







# Community's Perception of Brucellosis by Applying Participatory Epidemiology in Chiang Mai and Lamphun Province, Thailand

Jongchansittoe, P., Chotinun S., Chaisowwong W., Waropastrakul, S., Unger, F., and Kreausukon, K.

#### Introduction

- Bovine brucellosis is usually caused by Brucella abortus, less frequently by B. melitensis, and occasionally by B. suis
- Bovine brucellosis is characterized by one or more of the following signs: abortion, retained placenta, orchitis, epididymitis and, rarely, arthritis, with excretion of the organisms in uterine discharges and in milk (OIE, 2009)

#### Brucellosis as a zoonosis

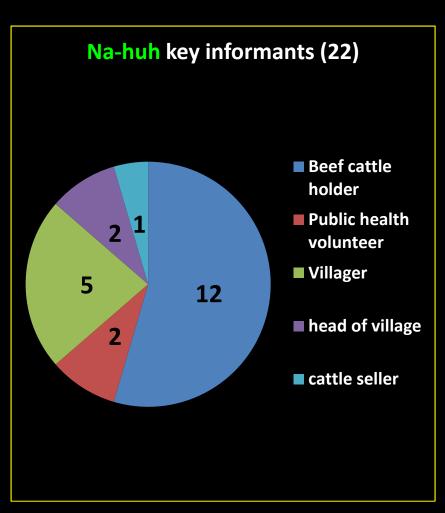
Brucellosis, also known as "undulant fever",
 "Mediterranean fever" or "Malta fever" is a
 zoonosis and the infection is almost invariably
 transmitted by direct or indirect contact with
 infected animals or their products (WHO,
 2006)

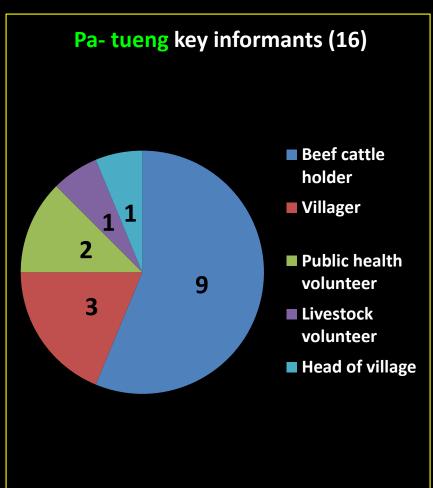
# Objective of study

 Investigation of the perception of communities on brucellosis in Chiang Mai and Lamphun province, Thailand by applying Participatory Epidemiology's tools.

#### Area information

- Sa-Luang--sub district
  - Area size: 118,389 Km² or 73,993.12 Rai
  - Population: 4,692 (2011)
  - Administration: 8 villages
- Na-huh--village
  - 150 households
  - 17 beef cattle farms
  - 10 public health volunteers

