. A. (2017). Current 

status of cattle production system in Nyagatare District-Rwanda. Tropical animal health and 

production, 49(8), 1645-1656. 

Mgbenka, R. N., Mbah, E. N., & Ezeano, C. I. (2016). A review of small holder farming in Nigeria: 

Need for transformation. International Journal of Agricultural Extension and Rural Development 

Studies, 3(2), 43-54. 

Moe, P. W., & Tyrrell, H. F. (1979). Methane production in dairy cows. Journal of Dairy Science, 62, 

1583–1586. https://doi.org/10.3168/jds.S0022-0302(79)83465-7 

Mukashema, A., Veldkamp, A., & Vrieling, A. (2014). Automated high resolution mapping of coffee in 

Rwanda using an expert Bayesian network. International journal of applied earth observation and 

geoinformation, 33, 331-340. 

Mutimura, M., Lussa, A. B., Mutabazi, J., Myambi, C. B., Cyamweshi, R. A., & Ebong, C. (2013). 

Status of animal feed resources in Rwanda. Tropical Grasslands-Forrajes Tropicales, 1(1), 109-

110. 

National Institute of Statistics of Rwanda (NISR), Ministry of Finance and Economic Planning 

(MINECOFIN) [Rwanda]. (2012). Rwanda Fourth Population and Housing Census 



  
 

29 

National Institute of Statistics of Rwanda (NISR). (2015). Rwanda Poverty Profile Report, 2013/14. 

Niang, A. I., Amadalo, B. A., De Wolf, J., & Gathumbi, S. M. (2002). Species screening for short-term 

planted fallows in the highlands of western Kenya. Agroforestry Systems, 56(2), 145-154. 

Nyangaga, B. J. (2019). Baseline Survey Project : Climate-smart dairy systems in East Africa through 

improved forages and feeding strategies : enhancing productivity and adaptive capacity while 

mitigating GHG emissions Implemented by the International Centre for Tropical Agricul. 

Ohmstedt, U., Mwendia, S. (2018). Tropical Forages Factsheets. International Center for Tropical 

Agriculture (CIAT). Cali. CO. 11 p.  

Ojiem, J. O. (2006). Exploring socio-ecological niches for legumes in western Kenya smallholder 

farming systems. Thesis. 

Otte, M. J., & Chilonda, P. (2002). Cattle and small ruminant production systems in sub-Saharan Africa. 

A systematic review. 

Osele, V., Paul, B.. Mukiri, J., Halder, S., Sagala, T., Juma, A., Notenbaert, A. (2018). Feeding a 

productive dairy cow in western Kenya: environmental and socio-economic impacts. Working 

Paper. CIAT Publication No. 472. International Center for Tropical Agriculture (CIAT). Nairobi, 

Kenya. 48 p. Available at: http://hdl.handle.net/10568/97557  

Paul, B. K., Muhimuzi, F. L., Bacigale, S. B., Wimba, B. M., Chiuri, W. L., Amzati, G. S., & Maass, B. 

L. (2016). Towards an assessment of on-farm niches for improved forages in Sud-Kivu, DR 

Congo. Journal of Agriculture and Rural Development in the Tropics and Subtropics 

(JARTS), 117(2), 243-254. 

Paul, B. K., Frelat, R., Birnholz, C., Ebong, C., Gahigi, A., Groot, J. C. J., Herrero, M., Kagabo, D. M., 

Notenbaert, A., Vanlauwe, B., & van Wijk, M. T. (2018). Agricultural intensification scenarios, 

household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-

offs. Agricultural Systems, 163, 16–26. https://doi.org/10.1016/j.agsy.2017.02.007  

Paul, B. K., Groot, J. C., Birnholz, C. A., Nzogela, B., Notenbaert, A., Woyessa, K., ... & Tittonell, P. 

(2020). Reducing agro-environmental trade-offs through sustainable livestock intensification 

across smallholder systems in Northern Tanzania. International Journal of Agricultural 

Sustainability, 18(1), 35-54. 

Paul, Birthe K., Koge, J., Maass, B. L., Notenbaert, A., Peters, M., Groot, J. C. J., & Tittonell, P. (2020). 

