Predictive mapping based on routine surveillance data: Lessons from dengue risk mapping in Vietnam

Bernard Bett^{1*}, Hu Suk Lee², Johanna Lindahl¹, Vu Sinh Nam³, Nguyen Huu Quyen⁴, Hung Nguyen-Viet² and Delia Grace¹

- 1. International Livestock Research Institute, Nairobi, Kenya
- 2. International Livestock Research Institute, Regional Office for East and Southeast Asia, Hanoi, Vietnam
- 3. Vector Borne Diseases and Training, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- 4. Vietnam Institute of Meteorology, Hydrology and Climate Change, Hanoi, Vietnam

*Email: b.bett@cgiar.org

Introduction

 Dengue – a viral disease of humans prevalent in the tropics caused by Dengue virus (DENV 1-4), transmitted by Aedes mosquitoes

Dengue risk map (Source: https://www.cdc.gov/dengue/epidemiology/index.html)

- The viruses cause febrile diseases ranging from asymptomatic fevers to more severe illness associated with secondary infections with heterotypic DENV
- Disease has expanded geographically since the 1950s probably due to:
 - Urbanization
 - Tourism and migration
 - Climate change

Introduction

- Extensive studies on DEN risk in SEA and Latin America
 - Risk factors: temperature, rainfall and humidity
 - Lessons for other regions to learn from as DEN risk expands globally

However:

- Not much has been done to assess interactions between meteorological variables and geographical factors – altitude, land use/land cover, etc.
- Existing risk maps do not show changes in risk with season and land use change
- Dengue in Vietnam (94 million people): outbreak every year, large outbreak in 2017 with over 130,000 case and 30 deaths
- Pestforecast project spatio-temporal analysis and risk-mapping of climate sensitive diseases including DEN in

Methods

- We collated secondary data:
 - DEN surveillance from Provincial Preventive Medicine
 Center, Ministry of Health (MoH), for 2001-2012
 - Human population from the General Statistics Office,
 Ministry of Planning and Investments (MPI)
 - Meteorology from Institute of Meteorology, Hydrology and Climate Change, Ministry of Natural Resource and Environment (MONRE)
 - Land use land cover from MODIS database
 - Altitude from MODIS
- All the data summarized by province (n=63) and month (n=12) to give 9,072 records

Methods

- Descriptive analyses:
 - Generated mean monthly DEN incidence by province in 100,000 people as:

Incidence = cases/population*100,000

- Principal component analysis to filter meteorological data
- Distribution of DEN incidence by defined levels of geographical predictor variables
- Modelling using hierarchical Bayesian model (INLA) to account for:
 - Spatial autocorrelation
 - Temporal autocorrelation
 - Spatio-temporal interactions

Results – mean DEN incidence

Mean incidence:

- 6.94 cases/100,000
- SD 14.49

Results – principal component analysis Met data

- Met data had 13 variables, some correlated
- Principal component analysis clustered met variables into about 4 groups
- Principal variables identified and used in the regression model:
 - Humidity, rainfall,
 minimum temperature
 and evaporation

Results of the principal component analysis of meteorological variables

Methods – monthly DEN incidence at levels of geographical factors

Results – posterior parameter distributions from the hierarchical spatiotemporal Bayesian model fitted to data

Final model generated and used for risk mapping

Variable	Mean	SD	2.5% quantile	97.5% quantile	Mode
Fixed effects:					
Intercept	-13.654	0.220	-14.089	-13.222	-13.652
Minimum temperature	-0.150	0.006	-0.161	-0.138	-0.150
Minimum temperature					
(squared)	0.010	0.000	0.010	0.010	0.010
Rainfall	0.299	0.002	0.295	0.303	0.299
Rainfall (squared)	-0.034	0.000	-0.035	-0.034	-0.034
Altitude	-0.001	0.001	-0.002	0.001	-0.001
Urban areas	0.733	0.012	0.710	0.756	0.733
Hyperparameters:					
IID	1.118	0.291	0.651	1.786	1.016
BYM model	1.359	0.736	0.415	3.230	0.926

Results – risk maps (*log* DEN incidence/pop)

Wet season (May – November)

Discussion and conclusions

- Our analyses combine met and geographical data on land use/land cover and altitude to show seasonal dynamics in DEN risk
- Statistical model developed can be used for forecasting by changing rainfall and temperature values
- Space-time interactions significant -- risk in the endemic areas evolves much faster and to much higher levels during the monsoon periods than nonendemic areas
- Findings/maps useful for surveillance and targeted
 interventions

Acknowledgements

Local partners – MoH, IMEH, NIHE, MOH

CGIAR Research Program on Climate Change, Agriculture and Food Security

CGIAR Research Program on Agriculture for Nutrition and Health

better lives through livestock

Contact person: B.Bett@cgiar.org

ilri.org
better lives through livestock
ILRI is a member of the CGIAR Consortium

Box 30709, Nairobi 00100 Kenya Phone +254 20 422 3000 Fax +254 20 4223001 Email ilri-kenya@cgiar.org ILRI has offices in: Central America • East Africa • South Asia • Southeast and East Asia • Southern Africa • West Africa