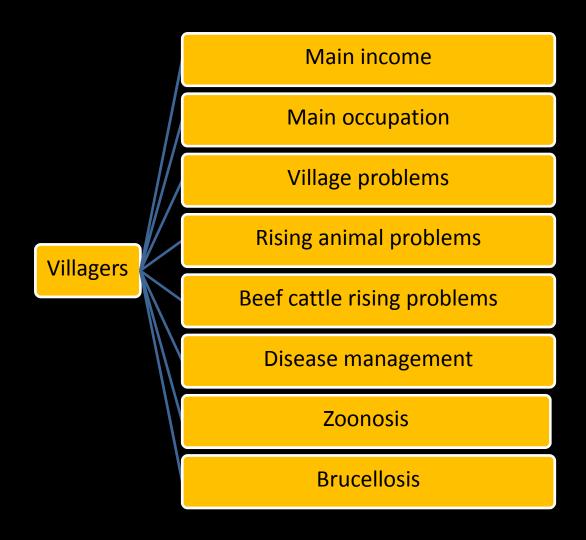




#### **Area information**

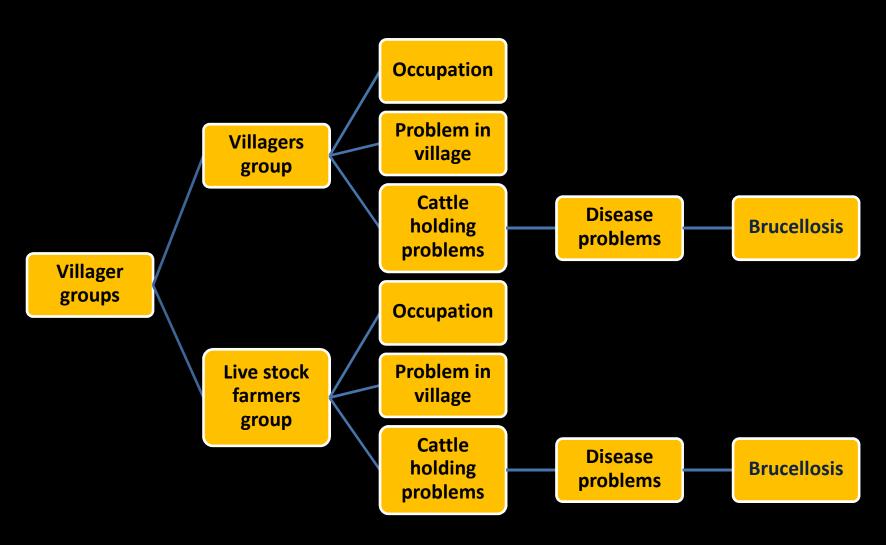
- Tha –Pha-Duk--sub district
  - Area size: 136.163 Km² 85,102
     Rai
  - Population: 6,237 (2009)
  - Administration: 15 villages
- Pa-Tueng--village
  - 40 beef cattle farms