Tropical forage technologies can deliver multiple benefits in Sub-Saharan Africa. A meta-analysis. 

Agronomy for Sustainable Development, 40(4). https://doi.org/10.1007/s13593-020-00626-3 

Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of 

botany, 114(8), 1571-1596. 

Rao, I., Peters, M., Castro, A., Schultze-Kraft, R., White, D., Fisher, M., ... & Rudel, T. (2015). 

LivestockPlus—The sustainable intensification of forage-based agricultural systems to improve 

livelihoods and ecosystem services in the tropics. Tropical Grasslands-Forrajes Tropicales, 3(2), 

59-82. 

Romney, D. L., Thorne, P., Lukuyu, B., & Thornton, P. K. (2003). Maize as food and feed in intensive 

smallholder systems: management options for improved integration in mixed farming systems of 

east and southern Africa. Field crops research, 84(1-2), 159-168. 

Rudel, T. K., Paul, B., White, D., Rao, I. M., Van Der Hoek, R., Castro, A., ... & Peters, M. (2015). 

LivestockPlus: Forages, sustainable intensification, and food security in the tropics. Ambio, 44(7), 

685-693. Shapiro, B. I., Gebru, G., Desta, S., & Nigussie, K. (2017). Rwanda livestock master plan. 

Shapiro et al. (2017). Rwanda Livestock Master Plan. Retrieved from 



  
 

30 

http://extwprlegs1.fao.org/docs/pdf/rwa172923.pdf  

Shelton, H. M., & Brewbaker, J. L. (1994). Leucaena leucocephala-the most widely used forage tree 

legume. Forage tree legumes in tropical agriculture.(Eds. RC Gutteridge and HM Shelton). CAB 

International. Wallingford, UK, 15. 

Shikuku, K. M., Valdivia, R. O., Paul, B. K., Mwongera, C., Winowiecki, L., Läderach, P., ... & Silvestri, 

S. (2017). Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data 

approach. Agricultural systems, 151, 204-216. 

Small, F. A., & Raizada, M. N. (2017). Mitigating dry season food insecurity in the subtropics by 

prospecting drought-tolerant, nitrogen-fixing weeds. Agriculture & Food Security, 6(1), 1-14. 

Staal, S. J., Baltenweck, I., Waithaka, M. M., de Wolff, T. and Njoroge, L. (2002). Location and uptake: 

Integrated household and GIS analysis of technology adoption and land use, with application to 

smallholder dairy farms in Kenya. Agricultural Economics 27:295–315. 

Tixier, P., Lavigne, C., Alvarez, S., Gauquier, A., Blanchard, M., Ripoche, A., & Achard, R. (2011). 

Model evaluation of cover crops, application to eleven species for banana cropping 

systems. European Journal of Agronomy, 34(2), 53-61. 

Umunezero, O., Mwendia, S. W., Paul, B. K., Maass, B. L., Ebong, C., Kagabo, D. M., ... & Notenbaert, 

A. M. O. (2016). Identifying and characterizing areas for potential forage production in Rwanda. 

United States Environmental Protection Agency. (n.d.). Sources of Greenhouse Gas Emissions. 

Retrieved from https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#agriculture  

van der Lee, J., Bebe, B. O., & Oosting, S. (2016). Sustainable intensification pathways for dairy 

farming in Kenya: A case study for PROIntensAfrica WP2, Deliverable 2.3 (No. 997). Wageningen 

Livestock Research. 

World Bank & CIAT. (2015). Climate-smart agriculture in Rwanda. CSA Country Profiles for Africa, 

Asia, and Latin America and the Caribbean Series. Washington D.C.: The World Bank Group. 

https://climateknowledgeportal.worldbank.org/sites/default/files/2019-

06/CSA%20RWANDA%20NOV%2018%202015.pdf  

World Bank. (2020, June 21). Employment in agriculture (% of total employment) (modeled ILO 

estimate). https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS  

 

 

  



  
 

0 

Appendices 

Appendix 1. Feed parameters for Ruminant inputs. 

Feedstuff 
NDF 

(g/kg) 

CP 

(g/kg) 

Ash 

(g/kg) 

Fat 

(g/kg) 
Starch 

Rate 

BCHO 
BCHO 

Rate 

ACHO 
ACHO 

Rate 

BCP 
BCP 

Rate 

ACP 
ACP 

Natural grass (fresh) 601.5 60 513.0 0 0 0.045 0.6 0.3 120 0.07 0.5 0.15 0.3 

Napier grass 715 97 138 0 0 0.04 0.6 0.3 200 0.07 0.47 0.2 0.246 

Banana trunk/leaves 200 35 113 0 0 0.12 0.7 0.3 660 0.15 0.55 0.3 0.35 

Pluse straw (fresh) 511 107 72 0 0 0.03 0.5 0.3 310 0.07 0.5 0.15 0.3 

Pluse straw (dry) 697 71 89 0 0 0.03 0.5 0.3 143 0.07 0.5 0.15 0.3 

Sweet potato vine 427 165 112 0 0 0.03 0.5 0.3 296 0.07 0.5 0.15 0.3 

Maize stover green 699 68 68 0 0 0.03 0.5 0.3 165 0.07 0.5 0.15 0.3 

Maize stover dry 750 39 71 0 0 0.03 0.5 0.3 140 0.07 0.5 0.15 0.3 

Irish potato vine 427 165 112 0 0 0.03 0.5 0.3 296 0.07 0.5 0.15 0.3 

Leucaena leucocephala 409 233 85 0 0 0.04 0.55 0.3 273 0.07 0.47 0.2 0.2 

Setaria sphacelata 695 91 111 0 0 0.04 0.6 0.3 103 0.07 0.47 0.2 0.2 

Calliandra calothyrsus 556 208 63 0 0 0.04 0.7 0.3 173 0.07 0.47 0.2 0.2 

Brachiaria brizantha 650 120 100 10 0 0.044 0.64 0.3 120 0.07 0.5 0.15 0.3 

Desmodium intortum 514 155 75 0 0 0.04 0.581 0.3 256 0.07 0.5 0.15 0.3 

Tripsacum laxum 724 88 85 0 0 0.04 0.599 0.3 103 0.07 0.5 0.15 0.3 

Chloris gayana 750 90 90 0 0 0.04 0.604 0.3 70 0.07 0.5 0.15 0.3 

Panicum maximum 755 72 55 0 0 0.04 0.577 0.3 118 0.07 0.5 0.15 0.3 

Mucuna pruriens 385 160 79 0 0 0.04 0.681 0.3 376 0.07 0.5 0.15 0.3 
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Appendix 2. Results of the diagnosis of the niche supply. C refers to “Constraining”, M refers to “Medium”, and F refers to “Facilitating”. 

Criteria Criteria boundary 
BU1 

WL 

BU1 

NPG 

BU2 

BNN 

BU2 

WL 

NG1 

BN

N 

NG1 

NP

G 

NG2 

NP

G 

NZ1 

BN

N 

NZ1 

NP

G 

NZ2 

BN

N 

NZ

2 

WL 

NZ2 

NP

G 

Agro-ecological conditions Elevation             
 Annual precipitation             
 Annual temperature             
 Soil pH             
 Soil fertility             
Cultural environment Norms on forage planting M M C C C C C C C C C C 
 Livestock feeding habit F F F F M M M F F F F F 

Socio-economic 

environment 
Distance to the market 

F F F F F F F F F F F F 
 Income and capital  C C C C C C C M M C C C 
 Household labour availability F F F F F F C F F C C C 

Institutional support Frequency of extension services F F F F F F F F F F F F 
 Seed accessibility F F F F F F F F F F F F 

Production objectives Food security C C M M F F C C C M M M 
 Feed availability F F C C F F F F F F F F 
 Feed quality M M F F F F M M M M M M 

 Enteric methane production 

intensity C C F F M M C C C M M M 

Farm production 

environment 
Land availability 

M M M M F F F F F F F F 
 Water availability M M M M M M M C C M M M 
 Crop compatibility M C M M M C C M C M M C 
 Shade M M M M M M M M M M M M 
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Appendix 4.1-4.6 Matching score of each forage species and niche types and subtotal score under each criterion. 