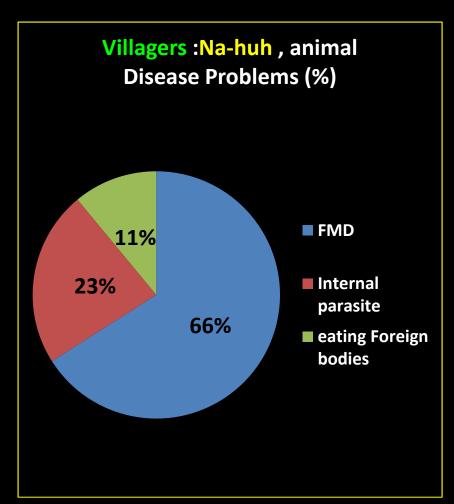
# Study population

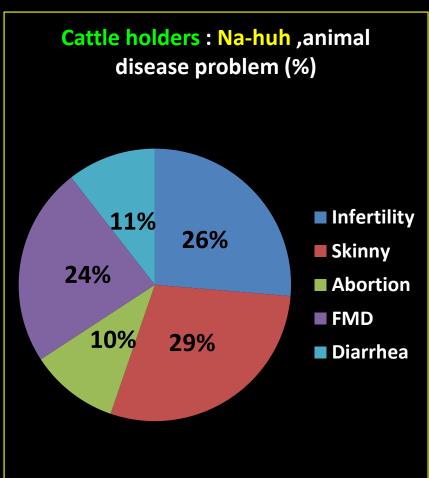




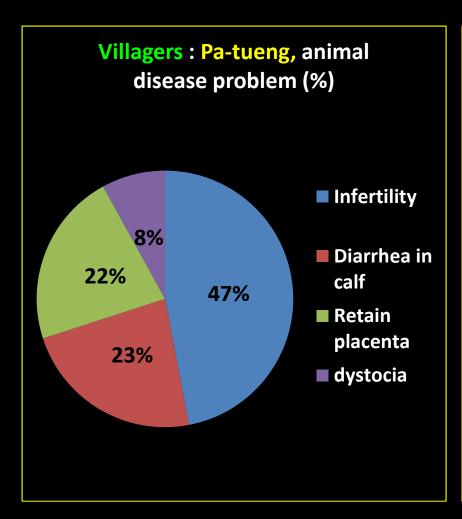


#### P.E. tools

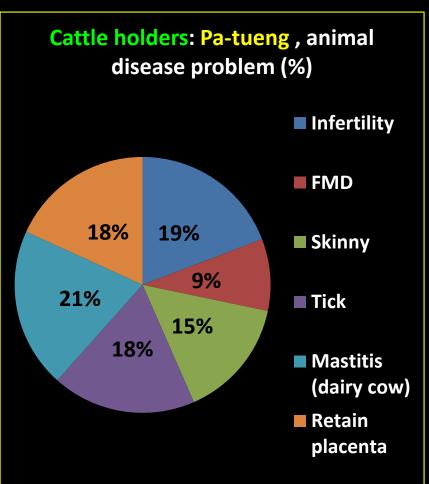
- Semi structure interview
- Focus group discussion
- Mapping
- Proportional piling


#### Semi-structure interview




# Focus group discussion





#### Results





#### Result









The informants listed rabies (40%), Avain Influenza (24.4%), Leptospirosis (8.9%), Tuberculosis (6.7%), Anthrax (6.7%), and *Streptococcus suis* (4.4%) as known zoonoses

#### Results

 The important problems for raising cattle in this areas are infertility

Only one person has knowledge of brucellosis

 They received zoonosis information by government campaigns (Ministry of Public health Campaigns)

#### Conclusion and discussion

 The knowledge and perception on brucellosis is very poor in the beef cattle small holders and villagers in the study areas

 There are not the same perception between villagers and cattle holders

#### Conclusion and discussion

 The disease experience of village has effect on villager's perception

 Need further investigation to classify the causes of "infertility"

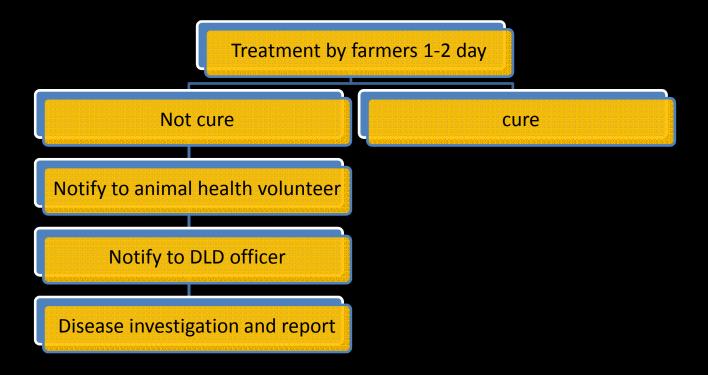
 Rapid response necessary to control and prevent the disease

# Remaining questions

- Would be the correct priority level of investment for brucellosis in beef cattle at the national level?
- How different of Participatory Epidemiology disease investigation comparing with classical disease investigation and laboratory test of brucellosis on the same area?.

# Acknowledgement

- VPHCAP CMU
- Faculty of Veterinary Medicine CMU
- ILRI
- Rockefeller foundation


# Thank you for your attention

#### References

- OIE (2009) BOVINE BRUCELLOSIS
- WHO (2006) *Brucellosis in humans and animals,* Geneva, WHO press.