Appendix 4.1. Matching score in BU1. 
  BU1 Woodlot BU1 Napier grass 

Crit

eria 
Criteria boundary 

Pennisetum 

purpureum 

Brachiaria 

brizantha 

Calliandra 

calothyrsus 

Desmodium 

intortum 

Pennisetum 

purpureum 

Brachiaria 

brizantha 

Calliandra 

calothyrsus 

Desmodium 

intortum 

Agro-ecological conditions 
 Elevation 3 3 3 3  3 3 3 

 Annual precipitation 2 2 3 3  2 3 3 
 Annual temperature 1 1 1 1  1 1 1 
 Soil pH 3 3 3 3  3 3 3 
 Soil fertility 3 3 3 3  3 3 3 

Cultural environment 

 Norms on forage 

planting 
3 2 2 2  2 2 2 

 Livestock feeding habit 3 3 3 3  3 3 3 

Socio-economic environment 
 Distance to the market 3 3 3 3  3 3 3 
 Income and capital 2 1 3 1  1 3 1 

 Household labour 

availability 
3 3 3 3  3 3 3 

Institutional support 

 Frequency of extension 

services 
3 3 3 3  3 3 3 

 Seed accessibility 3 3 3 3  3 3 3 

Production objectives 
 Food security 1 1 1 1  1 1 1 
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 Feed availability 3 3 3 3  3 3 3 
 Feed quality 2 3 3 3  3 3 3 

 Enteric methane 

emission 
1 1 2 2  1 2 2 

Farm production environment 

 Land availability 

(ha/household member) 
3 3 3 3  3 3 3 

 Water availability 2 3 3 3  3 3 3 
 Crop compatibility 3 3 2 2  2 1 1 
 Shade 3 2 3 3  2 3 3 
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Appendix 4.2. Matching score in BU2. 
  BU2 Banana BU2 Woodlot 

Crit

eria 
Criteria boundary 

Pennisetum 

purpureum 

Brachiaria 

brizantha 

Calliandra 

calothyrsus 

Desmodium 

intortum 

Pennisetum 

purpureum 

Brachiaria 

brizantha 

Calliandra 

calothyrsus 

Desmodium 

intortum 

Agro-ecological conditions 
 Elevation 3 3 3 3 3 3 3 3 

 Annual 

precipitation 
2 2 3 3 2 2 3 3 

 Annual 

temperature 
1 1 1 1 1 1 1 1 

 Soil pH 3 3 3 3 3 3 3 3 
 Soil fertility 3 3 3 3 3 3 3 3 

Cultural environment 

 Norms on forage 

planting 
3 1 1 1 3 1 1 1 

 Grazing system 

suitability 
3 3 3 3 3 3 3 3 

Socio-economic environment 

 Distance to the 

market 
3 3 3 3 3 3 3 3 

 Income and capital 2 1 3 1 2 1 3 1 

 Household labour 

availability 
3 3 3 3 3 3 3 3 

Institutional support 

 Frequency of 

extension services 
3 3 3 3 3 3 3 3 

 Seed accessibility 3 3 2 3 3 3 2 3 
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Production objectives 
 Food production 2 2 2 2 2 2 2 2 

 Biomass 

production 
3 2 2 2 3 2 2 2 

 Feed quality 3 3 3 3 3 3 3 3 

 Enteric methane 

emission 
3 3 3 3 3 3 3 3 

Farm production environment 
 Land availability  3 3 3 3 3 3 3 3 
 Water availability 2 3 3 3 2 3 3 3 
 Crop compatibility 3 3 2 2 3 3 2 2 
 Shade 3 2 3 3 3 2 3 3 
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Appendix 4.3. Matching score in NG1. 
  NG1 Banana NG1 Napier grass 

C

ri

te

ri

a 

Criteria 

boundary 

Penni

setum 

purpu

reum 

Brac

hiari

a 

briza

ntha 

Trip

sacu

m 

laxu

m 

Des

modi

um 

intort

um 

Chl

oris 

gay

ana 

Pani

cum 

maxi

mum 

Muc

una 

prur

iens 

Des

modi

um 

intort

um 

Leuca

ena 

leuco

cepha

la 

Penni

setum 

purpu

reum 

Brac

hiari

a 

briza

ntha 

Trip

sacu

m 

laxu

m 

Des

modi

um 

intort

um 

Chl

oris 

gay

ana 

Pani

cum 

maxi

mum 

Muc

una 

prur

iens 

Des

modi

um 

intort

um 

Leuca

ena 

leuco

cepha

la 

Agro-ecological conditions 
 Elevation 3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

 
Annual 

precipitati

on 

1 2 3 3 3 3 3 3 3  2 3 3 3 3 3 3 3 

 
Annual 

temperatur

e 

3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

 Soil pH 3 3 3 2 3 3 3 2 3  3 3 2 3 3 3 2 3 

 Soil 

fertility 
3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

Cultural environment 

 
Norms on 

forage 

planting 

3 1 1 1 1 1 1 1 2  1 1 1 1 1 1 1 2 

 
Grazing 

system 

suitability 

3 3 3 3 3 3 3 3 3  3 3 3 3 3 2 3 3 

Socio-economic environment 
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Distance 

to the 

market 

3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

 Income 

and capital  
2 1 1 1 1 1 3 1 3  1 1 1 1 1 2 1 3 

 

Household 

labour 

availabilit

y 

3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

Institutional support 

 

Frequency 

of 

extension 

services 

3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

 
Seed 

accessibilit

y 

3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

Production objectives 

 Food 

production 
3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

 Biomass 

production 
3 3 3 3 3 3 2 3 3  3 3 3 3 3 3 3 3 

 Feed 

quality 
3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

 
Enteric 

methane 

emission 

2 2 2 3 2 2 3 3 3  2 2 3 2 2 3 3 3 



  
 

8 

Farm production environment 

 

Land 

availabilit

y 

(ha/househ

old 

member) 

3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 

 
Water 

availabilit

y 

2 3 3 3 3 3 2 3 3  3 3 3 3 3 3 3 3 

 
Crop 

compatibil

ity 

3 3 2 2 3 3 3 3 3  2 1 1 3 3 1 3 2 

 Shade 3 2 3 3 2 2 1 2 3  2 3 3 2 2 2 2 3 
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Appendix 4.4. Matching score in NG2. 
  NG2 Napier grass 

Crit

eria 
Criteria boundary 

Pennisetum 

purpureum 

Brachiaria 

brizantha 

Tripsacu

m laxum 

Desmodium 

intortum 

Chloris 

gayana 

Panicum 

maximum 

Mucuna 

pruriens 

Desmodium 

intortum 

Leucaena 

leucocephala 

Agro-ecological conditions 
 Elevation  3 3 3 3 3 3 3 3 

 Annual 

precipitation 
 2 3 3 3 3 3 3 3 

 Annual 

temperature 
 3 3 3 3 3 3 3 3 

 Soil pH  3 3 2 3 3 3 2 3 
 Soil fertility  3 3 3 3 3 3 3 3 

Cultural environment 

 Norms on forage 

planting 
 1 1 1 1 1 1 1 2 

 Grazing system 

suitability 
 3 3 3 3 3 2 3 3 

Socio-economic environment 

 Distance to the 

market 
 3 3 3 3 3 3 3 3 

 Income and capital  1 1 1 1 1 2 1 3 

 Household labour 

availability 
 1 2 3 2 2 3 3 3 

Institutional support 

 Frequency of 

extension services 
 3 3 3 3 3 3 3 3 

 Seed accessibility  3 3 3 3 3 3 3 3 
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Production objectives 
 Food security  1 1 1 1 3 3 3 1 

 Biomass 

production 
 3 3 3 3 3 3 3 3 

 Feed quality  3 2 3 2 2 3 3 3 

 Enteric methane 

emission 
 1 1 2 1 1 3 3 2 

Farm production environment 
 Land availability  3 3 3 3 3 3 2 3 
 Water availability  3 3 3 3 3 3 3 3 
 Crop compatibility  2 1 1 3 3 1 3 2 
 Shade  2 3 3 2 2 2 2 3 
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Appendix 4.5. Matching score of household in NZ1. 
  NZ1 Banana NZ1 Napier grass 