### Conclusion and discussion

Disease response



# Government Brucellosis's control policies and methods

- "Emergency disease": mandatory report to
   Department of Livestock Development with in 72 hrs
- Weekly report until disease disappear
- Declare epidemic zone and control animal movement
- Summit vaccination plans for epidemic area with in 72 hour
- In normal herd: Serum Rose bengal test (twice a years)

Table 1. Symptoms and signs in 500 patients with brucellosis due to B. melitensis.

| Symptoms and signs                   | Number of patients | %   |  |
|--------------------------------------|--------------------|-----|--|
| Fever                                | 464                | 93  |  |
| Chills                               | 410                | 82  |  |
| Sweats                               | 437                | 87  |  |
| Aches                                | 457                | 91  |  |
| Lack of energy                       | 473                | 95  |  |
| Joint and back pain                  | 431                | 86  |  |
| Arthritis                            | 202                | 40  |  |
| Spinal tenderness                    | 241                | 48  |  |
| Headache                             | 403                | 81  |  |
| Loss of appetite                     | 388                | 78  |  |
| Weight loss                          | 326                | 65  |  |
| Constipation                         | 234                | 47  |  |
| Abdominal pain                       | 225                | 45  |  |
| Diarrhoea                            | 34                 | 7   |  |
| Cough                                | 122                | 24  |  |
| Testicular pain/epididymo-orchitis   | 62                 | 21° |  |
| Rash                                 | 72                 | 14  |  |
| Sleep disturbance                    | 185                | 37  |  |
| III appearance                       | 127                | 25  |  |
| Pallor                               | 110                | 22  |  |
| Lymphadenopathy                      | 160                | 32  |  |
| Splenomegaly                         | 125                | 25  |  |
| Hepatomegaly                         | 97                 | 19  |  |
| Jaundice                             | 6                  | 1   |  |
| Central nervous system abnormalities | 20                 | 4   |  |
| Cardiac murmur                       | 17                 | 3   |  |
| Pneumonia                            | 7                  | 1   |  |

Adapted from MM Madkour. Brucellosis Overview. In: Madkour's Brucellosis, 2nd edition. Springer, Berlin

<sup>&</sup>lt;sup>a</sup> Among 290 males

Table 2. Animals affected by Brucella spp.

| HOST             | B. abortus       | B. melitensis | B. suis     | B. canis         | B. ovis |
|------------------|------------------|---------------|-------------|------------------|---------|
| Cattle           | +                | +             | +(rare)     | 8-3              |         |
| Buffaloes        | +                | +             | _           | (t_0)            | -       |
| Bison            | +                |               |             | 8 <del>-</del> 3 |         |
| Sheep            | +(rare)          | +             | +(possible) | 8-8              | +       |
| Goats            | +(rare)          | +             | =           | 8 <del>-</del> 3 |         |
| Swine            | +(rare)          | +(rare)       | +           | 8-8              | -       |
| Dogs             | +                | +             | +(rare)     | +                |         |
| Camels           | +(rare)          | +             | _           | (4—)             | -       |
| Caribou/Reindeer | A <del>rre</del> | 8.            | +(biovar 4) | 8-4              |         |
| Elk              | +                | 3 <u>—</u> 3  | _           | (t)              | -       |
| Horses           | +                | +(rare)       | +(rare)     | 8-4              |         |
| Rodents          | +(rare)          | +(rare)       | +(biovar 5) | ( <del>-</del> ) | _       |

- The RBT is currently the recommended rapid screening test, but the results should always be confirmed by other tests detecting agglutinating and non-agglutinating antibody and by bacteriological culture, particularly in areas where there is a high incidence of animal brucellosis
- The sensitivity of RBT is over 99%

• The serum (tube) agglutination test (SAT), or micro-titre plate variants of this, using heat/phenol-killed whole S-cells, detects antibodies to the S-LPS. Antibodies reacting against S-LPS can also be detected by other tests — e.g. enzyme-linked immunosorbent assay (ELISA)

 The SAT is a very useful test for the diagnosis of human brucellosis when it is performed with a standardized antigen preparation, and titres which can be expressed in International Units (IU) can be correlated well with clinical stages of infection • The milk ring test (MRT) is a simple and effective method, but can only be used with cow's milk. A drop of haematoxylin-stained antigen is mixed with a small volume of milk in a glass or plastic tube. If specific antibody is present in the milk it will bind to the antigen and rise with the cream to form a blue ring at the top of the column of milk.