Crit

eria 
Criteria boundary 

Pennisetum 

purpureum 

Brachiaria 

brizantha 

Setaria 

sphacelata 

Desmodium 

intortum 

Pennisetum 

purpureum 

Brachiaria 

brizantha 

Setaria 

sphacelata 

Desmodium 

intortum 

Agro-ecological conditions 
 Elevation 3 3 3 3  3 3 3 

 Annual precipitation 2 3 3 3  3 3 3 
 Annual temperature 1 1 3 1  1 3 1 
 Soil pH 3 3 1 3  3 1 3 
 Soil fertility 3 3 3 3  3 3 3 

Cultural environment 

 Norms on forage 

planting 
3 1 2 1  1 2 1 

 Grazing system 

suitability 
3 3 3 3  3 3 3 

Socio-economic environment 

 Distance to the 

market 
3 3 3 3  3 3 3 

 Profitability 3 2 2 2  2 2 2 

 Household labour 

availability 
3 3 3 3  3 3 3 

Institutional support 

 Frequency of 

extension services 
3 3 3 3  3 3 3 

 Seed accessibility 3 3 3 3  3 3 3 

Production objectives 
 Food production 1 1 1 1  1 1 1 
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 Biomass production 3 3 3 2  3 3 3 
 Feed quality 2 3 2 3  3 2 3 

 Enteric methane 

emission 
1 1 1 2  1 1 2 

Farm production environment 
 Land availability 3 3 3 3  3 3 3 
 Water availability 1 3 2 2  3 2 2 
 Crop compatibility 3 3 3 2  2 2 1 
 Shade 3 2 3 3  2 3 3 
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Appendix 4.6. Matching score in NZ2. 
  NZ2 Banana NZ2 Woodlot NZ2 Napier grass 

Cri

ter

ia 

Criteria 

boundary 

Pennisetu

m 

purpureu

m 

Brachia

ria 

brizanth

a 

Setaria 

sphacel

ata 

Desmodi

um 

intortum 

Pennisetu

m 

purpureu

m 

Brachia

ria 

brizanth

a 

Setaria 

sphacel

ata 

Desmodi

um 

intortum 

Pennisetu

m 

purpureu

m 

Brachia

ria 

brizanth

a 

Setaria 

sphacel

ata 

Desmodi

um 

intortum 

Agro-ecological conditions 
 Elevation 3 3 3 3 3 3 3 3  3 3 3 

 Annual 

precipitation 
2 3 3 3 2 3 3 3  3 3 3 

 Annual 

temperature 
1 1 3 1 1 1 3 1  1 3 1 

 Soil pH 3 3 1 3 3 3 1 3  3 1 3 
 Soil fertility 3 3 3 3 3 3 3 3  3 3 3 

Cultural environment 

 
Norms on 

forage 

planting 

3 1 2 1 3 1 2 1  1 2 1 

 
Grazing 

system 

suitability 

3 3 3 3 3 3 3 3  3 3 3 

Socio-economic environment  

 Distance to 

the market 
3 3 3 3 3 3 3 3  3 3 3 

 Profitability 2 1 1 1 2 1 1 1  1 1 1 
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Household 

labour 

availability 

2 1 1 3 2 1 1 3  1 1 3 

Institutional support 

 
Frequency of 

extension 

services 

3 3 3 3 3 3 3 3  3 3 3 

 Seed 

accessibility 
3 3 3 3 3 3 3 3  3 3 3 

Production objectives 

 Food 

production 
2 2 2 2 2 2 2 2  2 2 2 

 Biomass 

production 
3 3 3 3 3 3 3 3  3 3 3 

 Feed quality 2 3 2 3 2 3 2 3  3 2 3 

 
Enteric 

methane 

emission 

2 2 2 3 2 2 2 3  2 2 3 

Farm production environment 

 Land 

availability 
3 3 3 3 3 3 3 3  3 3 3 

 Water 

availability 
2 3 3 3 2 3 3 3  3 3 3 

 Crop 

compatibility 
3 3 3 2 3 3 3 2  2 2 1 

 Shade 3 2 3 3 3 2 3 3  2 3 3 
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Appendix 5. Model outputs of the feed baskets from baseline and scenarios. The description of the abbreviations can be found in Table 11. The output from the 

diet in BU2 during LD was not able to obtain because the limited number of feedstuff that the model can run. Number in bold are the milk yield considering MP 

and ME constraints. 

 Baseline Scenario GI Scenario LI 

 LR SR LD SD LR SR LD SD LR SR LD SD 

BU2         
DM intake (kg/d) 1.5 4.4 4.4 4.4 5.5 5.5  5.4 5.7 5.9  5.7 

Methane (l/d) 128.6 104 119.2 104 136.3 153.1  129 148.4 154.1  142.3 

ME supply (MJ/d) 45.9 37.6 10.8 37.6 48 48  46.2 52.4 54.8  50.9 

MP supply (g/d) 231.3 217.9 253.9 217.9 261.4 295.9  278 293.6 348.2  314.8 

Milk from ME (l/d) 2.2 0.4 2.2 0.4 2.8 2.8  2.3 3.9 4.6  3.6 

Milk from MP (l/d) 2 1.7 2.5 1.7 2.7 3.5  3.1 3.4 4.7  3.9 

Methane emission intensity 64.3 260.0 54.2 260.0 50.5 54.7  56.1 43.6 32.8  36.5 

NG1         
DM intake (kg/d) 5.7 5.5 6.4 5.5 5.7 5.5 6.8 5.5 5.8 5.6 6.5 5.5 

Methane (l/d) 145.8 139.3 117.8 139.3 144.4 138 130.6 138.6 150.3 145.1 122.4 140.8 

ME supply (MJ/d) 52.5 50.2 72.2 50.2 51.8 49.5 72.5 49.8 54.2 52.5 73 50.8 

MP supply (g/d) 347.1 319.2 180.7 174.6 341.6 314.5 197.7 316.4 365.3 342.8 192.6 325.2 

Milk from ME (l/d) 4 3.4 9.7 3.4 3.8 3.2 9.4 3.3 4.4 4 9.8 3.5 

Milk from MP (l/d) 4.7 4 0.8 4 4.5 3.9 1.2 3.9 5.1 4.6 1.1 4.1 

Methane emission intensity 36.5 41.0 147.3 41.0 38.0 43.1 108.8 42.0 34.2 36.3 111.3 40.2 

NZ1         
DM intake (kg/d) 5.7 5.4 5.6 4.4 5.9 5.9 6.4 5.2 5.9 5.9 6.1 4.9 

Methane (l/d) 146 138.6 159.1 123.1 157.5 159.2 177.7 144.1 155.1 156.2 172 137.9 

ME supply (MJ/d) 51.3 48.4 57.2 42.5 55.6 56.2 65 50.3 54.3 54.7 62.4 47.9 

MP supply (g/d) 362.6 342.6 413.9 308 400.4 406 473.6 367.4 384.8 388.5 453.6 348 
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Milk from ME (l/d) 3.0 3.0 5.5 1.8 4.8 4.9 7.3 3.7 4.4 4.5 6.8 3.1 

Milk from MP (l/d) 5.0 4.5 6.2 3.8 5.9 6.0 7.6 5.1 5.5 5.6 7.1 4.7 

Methane emission intensity 48.7 46.2 28.9 68.4 32.8 32.5 24.3 38.9 12.3 34.7 25.3 44.5 

NZ2         
DM intake (kg/d) 6.6 6 6.4 5.6 5.8 6.5 7.2 5.7 5.9 6.7 7.3 5.8 

Methane (l/d) 141.1 168 113.9 140.4 152.9 182.2 157.1 146 153.2 190.2 148.7 148.4 

ME supply (MJ/d) 54.5 61.3 78.9 50.7 54.9 66.2 80 52.6 55.7 69.5 84.4 53.3 

MP supply (g/d) 399.3 28.7 179.4 327.4 373.3 487.3 267.6 348.1 380.8 505.3 249.5 349.7 

Milk from ME (l/d) 4.1 6.5 11.9 3.5 4.6 7.6 11.3 4 4.8 8.5 12.8 4.2 

Milk from MP (l/d) 5.9 6.9 0.8 4.2 5.3 7.9 2.8 4.7 5.4 8.3 2.4 4.7 

Methane emission intensity 34.4 25.8 142.4 40.1 33.2 24.0 56.1 36.5 31.9 22.9 62.0 35.3 

 


